共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitochondrial permeability transition in apoptosis and necrosis 总被引:7,自引:0,他引:7
T. Hirsch S.A. Susin I. Marzo P. Marchetti N. Zamzami G. Kroemer 《Cell biology and toxicology》1998,14(2):141-145
Apoptosis has classically been viewed as a process not involving mitochondria, whereas the implication of mitochondrial dysfunction in necrosis has been recognized for several decades. Recently, it has become clear that apoptosis implies a disruption of mitochondrial membrane intregrity that is decisive for the cell death process. Cytofluorometric methods assessing the mitochondrial membrane function and structure can be employed to demonstrate that, at least in most models of apoptosis, mitochondrial changes precede caspase and nuclease activation. Moreover, pharmacological and genetic experiments suggest that the loss of mitochondrial membrane integrity is a critical event of the apoptotic process, beyond or at the point of no return of programmed cell death. Inhibitors of the mitochondrial megachannel (= permeability transition pore) can prevent both the mitochondrial and the post-mitochondrial manifestations of apoptosis. 相似文献
2.
Opening of the permeability transition pore (PTP) has been implicated as an important mitochondrial event that occurs during apoptosis. We examined the role of the PTP in the well-characterized cell death of rat sympathetic neurons deprived of nerve growth factor (NGF) in vitro. Removal of NGF causes these neurons to undergo either a classic apoptotic cell death or, when treated with a broad-spectrum caspase inhibitor such as boc-aspartyl(OMe)-fluoromethylketone (BAF), a delayed, nonapoptotic cell death. The PTP inhibitor, cyclosporin A (CsA), blocked commitment-to-die in the presence of BAF, as defined by the ability of NGF readdition to rescue cells, but had little effect on commitment-to-die in the absence of BAF. CsA did not have trophic effects on BAF-saved cells, but did block the decrease in mitochondrial membrane potential. These data suggest that PTP opening is a critical event in caspase-independent, nonapoptotic (but not caspase-dependent, apoptotic) death of NGF-deprived rat sympathetic neurons. 相似文献
3.
Dysregulation of Ca2+ has long been implicated to be important in cell injury. A Ca2+-linked process important in necrosis and apoptosis (or necrapoptosis) is the mitochondrial permeability transition (MPT). In the MPT, large conductance permeability transition (PT) pores open that make the mitochondrial inner membrane abruptly permeable to solutes up to 1500 Da. The importance of Ca2+ in MPT induction varies with circumstance. Ca2+ overload is sufficient to induce the MPT. By contrast after ischemia-reperfusion to cardiac myocytes, Ca2+ overload is the consequence of bioenergetic failure after the MPT rather than its cause. In other models, such as cytotoxicity from Reye-related agents and storage-reperfusion injury to liver grafts, Ca2+ appears to be permissive to MPT onset. Lastly in oxidative stress, increased mitochondrial Ca2+ and ROS generation act synergistically to produce the MPT and cell death. Thus, the exact role of Ca2+ for inducing the MPT and cell death depends on the particular biologic setting. 相似文献
4.
Mitochondria are important in the pathophysiology of several neurodegenerative diseases, and mitochondrial production of reactive oxygen species (ROS), membrane depolarization, permeability changes and release of apoptogenic proteins are involved in these processes. Following brain insults, cell death often occurs in discrete regions of the brain, such as the subregions of the hippocampus. To analyse mitochondrial structure and function in such subregions, only small amounts of mitochondria are available. We developed a protocol for flow cytometric analysis of very small samples of isolated brain mitochondria, and analysed mitochondrial swelling and formation of ROS in mitochondria from the CA1 and CA3 regions of the hippocampus. Calcium-induced mitochondrial swelling was measured, and fluorescent probes were used to selectively stain mitochondria (nonyl acridine orange), to measure membrane potential (tetramethylrhodamine-methyl-ester, 1,1',3,3,3',3'-hexamethylindodicarbocyanine-iodide) and to measure production of ROS (2',7'-dichlorodihydrofluorescein-diacetate). We found that formation of ROS and mitochondrial permeability transition pore activation were higher in mitochondria from the CA1 than from the CA3 region, and propose that differences in mitochondrial properties partly underlie the selective vulnerability of the CA1 region to brain insults. We also conclude that flow cytometry is a useful tool to analyse the role of mitochondria in cell death processes. 相似文献
5.
Calcium overload of neural cell mitochondria plays a key role in excitotoxic and ischemic brain injury. This study tested the hypothesis that brain mitochondria consist of subpopulations with differential sensitivity to calcium-induced inner membrane permeability transition, and that this sensitivity is greatly reduced by physiological levels of adenine nucleotides. Isolated non-synaptosomal rat brain mitochondria were incubated in a potassium-based medium in the absence or presence of ATP or ADP. Measurements were made of medium and intramitochondrial free calcium, light scattering, mitochondrial ultrastructure, and the elemental composition of electron-opaque deposits within mitochondria treated with calcium. In the absence of adenine nucleotides, calcium induced a partial decrease in light scattering, accompanied by three distinct ultrastructural morphologies, including large-amplitude swelling, matrix vacuolization and a normal appearance. In the presence of ATP or ADP the mitochondrial calcium uptake capacity was greatly enhanced and calcium induced an increase rather than a decrease in mitochondrial light scattering. Approximately 10% of the mitochondria appeared damaged and the rest contained electron-dense precipitates that contained calcium, as determined by electron-energy loss spectroscopy. These results indicate that brain mitochondria are heterogeneous in their response to calcium. In the absence of adenine nucleotides, approximately 20% of the mitochondrial population exhibit morphological alterations consistent with activation of the permeability transition, but less than 10% exhibit evidence of osmotic swelling and membrane disruption in the presence of ATP or ADP. 相似文献
6.
Mitochondrial morphology and dynamics were investigated during the onset of cell death in Arabidopsis thaliana. Cell death was induced by either chemical (reactive oxygen species (ROS)) or physical (heat) shock. Changes in mitochondrial morphology in leaf tissue, or isolated protoplasts, each expressing mitochondrial-targeted green fluorescent protein (GFP), were observed by epifluorescence microscopy, and quantified. Chemical induction of ROS production, or a mild heat shock, caused a rapid and consistent change in mitochondrial morphology (termed the mitochondrial morphology transition) that preceded cell death. Treatment of protoplasts with a cell-permeable superoxide dismutase analogue, TEMPOL, blocked this morphology change. Incubation of protoplasts in micromolar concentrations of the calcium channel-blocker lanthanum chloride, or the permeability transition pore inhibitor cyclosporin A, prevented both the mitochondrial morphology transition and subsequent cell death. It is concluded that the observed mitochondrial morphology transition is an early and specific indicator of cell death and is a necessary component of the cell death process. 相似文献
7.
Haouzi D Cohen I Vieira HL Poncet D Boya P Castedo M Vadrot N Belzacq AS Fau D Brenner C Feldmann G Kroemer G 《Apoptosis : an international journal on programmed cell death》2002,7(5):395-405
Atractyloside (Atr) binds to the adenine nucleotide translocator (ANT) and inhibits ANT-mediated ATP/ADP exchange on the inner mitochondrial membrane. In addition, Atr can trigger opening of a non-specific ion channel, within the ANT-containing permeability transition pore complex (PTPC), which is subject to redox regulation and inhibited by cyclosporin A (CsA). Here we show that the cytotoxic effects of Atr, both in vivo and in vitro, are determined by its capacity to induce PTPC opening and consequent mitochondrial membrane permeabilization (MMP). Thus, the Atr-induced MMP and death of cultured liver cells are both inhibited by CsA as well as by glutathione (GSH) and enhanced by GSH depletion. Similarly, the hepatorenal toxicity of Atr, assessed in vivo, was reduced by treating mice with CsA or a diet rich in sulfur amino acids, a regime which enhances mitochondrial GSH levels. Atr injection induced MMP in hepatocytes and proximal renal tubular cells, and MMP was reduced by either CsA or GSH. Acetaminophen (paracetamol)-induced acute poisoning was also attenuated by CsA and GSH, both in vitro and in vivo. Altogether these data indicate that PTPC-mediated MMP may determine the hepatorenal toxicity of xenobiotics in vivo. 相似文献
8.
Cosso RG Turim J Nantes IL Almeida AM Di Mascio P Verces AE 《Journal of bioenergetics and biomembranes》2002,34(3):157-163
Pure singlet molecular oxygen (1O2) generated by thermal decomposition of the 3,3-(1,4-naphthylidene) dipropionate endoperoxide (NDPO2), inhibited respiration of isolated rat liver mitochondria supported by NADH-linked substrates or succinate, but not by N,N,N,N-tetramehyl-p-phenylene-diamine (TMPD)/ascorbate. Under the latter conditions, mitochondria treated with 2.7 mM NDPO2 exhibited a decrease in transmembrane potential () in manner dependent on NDPO2 exposure time. This process was sensitive to the mitochondrial permeability transition inhibitors EGTA, dithiothreitol, ADP, and cyclosporin A. The presence of deuterium oxide (D2O), that increases 1O2 lifetime, significantly enhanced NDPO2-promoted mitochondrial permeabilization. In addition, NDPO2-induced mitochondrial permeabilization was accompanied by DTT or ADP-sensitive membrane protein thiol oxidation. Taken together, these results provide evidence that mitochondrial permeability transition induced by chemically generated singlet oxygen is mediated by the oxidation of membrane protein thiols. 相似文献
9.
García N Zazueta C Carrillo R Correa F Chávez E 《Molecular and cellular biochemistry》2000,209(1-2):119-123
Addition of 5 M copper to rat kidney mitochondria enhances the effect of carboxyatractyloside and oleate on pore opening, in a cyclosporin A-sensitive fashion. The effects of the pair copper-carboxyatractyloside were observed on matrix Ca2+ efflux, mitochondrial swelling and on the transmembrane electric gradient. The effect of Cu2+ emphasizes the importance of membrane thiol groups located, probably, in the ADP/ATP translocase (ANT), on permeability transition. It was also found that Cu2+ does not block the fluorescent label of ANT by eosin 5-maleimide, but abolishes the inhibition by CAT on the labeling. This suggests that the binding of Cu2+ to cysteine residues of ANT promotes a conformational change in the carrier, strengthening the effect of CAT and oleate on membrane leakage. 相似文献
10.
Giampaolo Morciano Natalia Naumova Piotr Koprowski Sara Valente Vilma A. Sardão Yaiza Potes Alessandro Rimessi Mariusz R. Wieckowski Paulo J. Oliveira 《Biological reviews of the Cambridge Philosophical Society》2021,96(6):2489-2521
In this review, we summarize current knowledge of perhaps one of the most intriguing phenomena in cell biology: the mitochondrial permeability transition pore (mPTP). This phenomenon, which was initially observed as a sudden loss of inner mitochondrial membrane impermeability caused by excessive calcium, has been studied for almost 50 years, and still no definitive answer has been provided regarding its mechanisms. From its initial consideration as an in vitro artifact to the current notion that the mPTP is a phenomenon with physiological and pathological implications, a long road has been travelled. We here summarize the role of mitochondria in cytosolic calcium control and the evolving concepts regarding the mitochondrial permeability transition (mPT) and the mPTP. We show how the evolving mPTP models and mechanisms, which involve many proposed mitochondrial protein components, have arisen from methodological advances and more complex biological models. We describe how scientific progress and methodological advances have allowed milestone discoveries on mPTP regulation and composition and its recognition as a valid target for drug development and a critical component of mitochondrial biology. 相似文献
11.
Modulation of cell calcium signals by mitochondria 总被引:4,自引:0,他引:4
Jouaville Laurence S. Ichas François Mazat Jean-Pierre 《Molecular and cellular biochemistry》1998,184(1-2):371-376
It is now clearer and clearer that mitochondria play a role, and perhaps an active role, in cell calcium signalling. The fact that mitochondria can exhibit a Ca2+>-induced Ca2+> release (mCICR, Ichas et al. [37]) reinforces this concept and makes the mitochondria an essential element in the relay of Ca2+> wave propagation. It must be emphasized that the modulation of cell Ca2+> signals by mitochondria depends upon their energetic status, thus making mitochondria an essential link between energy metabolism and calcium signalling inside the cell. 相似文献
12.
Ca2+ binding to F‐ATP synthase β subunit triggers the mitochondrial permeability transition
下载免费PDF全文

Valentina Giorgio Marco Schiavone Claudio Bassot Giovanni Minervini Valeria Petronilli Francesco Argenton Michael Forte Silvio Tosatto Giovanna Lippe Paolo Bernardi 《EMBO reports》2017,18(7):1065-1076
F‐ATP synthases convert the electrochemical energy of the H+ gradient into the chemical energy of ATP with remarkable efficiency. Mitochondrial F‐ATP synthases can also undergo a Ca2+‐dependent transformation to form channels with properties matching those of the permeability transition pore (PTP), a key player in cell death. The Ca2+ binding site and the mechanism(s) through which Ca2+ can transform the energy‐conserving enzyme into a dissipative structure promoting cell death remain unknown. Through in vitro, in vivo and in silico studies we (i) pinpoint the “Ca2+‐trigger site” of the PTP to the catalytic site of the F‐ATP synthase β subunit and (ii) define a conformational change that propagates from the catalytic site through OSCP and the lateral stalk to the inner membrane. T163S mutants of the β subunit, which show a selective decrease in Ca2+‐ATP hydrolysis, confer resistance to Ca2+‐induced, PTP‐dependent death in cells and developing zebrafish embryos. These findings are a major advance in the molecular definition of the transition of F‐ATP synthase to a channel and of its role in cell death. 相似文献
13.
Abstract We have investigated the role of Ca2+ accumulation and neuronal injury in cerebellar granule neurons after glutamate receptor overactivation. After the removal of the free cytosolic Ca2+ we identified an extensive second Ca2+ fraction (SCF) that is retained within the neurons after glutamate receptor overactivation. The SCF reaches a plateau within 10 min with the magnitude of this SCF accumulation reflecting the extent of the neuronal injury that occurs within the neurons. The existence of this SCF is sensitive to both NMDA receptor antagonists and mitochondrial inhibitors but is unaffected by agents that deplete endoplasmic reticulum Ca2+, indicating that this Ca2+ fraction may be located within the mitochondria. Through the isolation of mitochondria from cerebellar granule neurons treated with glutamate we have shown that the majority of the SCF is mitochondrial in location. On the removal of the glutamate stimulus the SCF recovers at a slower rate than the free Ca2+ concentration within the neuron. This is intriguing, as it implies a capacity to remember previous excitatory events. Most significantly we have shown that a short pre-application of subthreshold glutamate or kainate blocks both SCF Ca2+ accumulation and extensive neuronal injury in response to high concentrations of glutamate. These findings may be relevant to the observations of pre-conditioning in the brain and heart. 相似文献
14.
Role of the Mitochondrial Permeability Transition Pore in Apoptosis 总被引:11,自引:0,他引:11
Mitochondrial permeability transition (PT) involves the formation of proteaceous, regulated pores, probably by apposition of inner and outer mitochondrial membrane proteins which cooperate to form the mitochondrial megachannel (=mitochondrial PT pore). PT has important metabolic consequences, namely the collapse of the mitochondrial transmembrane potential, uncoupling of the respiratory chain, hyperproduction of superoxide anions, disruption of mitochondrial biogenesis, outflow of matrix calcium and glutathione, and release of soluble intermembrane proteins. Recent evidence suggests that PT is a critical, rate limiting event of apoptosis (programmed cell death): (i) induction of PT suffices to cause apoptosis; (ii) one of the immediate consequences of PT, disruption of the mitochondrial transmembrane potential (m), is a constant feature of early apoptosis; (iii) prevention of PT impedes the m collapse as well as all other features of apoptosis at the levels of the cytoplasma, the nucleus, and the plasma membrane; (iv) PT is modulated by members of the apoptosis-regulatory bcl-2 gene family. Recent data suggest that the acquisition of the apoptotic phenotype, including characteristic changes in nuclear morphology and biochemistry (chromatin condensation and DNA fragmentation), depends on the action of apoptogenic proteins released from the mitochondrial intermembrane space. 相似文献
15.
Oliveira JM Jekabsons MB Chen S Lin A Rego AC Gonçalves J Ellerby LM Nicholls DG 《Journal of neurochemistry》2007,101(1):241-249
Mitochondrial dysfunction is believed to participate in Huntington's disease (HD) pathogenesis. Here we compare the bioenergetic behavior of forebrain mitochondria isolated from different transgenic HD mice (R6/2, YAC128 and Hdh150 knock-in) and wild-type littermates with the first determination of in situ respiratory parameters in intact HD striatal neurons. We assess the Ca2+-loading capacity of isolated mitochondria by steady Ca2+-infusion. Mitochondria from R6/2 mice (12-13 weeks) and 12 months YAC128, but not homozygous or heterozygous Hdh150 knock-in mice (15-17 weeks), exhibit increased Ca2+-loading capacity when compared with respective wild-type littermates. In situ mitochondria in intact striatal neurons show high respiratory control. Moreover, moderate expression of full-length mutant huntingtin (in Hdh150 knock-in heterozygotes) does not significantly impair mitochondrial respiration in unstimulated neurons. However, when challenged with energy-demanding stimuli (NMDA-receptor activation in pyruvate-based media to accentuate the mitochondria role in Ca2+-handling), Hdh150 neurons are more vulnerable to Ca2+-deregulation than neurons from their wild-type littermates. These results stress the importance of assessing HD mitochondrial function in the cellular context. 相似文献
16.
Participation of the mitochondrial permeability transition pore in nitric oxide-induced plant cell death 总被引:13,自引:0,他引:13
Elzira E. Saviani Cintia H. Orsi Jusceley F. P. Oliveira Cecília A. F. Pinto-Maglio Ione Salgado 《FEBS letters》2002,510(3):136-140
In the present study, we investigated the involvement of the mitochondrial permeability transition pore (PTP) in nitric oxide (NO)-induced plant cell death. NO donors such as sodium nitroprusside (SNP) and S-nitroso-N-acetylpenicillamine inhibited growth and caused death in suspension-cultured cells of Citrus sinensis. Cells treated with SNP showed chromatin condensation and fragmentation, characteristic of apoptosis. SNP caused loss of the mitochondrial membrane electrical potential, which was prevented by cyclosporin A (CsA), a specific inhibitor of PTP formation. CsA also prevented the nuclear apoptosis and subsequent Citrus cell death induced by NO. These findings indicate that mitochondrial PTP formation is involved in the signaling pathway by which NO induces apoptosis in cultured Citrus cells. 相似文献
17.
目的:研究心功能自然衰退过程中线拉体通透性转换孔(MPTP)开放改变规律及其相关机制.方法:检测不同月龄(3、6、9、12月龄)SD大鼠左室心功能;分离各月龄大鼠心肌线粒体,检测MPTP开放改变、线粒体Mn-SOD活性.结果:9月龄和12月龄大鼠心功能同3月龄大鼠相比均出现明显减退,表现为左室收缩压LVSP减小(P<0... 相似文献
18.
目的:探讨谷氨酰胺(Gln)对过度训练状态下心肌线粒体膜通透性转换孔(PTP)开放的干预作用及其可能机制。方法:30只SD大鼠随机分为3组(n=10):对照组(CG组)、过度训练组(OG组)和补充Gln+过度训练组(GOG组)。采用分光光度法检测大鼠心肌线粒体PTP开放程度,电化学法检测心肌丙二醛(MDA)、还原型谷胱苷肽(GSH)含量和磷脂酶A2(PLA2)活性。结果:OG组与GOG组比较,吸光度(A0)显著下降(P<0.05),吸光度变化(△A)值显著降低(P<0.05);荧光剂罗丹明123(Rh123)的荧光强度(F0)显著增强(P<0.05),Rh123荧光强度变化(△F)值明显降低(P<0.05)。与GOG组比较,线粒体GSH含量显著降低(P<0.05),PLA2活性显著增加(P<0.05);MDA含量显著升高(P<0.05)。结论:过度训练可导致心肌细胞线粒体PTP开放增加,过度训练状态下线粒体活性氧生成增多,PLA2活性增加及GSH的含量下降,补充外源性的Gln对这些变化有显著的干预作用。 相似文献
19.
L. N. Shapoval O. V. Dmytrenko L. S. Pobegailo L. G. Stepanenko V. F. Sagach 《Neurophysiology》2007,39(4-5):343-346
In acute experiments on anesthetized rats, we studied the effects of modulation of the mitochondrial permeability in medullary
cardiovascular neurons (nucl. tractus solitarii, NTS, nucl. ambiguus, AMB, paramedian reticular nucleus, PMn, and lateral reticular nucleus, LRN) on the systemic arterial pressure (SAP). We
were the first to show that the mitochondrial permeability is essential for medullary cardiovascular control. An increase
in the mitochondrial permeability with injections of an inductor of mitochondrial transition pore opening, phenylarsine oxide
(PAO, 0.5 to 504 nmol), into the medullary nuclei resulted in long-lasting decreases in the SAP; at high doses of PAO, these
drops could be irreversible and led to the animal’s death. Injections of an inhibitor of mitochondrial transition pore opening,
melatonin (0.7 to 70.0 nmol), into the medullary nuclei induced dose-dependent increases in the SAP. Melatonin and L-arginine
were shown to demonstrate neuroprotective effects due to their ability to attenuate the consequences of increased mitochondrial
permeability in medullary cardiovascular neurons.
Neirofiziologiya/Neurophysiology, Vol. 39, Nos. 4/5, pp. 392–395, July–October, 2007. 相似文献
20.
The permeability transition pore as a mitochondrial calcium release channel: A critical appraisal 总被引:19,自引:0,他引:19
Mitochondria from a variety of sources possess an inner membrane channel, the permeability transition pore. The pore is a voltage-dependent channel, activated by matrix Ca2+ and inhibited by matrix H+, which can be blocked by cyclosporin A, presumably after binding to mitochondrial cyclophilin. The physiological function of the permeability transition pore remains unknown. Here we evaluate its potential role as a fast Ca2+ release channel involved in mitochondrial and cellular Ca2+ homeostasis. We (i) discuss the theoretical and experimental reasons why mitochondria need a fast, inducible Ca2+ release channel; (ii) analyze the striking analogies between the mitochondrial permeability transition pore and the sarcoplasmic reticulum ryanodine receptor-Ca2+ release channel; (iii) argue that the permeability transition pore can act as a selective release channel for Ca2+ despite its apparent lack of selectivity for the transported speciesin vitro; and (iv) discuss the importance of mitochondria in cellular Ca2+ homeostasis, and how disruption of this function could impinge upon cell viability, particularly under conditions of oxidative stress. 相似文献