首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vesicular stomatitis virus (VSV) is a potent inducer of apoptosis in host cells. Recently, it has been shown that two VSV products are involved in the induction of apoptosis, the matrix (M) protein, and another viral product that has yet to be identified (S. A. Kopecky et. al., J. Virol. 75:12169-12181, 2001). Comparison of recombinant viruses containing wild-type (wt) or mutant M proteins showed that wt M protein accelerates VSV-induced apoptosis in HeLa cells, while wt M protein delays apoptosis in VSV-infected BHK cells. Our hypothesis to explain these results is that both effects of M protein are due to the ability of M protein to inhibit host gene expression. This hypothesis was tested by infecting cells with an M protein mutant virus defective in the inhibition of host gene expression (rM51R-M virus) in the presence or absence of actinomycin D, another inhibitor of host gene expression. Actinomycin D accelerated induction of apoptosis of HeLa cells infected with rM51R-M virus and delayed apoptosis in BHK cells infected with rM51R-M virus, similar to the effects of wt M protein. The idea that the induction of apoptosis by M protein in HeLa cells is due to its ability to inhibit host gene expression was further tested by comparing the activation of upstream caspase pathways by M protein versus that by actinomycin D or 5,6-dichlorobenzimidazole riboside (DRB). Expression of M protein activated both caspase-8 and caspase-9-like enzymes, as did treatment with actinomycin D or DRB. Induction of apoptosis by M protein, actinomycin D, and DRB was inhibited in stably transfected HeLa cell lines that overexpress Bcl-2, an antiapoptotic protein that inhibits the caspase-9 pathway. A synthetic inhibitor of caspase-8, Z-IETD-FMK, did not inhibit induction of apoptosis by M protein, actinomycin D, or DRB. Taken together, our data support the hypothesis that the induction of apoptosis by M protein is caused by the inhibition of host gene expression and that the caspase-9 pathway is more important than the caspase-8 pathway for the induction of apoptosis by M protein and other inhibitors of host gene expression.  相似文献   

2.
3.
Inhibition of HeLa Cell Protein Synthesis by the Vaccinia Virion   总被引:42,自引:30,他引:12       下载免费PDF全文
  相似文献   

4.
Whereas defective interfering particles of Sindbis virus are readily produced in BHK-21 cells or chicken embryo fibroblasts by the techniques of serial undiluted passage, similar methods failed to generate such particles in Aedes albopictus cell cultures. In addition, Sindbis virus stocks produced in BHK-21 cells or chicken embryo fibroblasts and which contained defective interfering particles, when tested in A. albopictus cells, failed (i) to interfere with the replication of standard Sindbis virus and (ii) to change the pattern of intracellular viral RNA synthesis from that produced by infection with standard Sindbis virus alone. We conclude that defective interfering particles of Sindbis virus generated in chicken or hamster cells are silent or inert in mosquito cells.  相似文献   

5.
6.
7.
8.
The ability of Sindbis virus to grow in enucleated BHK-21 (vertebrate) and Aedes albopictus (invertebrate) cells was tested to determine the dependence of this virus upon nuclear function in these two phylogenetically unrelated hosts. Although both cell types could be demonstrated to produce viable cytoplasts (enucleated cells) which produced virus-specific antigen subsequent to infection. BHK cytoplasts produced a significant number of progeny virions, whereas mosquito cytoplasts did not. The production of vesicular stomatitis virus in mosquito cells was not significantly reduced by enucleation. That such a host function was not essential for vesicular stomatitis virus growth in insect cells is supported by the observation that the production of this virus by mosquito cells is not actinomycin D sensitive. This result agrees with a previously published report in which it was shown that Sindbis virus maturation in invertebrate cells is inhibited by actinomycin D, indicating a possible requirement for host cell nuclear function (Scheefers-Borchel et al., Virology, 110:292-301, 1981).  相似文献   

9.
Some Syrian hamster cell lines persistently infected with lymphocytic choriomeningitis virus (LCMV) do not produce extracellular virus particles but do contain intracytoplasmic infectious material. The proteins of these cells were labeled with [35S]methionine or with [3H]glucosamine and [3H]mannose, and immunoprecipitates were prepared with anti-LCMV sera. A substantial amount of the LCMV nucleocapsid protein (molecular weight about 58,000) was detected, along with GP-C, the precursor of the virion glycoproteins GP-1 and GP-2. GP-1 and GP-2 themselves were not detected. A new method of transferring proteins electrophoretically from sodium dodecyl sulfate-polyacrylamide gels to diazotized paper in high yield revealed several additional LCMV proteins present specifically in the persistently infected cells, at apparent molecular weights (X10(3] of 112, 107, 103, 89, 71 (probably GP-C), 58 (nucleocapsid protein), 42 to 47 (probably GP-1), and 40 (possibly GP-2). By iodinating intact cells with I3, GP-1 but not GP-2 or GP-C was revealed on the surfaces of the persistently infected cells, whereas both GP-1 and GP-C were found on the surfaces of acutely infected cells. The absence of GP-C from the plasma membrane of the persistently infected cells might be related to defective maturation of the virus in these cells. Cytoplasmic viral nucleoprotein complexes were labeled with [3H]uridine in the presence or absence of actinomycin D, purified partially by sedimentation in D2O-sucrose gradients, and adsorbed to fixed Staphylococus aureus cells in the presence of anti-LCMV immunoglobulin G. Several discrete species of viral RNA were released from the immune complexes with sodium dodecyl sulfate. Some were appreciably smaller than the 31S and 23S species of standard LCMV virions, indicating that defective interfering viral RNAs are probably present in the persistently infected cells. Ribosomal 28S and 18S RNAs, labeled only in the absence of actinomycin D, were coprecipitated with anti-LCMV serum but not with control serum, indicating their association with LCMV nucleoproteins in the cells.  相似文献   

10.
A method for estimating the number of defective interfering virus particles in a virus sample is presented. It can be used whenever the interference results in the survival of the “interfered” cell. The analysis assumes only that the infectious virus and defective interfering particles are distributed randomly and independently to cells. Thus the proportion of cells receiving X = x virus and Y = y particles is the product of the two independent Poisson distribution terms. The two dimensional matrix (X values × Y values) that can be constructed encompasses all of the possible (cellular) outcomes of viral infection. By comparing the actual number of surviving cells with the number predicted by various models of interference, it is possible to determine whether defective interfering particles are dominant (completely or partially) to infectious virus, and to estimate their number in the virus sample. This is accomplished by determining the experimental survival curve (% survival vs. input infectious virus/cell) and then constructing theoretical curves to fit the data.  相似文献   

11.
A comparison of the ability of vesicular stomatitis virus (VSV) to generate and replicate defective interfering (DI) particles in primary chick embryo (CE) and mouse L cells was investigated as a means of analyzing host control over DI-particle synthesis and interfering capacity. Serial undiluted passage of VSV in CE and L cells indicate that VSV-DI particles are generated and (or) replicate with greater efficiency in CE than in L cells. When DI particles accumulate in L cells, they are able to interfere with infectious particle replication. The DI particles from CE cells interfered to the same extent with infectious particle replication in both CE and L cells. L cells, therefore, are not considered 'low-interference' hosts in which DI particles are produced and do not interfere with infectious virus replication, but rather hosts which restrict the production of DI particles.  相似文献   

12.
Human-mouse somatic cell hybrids were made between adenine phosphoribosyltransferase-deficient mouse L cells and a strain of human primary fibroblasts and selected in medium containing alanosine and adenine (J. A. Tischfield and F. H. Ruddle, Proc. Natl. Acad. Sci. U.S.A. 71:45-49, 1974). These hybrids were tested for the generation of defective interfering (DI) particles of vesicular stomatitis virus to determine whether or not a host gene controls the induction of DI particles. None of the seven independently arising hybrid clones tested generated detectable DI particles during 13 successive undiluted passages. In addition, the parental human cells also failed to generate DI particles. In contrast, the parental mouse cells generated a detectable level of DI particles during continuous passage. Thus, failure to generate DI particles appears to act in a dominant fashion in these hybrids. Human chromosome 16 and adenine phosphoribosyltransferase were present, as a direct consequence of the selection system, in all of the hybrid clones that failed to generate DI particles. It was the only human chromosome observed in the cells of every hybrid clone. This was verified by both isozyme and karyotype analyses. After hybrids were back-selected (with 2,6-diaminopurine) for loss of human adenine phosphoribosyltransferase and chromosome 16, they gained the ability to generate DI particles. Replication of DI particles already present in virus stocks, however, was normal in all of the hybrid clones and the parental human cells. This suggests that the induction, but not the replication, of DI particles is affected by the human genome and that a factor on human chromosome 16 seems to selectively suppress the mouse cell's ability to generate DI particles in the hybrids. These results support the idea that the induction of DI particles is controlled in part by host cell function(s), as suggested previously (C. Y. Kang and R. Allen, J. Virol. 25:202-206, 1978).  相似文献   

13.
Purified defective interfering (DI) particles of vesicular stomatitis virus (VSV) inhibit the replication of a heterologous virus, pseudorabies virus (PSR), in hamster (BHK-21) and rabbit (RC-60) cell lines. In contrast to infectious B particles of VSV, UV irradiation of DI particles does not reduce their ability to inhibit PSR replication. However, UV irradiation progressively reduces the ability of DI particles to cause homologous interference with B particle replication. Pretreatment with interferon does not affect the ability of DI particles to inhibit PSR replication in a rabbit cell line (RC-60) in which RNA, but not DNA, viruses are sensitive to the action of interferon. Under similar conditions of interferon pretreatment, the inhibition of PSR by B particles is blocked. These data suggest that de novo VSV RNA or protein synthesis is not required for the inhibition of PSR replication by DI particles. DI particles that inhibit PSR replication also inhibit host RNA and protein synthesis in BHK-21 and RC-60 cells. Based on the results described and data in the literature, it is proposed that the same component of VSV B and DI particles is responsible for most, if not all, of the inhibitory activities of VSV, except homologous interference.  相似文献   

14.
Stocks of vesicular stomatitis virus free of defective interfering particles were produced by serial clonal isolation. High-multiplicity infections with these stocks led to no interference or formation of defective interfering particles. Defective interfering particles were generated by three successive passages at high multiplicity.  相似文献   

15.
A stock of plaque-purified Pichinde virus, prepared under conditions designed to limit the amounts of defective interfering virus, was used to infect BHK cells. At daily intervals after infection, cells were examined for infectious and radiolabeled virus particle production and for the synthesis of virus-specific polypeptides. Quantitative comparisons were also made of the concentrations of genomic Pichinde virus L and S RNAs in the cytoplasm of infected cells on different days after infection. Our results showed that virus particle production, rates of protein synthesis, and the intracellular levels of viral genomic RNAs all increased and decreased with similar kinetics, and that this regulation was independent of the cell growth cycle. We were unable to relate these changes in viral macromolecule and virus production to the appearance of readily identifiable defective interfering particles. Our findings suggest that regulation of virus replication early during the replicative cycle of Pichinde virus may not be dependent upon the generation of defective interfering virus.  相似文献   

16.
Growth of cell-free subacute sclerosing panencephalitis (SSPE) virus was compared with that of measles virus in three human neural cell lines; neuroblastoma, oligodendroglioma, and glioblastoma. The Edmonston strain of measles virus replicated in these neural cells as efficiently as in Vero cells. In contrast, the growth of the Mantooth strain of SSPE virus was suppressed moderately in neuroblastoma cells and markedly in oligodendroglioma and glioblastoma cells in spite of the induction of apparent cytopathic effects in these cells. Virus adsorption, defective interfering particles, interferon, and temperature sensitivity were not responsible for this low yield of SSPE virus in neural cell lines. Synthesis of viral proteins of SSPE virus was slower than that of measles virus in oligodendroglioma and glioblastoma cells. These results suggest that the slow rate of synthesis of viral proteins may be relevant to the low yield of SSPE virus in neural cells.  相似文献   

17.
18.
A temperature-sensitive group II mutant of influenza virus, ts-52, with a presumed defect in viral RNA synthesis, readily produced von Magnus-type defective interfering virus (DI virus) when passed serially (four times) at high multiplicity in MDBK cells. The defective virus (ts-52 DI virus) had a high hemagglutinin and a low infectivity titer, and strongly interfered with the replication of standard infectious viruses (both ts-52 and wild-type ts+) in co-infected cells. Progeny virus particles produced by co-infection of DI virus and infectious virus were also defective and also had low infectivity, high hemagglutinating activity, and a strong interfering property. Infectious viruses ts+ and ts-52 were indistinguishable from ts-52 DI viruses by sucrose velocity or density gradient analysis. Additionally, these viruses all possessed similar morphology. However, when the RNA of DI viruses was analyzed by use of polyacrylamide gels containing 6 M urea, there was a reduction in the amount of large RNA species (V1 to V4), and a number of new smaller RNA species (D1 to D6) with molecular weights ranging from 2.9 X 10(5) to 1.05 X 10(5) appeared. Since these smaller RNA species (D1 to D6) were absent in some clones of infectious viruses, but were consistently associated with DI viruses and increased during undiluted passages and during co-infection of ts-52 with DI virus, they appeared to be a characteristic of DI viruses. Additionally, the UV target size of interfering activity and infectivity of DI virus indicated that interfering activity was 40 times more resistant to UV irradiation than was infectivity, further implicating small RNA molecules in interference. Our data suggest that the loss of infectivity observed among DI viruses may be due to nonspecific loss of a viral RNA segment(s), and the interfering property of DI viruses may be due to interfering RNA segments (DIRNA, D1 to D6). ts-52 DI virus interfered with the replication of standard virus (ts+) at both permissive (34 degrees C) and nonpermissive temperatures. The infectivity of the progeny virus was reduced to 0.2% for ts+ and 0.05% for ts-52 virus without a reduction in hemagglutinin titer. Interference was dependent on the concentration of DI virus. A particle ratio of 1 between DI virus (0.001 PFU/cell) and infectious virus (1.0 PFU/cell) produced a maximal amount of interference. Infectious virus yield was reduced 99.9% without any reduction of the yield of DI viruses Interference was also dependent on the time of addition of DI virus. Interference was most effective within the first 3 h of infection by infectious virus, indicating interference with an early function during viral replication.  相似文献   

19.
The prototype baculovirus, Autographa californica multiple nuclear polyhedrosis virus (AcMNPV) expresses p35, a potent anti cell-death gene that promotes the propagation of the virus by blocking host cell apoptosis. Infection of insect Sf-21 cells with AcMNPV lacking p35 induces apoptosis. We have used this pro-apoptotic property of the p35 null virus to screen for genes encoding inhibitors of apoptosis that rescue cells infected with the p35 defective virus. We report here the identification of Tn-IAP1, a novel member of the IAP family of cell death inhibitors. Tn-IAP1 blocks cell death induced by p35 null AcMNPV, actinomycin D, and Drosophila cell-death inducers HID and GRIM. Given the conserved nature of the cell death pathway, this genetic screen can be used for rapid identification of novel inhibitors of apoptosis from diverse sources.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号