首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Investigating the evolutionary relationships of the major groups of Apicomplexa remains an important area of study. Morphological features and host-parasite relationships continue to be important in the systematics of the adeleorinid coccidia (suborder Adeleorina), but the systematics of these parasites have not been well-supported or have been constrained by data that were lacking or difficult to interpret. Previous phylogenetic studies of the Adeleorina have been based on morphological and developmental characters of several well-described species or based on nuclear 18S ribosomal DNA (rDNA) sequences from taxa of limited taxonomic diversity. Twelve new 18S rDNA sequences from adeleorinid coccidia were combined with published sequences to study the molecular phylogeny of taxa within the Adeleorina and to investigate the evolutionary relationships of adeleorinid parasites within the Apicomplexa. Three phylogenetic methods supported strongly that the suborder Adeleorina formed a monophyletic clade within the Apicomplexa. Most widely recognized families within the Adeleorina were hypothesized to be monophyletic in all analyses, although the single Hemolivia species included in the analyses was the sister taxon to a Hepatozoon sp. within a larger clade that contained all other Hepatozoon spp. making the family Hepatozoidae paraphyletic. There was an apparent relationship between the various clades generated by the analyses and the definitive (invertebrate) host parasitized and, to lesser extent, the type of intermediate (vertebrate) host exploited by the adeleorinid parasites. We conclude that additional taxon sampling and use of other genetic markers apart from 18S rDNA will be required to better resolve relationships among these parasites.  相似文献   

2.
Previous molecular phylogenetic analyses of the family Cyperaceae based on rbcL sequences showed Bulbostylis as paraphyletic, with B. atrosanguinea and B. hispidula forming a clade with Nemum spadiceum. On the contrary, phylogenetic analyses of the tribe Abildgaardieae based on nuclear (ITS ribosomal region) and plastid sequences (trnL-F region) showed Bulbostylis as monophyletic, although they only incorporated four species of Bulbostylis and none of Nemum. In this work, we presented a phylogenetic hypothesis of Bulbostylis based on a comprehensive sampling, including species from different continents for the first time. New sequences of Abildgaardia, Crosslandia, Fimbristylis, and Nemum were included to test the monophyly of Bulbostylis. In total, 84 sequences of both ITS and trnL regions were generated. Analyses were performed using Bayesian inference, maximum likelihood, and parsimony. Ancestral state reconstruction was performed using ML, MCMC, and parsimony methods. In all analyses, Bulbostylis resulted paraphyletic as Nemum atracuminatum is nested within it. Most American species of Bulbostylis grouped together, but relationships amongst them appeared poorly resolved. Ancestral state reconstructions of native distribution suggest an African ancestor of Bulbostylis, with at least three introduction independent events of the species in America. Morphological diagnostic characters such as the ‘style base permanence or detachment from the ripe achene’, and the ‘micromorphological patterns of the achene surface’ are homoplastic in this phylogenetic context, and therefore unsuitable to propose infrageneric groupings within the Bulbostylis.  相似文献   

3.
Mahonia bealei (Berberidaceae) is a frequently-used traditional Chinese medicinal plant with efficient anti-inflammatory ability. This plant is one of the sources of berberine, a new cholesterol-lowering drug with anti-diabetic activity. We have sequenced the complete nucleotide sequence of the chloroplast (cp) genome of M. bealei. The complete cp genome of M. bealei is 164,792 bp in length, and has a typical structure with large (LSC 73,052 bp) and small (SSC 18,591 bp) single-copy regions separated by a pair of inverted repeats (IRs 36,501 bp) of large size. The Mahonia cp genome contains 111 unique genes and 39 genes are duplicated in the IR regions. The gene order and content of M. bealei are almost unarranged which is consistent with the hypothesis that large IRs stabilize cp genome and reduce gene loss-and-gain probabilities during evolutionary process. A large IR expansion of over 12 kb has occurred in M. bealei, 15 genes (rps19, rpl22, rps3, rpl16, rpl14, rps8, infA, rpl36, rps11, petD, petB, psbH, psbN, psbT and psbB) have expanded to have an additional copy in the IRs. The IR expansion rearrangement occurred via a double-strand DNA break and subsequence repair, which is different from the ordinary gene conversion mechanism. Repeat analysis identified 39 direct/inverted repeats 30 bp or longer with a sequence identity ≥ 90%. Analysis also revealed 75 simple sequence repeat (SSR) loci and almost all are composed of A or T, contributing to a distinct bias in base composition. Comparison of protein-coding sequences with ESTs reveals 9 putative RNA edits and 5 of them resulted in non-synonymous modifications in rpoC1, rps2, rps19 and ycf1. Phylogenetic analysis using maximum parsimony (MP) and maximum likelihood (ML) was performed on a dataset composed of 65 protein-coding genes from 25 taxa, which yields an identical tree topology as previous plastid-based trees, and provides strong support for the sister relationship between Ranunculaceae and Berberidaceae. Molecular dating analyses suggest that Ranunculaceae and Berberidaceae diverged between 90 and 84 mya, which is congruent with the fossil records and with recent estimates of the divergence time of these two taxa.  相似文献   

4.
Seventeen species, one subspecies and one variety of Dioscorea sect. Stenophora Uline were investigated for their phylogenetic relationships based on a sequence analysis of chloroplast matK and rbcL genes and trnL-F intergenic spacer by maximum parsimony and maximum likelihood methods. The results showed that (a) sect. Stenophora was a strongly supported monophyletic group; (b) D. rockii, D. membranacea, D. banzhuana, and D. simulans formed a moderately supported monophyletic group, and D. prazeri was weakly supported to be sister to this group; (c) D. althaeoides and D. nipponica ssp. nipponica formed a moderately supported clade, and D. nipponica ssp. rosthornii was not a member of this clade; (d) D. zingiberensis and D. sinoparviflora showed a moderate to strong sister relationship; and (e) D. collettii var. hypoglauca and D. collettii var. collettii were sister to each other, but with only weak support.  相似文献   

5.
A restriction-site analysis of chloroplast DNA from 44 species, representing 19 genera and all six subfamilies of the Crassulaceae was conducted using 12 restriction endonucleases. A total of 969 variable sites was detected, 608 of which were phylogenetically informative and used in parsimony analysis. Estimated values of nucleotide sequence divergence were used to construct a distance tree by the neighbor-joining method. Maximum sequence divergence in the family was ~7%. Different tree inference methods yielded only moderately different topologies. The amount of support for the monophyletic groups obtained in the Wagner parsimony analysis was evaluated by bootstrap and decay analysis. There is very strong support for a basal division of the family, which separates the monophyletic subfamily Crassuloideae from all other taxa. Four of the six traditionally recognized subfamilies are indicated to be polyphyletic. These include the Cotyledonoideae, Sempervivoideae, Sedoideae, and Echeverioideae. The Kalanchoideae and the genera Cotyledon and Adromischus exhibit low levels of cpDNA sequence divergence relative to one another, suggesting a relatively recent radiation. The genera Sedum and Rosularia are indicated to be polyphyletic. Sedum comprises sister taxa of most of the other genera of the family.  相似文献   

6.
The cyprinid fish fauna of North America is relatively large, with approximately 300 species, and all but one of these are considered phoxinins. The phylogenetic relationships of the North American phoxinins continue to pose difficulties for systematists. Results of morphological analyses are not consistent owing to differences interpreting and coding characters. Herein, we present phylogenetic analyses of mitochondrial 12S and 16S ribosomal RNA sequence data for representatives of nearly all genera of North American phoxinins. The data were analysed using parsimony, weighted parsimony, maximum likelihood and bayesian analyses. Results from weighted parsimony, likelihood and the bayesian analysis are largely consistent as they all account for differing substitution rates between transitions and transversions. Several major clades within the fauna can be recognized and are strongly supported by all analyses. These include the western clade, creek chub–plagopterin clade and the open posterior myodome clade. The shiner clade is nested in the open posterior myodome clade and is the most species-rich clade of North American phoxinins. Relationships within this clade were not well resolved by our analyses. This may reflect the inability of the mitochondrial RNA genes to resolve recent speciation events or taxon sampling within the shiner clade.  © 2003 The Linnean Society of London, Zoological Journal of the Linnean Society , 2003, 139 , 63–80.  相似文献   

7.
The green algal genus Ostreobium is an important symbiont of corals, playing roles in reef decalcification and providing photosynthates to the coral during bleaching events. A chloroplast genome of a cultured strain of Ostreobium was available, but low taxon sampling and Ostreobium's early‐branching nature left doubt about its phylogenetic position. Here, we generate and describe chloroplast genomes from four Ostreobium strains as well as Avrainvillea mazei and Neomeris sp., strategically sampled early‐branching lineages in the Bryopsidales and Dasycladales respectively. At 80,584 bp, the chloroplast genome of Ostreobium sp. HV05042 is the most compact yet found in the Ulvophyceae. The Avrainvillea chloroplast genome is ~94 kbp and contains introns in infA and cysT that have nearly complete sequence identity except for an open reading frame (ORF) in infA that is not present in cysT. In line with other bryopsidalean species, it also contains regions with possibly bacteria‐derived ORFs. The Neomeris data did not assemble into a canonical circular chloroplast genome but a large number of contigs containing fragments of chloroplast genes and showing evidence of long introns and intergenic regions, and the Neomeris chloroplast genome size was estimated to exceed 1.87 Mb. Chloroplast phylogenomics and 18S nrDNA data showed strong support for the Ostreobium lineage being sister to the remaining Bryopsidales. There were differences in branch support when outgroups were varied, but the overall support for the placement of Ostreobium was strong. These results permitted us to validate two suborders and introduce a third, the Ostreobineae.  相似文献   

8.
Phylogenetic analysis of mitochondrial DNA sequence data using maximum parsimony, minimum evolution (of log-determinant distances), and maximum-likelihood optimality criteria provided a robust estimate of Draco phylogenetic relationships. Although the analyses based on alternative optimality criteria were not entirely congruent, non-parametric bootstrap analyses identified many well-supported clades that were common to the analyses under the three altrenative criteria. Relationships within the major clades are generally well resolved and strongly supported, although this is not the case for the Philippine volans subclade. The hypothesis that a clade composed primarily of Philippine species represents a rapid radiation could not be rejected. A revised taxonomy for Draco is provided.  相似文献   

9.
Phylogenetic relationships within the angiosperm order Caryophyllales were investigated by comparative sequencing of two portions of the highly conserved inverted repeat (totaling some 1100 base pairs) coinciding with the region occupied by ORF2280 in Nicotiana, the largest gene in the plastid genomes of most land plants. Data were obtained for 33 species in 11 families within the order and for one species each of Plumbaginaceae, Polygonaceae, and Nepenthaceae. These data, when analyzed along with previously published ORF (open reading frame) sequences from Nicotiana. Spinacia. Epifagus, and Pelargonium using parsimony, neighbor-joining, and maximum likelihood methods, reveal that: (1) Amaranthus, Celosia, and Froelichia (all Amaranthaceae) do not comprise a monophyletic group; (2) Amaranthus may be nested within a paraphyletic Chenopodiaceae; (3) Sarcobatus (Chenopodiaceae) is allied with Nyctaginaceae + Phytolaccaceae (the latter family excluding Stegnosperma but including Petiveria); and (4) Caryophyllaceae (with Corrigiola basal within the clade) are sister group to Chenopodiaceae + Amaranthaceae. Basal relations within the order remain obscure. Sequence divergence values in pairwise comparisons across all Caryophyllales taxa ranged from 0.1 to 5% of nucleotides. However, despite these low values, 23 insertion and deletion events were apparent, of which five were informative phylogenetically and bolstered several of the relationships listed above. A polymerase chain reaction (PCR) survey for ORF homolog length variants in representatives from 70 additional angiosperm families revealed major deletions, of 100 to 1400 base pairs, in 19 of these families. Although the ORF is located within the mutationally retarded inverted repeat region of most angiosperm chloroplast DNAs, this gene appears particularly prone to length mutation.  相似文献   

10.
The nucleotide sequences of four intergenic spacer regions of chloroplast DNA, atpB-rbcL, trnS-trnG, rps11-rpl36, and rps3-rpl16, were analyzed in the genus Glycine. Phylogenetic analysis based on the sequence data using Neonotonia wightii as the outgroup generated trees supporting the classification of two subgenera, Soja and Glycine, and three plastome groups in the subgenus Glycine. The results were consistent with the presence of diversified chloroplast genomes within tetraploid plants of G. tabacina and G. tomentella, as well as with a close relationship between G. tomentella and G. dolichocarpa that had been suggested based on morphological analyses. Little sequence variation was found in the subgenus Soja, suggesting that G. soja rapidly expanded its distribution in East Asia. The analysis also showed that the differentiation into three plastome groups in the subgenus Glycine occurred in the early stages of its evolution, after the two subgenera diverged.  相似文献   

11.
Taxus chinensis var. mairei (Taxaceae) is a domestic variety of yew species in local China. This plant is one of the sources for paclitaxel, which is a promising antineoplastic chemotherapy drugs during the last decade. We have sequenced the complete nucleotide sequence of the chloroplast (cp) genome of T. chinensis var. mairei. The T. chinensis var. mairei cp genome is 129,513 bp in length, with 113 single copy genes and two duplicated genes (trnI-CAU, trnQ-UUG). Among the 113 single copy genes, 9 are intron-containing. Compared to other land plant cp genomes, the T. chinensis var. mairei cp genome has lost one of the large inverted repeats (IRs) found in angiosperms, fern, liverwort, and gymnosperm such as Cycas revoluta and Ginkgo biloba L. Compared to related species, the gene order of T. chinensis var. mairei has a large inversion of ~ 110 kb including 91 genes (from rps18 to accD) with gene contents unarranged. Repeat analysis identified 48 direct and 2 inverted repeats 30 bp long or longer with a sequence identity greater than 90%. Repeated short segments were found in genes rps18, rps19 and clpP. Analysis also revealed 22 simple sequence repeat (SSR) loci and almost all are composed of A or T.  相似文献   

12.
The chloroplast genome of Pelargonium x hortorum has been completely sequenced. It maps as a circular molecule of 217,942 bp and is both the largest and most rearranged land plant chloroplast genome yet sequenced. It features 2 copies of a greatly expanded inverted repeat (IR) of 75,741 bp each and, consequently, diminished single-copy regions of 59,710 and 6,750 bp. Despite the increase in size and complexity of the genome, the gene content is similar to that of other angiosperms, with the exceptions of a large number of pseudogenes, the recognition of 2 open reading frames (ORF56 and ORF42) in the trnA intron with similarities to previously identified mitochondrial products (ACRS and pvs-trnA), the losses of accD and trnT-ggu and, in particular, the presence of a highly divergent set of rpoA-like ORFs rather than a single, easily recognized gene for rpoA. The 3-fold expansion of the IR (relative to most angiosperms) accounts for most of the size increase of the genome, but an additional 10% of the size increase is related to the large number of repeats found. The Pelargonium genome contains 35 times as many 31 bp or larger repeats than the unrearranged genome of Spinacia. Most of these repeats occur near the rearrangement hotspots, and 2 different associations of repeats are localized in these regions. These associations are characterized by full or partial duplications of several genes, most of which appear to be nonfunctional copies or pseudogenes. These duplications may also be linked to the disruption of at least 1 but possibly 2 or 3 operons. We propose simple models that account for the major rearrangements with a minimum of 8 IR boundary changes and 12 inversions in addition to several insertions of duplicated sequence.  相似文献   

13.
14.
Phylogeographic inference can be a powerful tool in reconstructing species’ evolutionary histories; however, although inferred phylogeographic patterns should depend in part on the underlying types and rates of mutations, the effects of different types of mutations have seldom been quantified. In this study we identified two chloroplast minisatellites in the common reed Phragmites australis, and showed that these are more variable than chloroplast microsatellites. We then recreated parsimony networks of the global phylogeography of P. australis based on data that either included or excluded repetitive sequences (minisatellites and microsatellites), thereby illustrating the influence that these repetitive sequences can have on large‐scale phylogeographic inference. The resulting networks differed in the numbers of mutational steps, degrees of uncertainty, and total numbers of haplotypes. In addition, the suggested ancestor‐descendant relationships among lineages changed substantially depending on whether repetitive sequences were included. We therefore caution against the inclusion of repetitive sequences in large‐scale networks because of their high potential for homoplasy. Nevertheless, we advocate the inclusion of repetitive sequences in other analyses: specifically, we show that the ratio of mutations in repetitive vs. non‐repetitive regions can provide insight into the relative ages of lineages.  相似文献   

15.
Plagiochila sect. Vagae is a large pantropical clade that is characterized morphologically by frequent terminal branching, vegetative distribution by propagules on the ventral surface of the leaves and a capsule wall with thickenings in all layers. Plagiochila corrugata from Brazil is characterized by strongly undulate, toothed leaf margins and represents the only known neotropical species of sect. Vagae with unispiral elaters. Plagiochila cambuena from Madagascar is distinguished by the same features. Maximum likelihood and parsimony analyses of 38 nrDNA ITS sequences of Plagiochila reveal P. corrugata and P. cambuena in a weakly (ML) to well (MP) supported monophyletic lineage within P.  sect.  Vagae . As an outcome of the morphological and molecular investigation, P. cambuena is relegated to the synonymy of P. corrugata. Plagiochila corrugata is placed in a Vagae -subclade with 11 further American species. The range of P. corrugata can be ascribed to long-range dispersal from the Neotropics rather than a Gondwanan distribution. Species from tropical Asia and Africa are placed at the base of the Vagae clade. Branch length within P.  sect.  Vagae points to a sudden radiation.  © 2004 The Linnean Society of London, Botanical Journal of the Linnean Society , 2004, 146 , 469–481.  相似文献   

16.
Parsimony and maximum likelihood analyses of combinedtrnL (UAA) 5 exon —trnF (GAA) andrps4 exon cpDNA, and 18S nrDNA sequences of 60 arthrodontous moss taxa indicate strong support for the monophyly of a clade containing theSplachnineae, Orthotrichineae, and diplolepideous alternate sub-orders. A clade including theSplachnineae, Meesiaceae andLeptobryum (Bryaceae) is similarly well supported and forms the sister group to a clade comprising theOrthotrichineae and the other diplolepideous alternate mosses. Within this latter clade a number of well supported lineages are identified, but relationships among these remain poorly resolved. These analyses indicate that the Splachnaceous and Orthotrichaceous peristomes have been independently derived from an ancestral perfect bryoid peristome.  相似文献   

17.
Praxelis (Eupatorium catarium Veldkamp) is a new hazardous invasive plant species that has caused serious economic losses and environmental damage in the Northern hemisphere tropical and subtropical regions. Although previous studies focused on detecting the biological characteristics of this plant to prevent its expansion, little effort has been made to understand the impact of Praxelis on the ecosystem in an evolutionary process. The genetic information of Praxelis is required for further phylogenetic identification and evolutionary studies. Here, we report the complete Praxelis chloroplast (cp) genome sequence. The Praxelis chloroplast genome is 151,410 bp in length including a small single-copy region (18,547 bp) and a large single-copy region (85,311 bp) separated by a pair of inverted repeats (IRs; 23,776 bp). The genome contains 85 unique and 18 duplicated genes in the IR region. The gene content and organization are similar to other Asteraceae tribe cp genomes. We also analyzed the whole cp genome sequence, repeat structure, codon usage, contraction of the IR and gene structure/organization features between native and invasive Asteraceae plants, in order to understand the evolution of organelle genomes between native and invasive Asteraceae. Comparative analysis identified the 14 markers containing greater than 2% parsimony-informative characters, indicating that they are potential informative markers for barcoding and phylogenetic analysis. Moreover, a sister relationship between Praxelis and seven other species in Asteraceae was found based on phylogenetic analysis of 28 protein-coding sequences. Complete cp genome information is useful for plant phylogenetic and evolutionary studies within this invasive species and also within the Asteraceae family.  相似文献   

18.
19.
The simple sequence repeats (SSRs) of plant chloroplasts show considerable genetic variation and have been widely used in species identification and phylogenetic relationship determination. Whether chloroplast genome SSRs can be used to classify Cyatheaceae species has not yet been studied. Therefore, the chloroplast genomes of eight Cyatheaceae species were sequenced, and their SSR characteristics were compared and statistically analyzed. The results showed that the chloroplast genome structure was highly conserved (genome size: 154,046–166,151 bp), and the gene content (117 genes) and gene order were highly consistent. The distribution characteristics of SSRs (number, relative abundance, relative density, GC content) showed taxon specificity. The primary results were the total numbers of SSRs and mononucleotides: Gymnosphaera (61–67 and 40–47, respectively), Alsophila (121–122 and 95–96), and Sphaeropteris (102–103 and 77–80). Statistical and clustering analyses of SSR characteristics showed that their distribution was consistent with the recent classification of Cyatheaceae, which divided the eight Cyatheaceae species into three genera. This study indicates that the distribution characteristics of Cyatheaceae chloroplast SSRs can provide useful phylogenic information at the genus level.  相似文献   

20.
Phylogenetic relationships between the European species of the genus Gentiana L. (Gentianaceae) were inferred from chloroplast trnL , (UAA) intron sequence data. The phylogeny obtained is largely in accordance with the classification of species into sections Gentiana, Megalanthe and Calathianae. Few synapomorphies support the branching of the main lineages and thus could suggest a rapid radiation following the colonization of Europe. Within section Gentiana , our results are highly congruent with the previous distinction of G. montserratii Vivant from G. lutea L. Section Megalanthe is divided into two well separated lineages, both of which comprise calcicole and calcifuge species. The 'star phylogeny' obtained in section Calathianae suggests that most of the taxa speciated almost simultaneously. Relative-rate tests between two lineages suggested that section Chondropliyllae displays higher mutation rates than the rest of the genus Gentiana and that cpDNA can violate assumptions of rate constancy at lower taxonomic level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号