首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 958 毫秒
1.
Actin dynamics control SRF activity by regulation of its coactivator MAL   总被引:42,自引:0,他引:42  
  相似文献   

2.
3.
Proteins containing RPEL motifs (e.g., MAL) are important in the regulation of gene expression by the actin cytoskeleton. Screening the ENSEMBL database for RPEL proteins identified four additional proteins that contain RPEL motifs and nuclear localisation sequences, three of which (RPEL-A, RPEL-B and RPEL-C) are expressed in adult mouse tissues with different expression profiles. The mRNAs encoding RPEL-B and RPEL-C were subject to alternative splicing. Expression of these genes in cells indicated that they had a marked effect on cell shape. Furthermore, when expressed with a nuclear localised actin all of the different forms became restricted to the nucleus.  相似文献   

4.
5.
6.
We have analyzed the means by which the Nck family of adaptor proteins couples adhesion proteins to actin reorganization. The nephrin adhesion protein is essential for the formation of actin-based foot processes in glomerular podocytes. The clustering of nephrin induces its tyrosine phosphorylation, Nck recruitment, and sustained localized actin polymerization. Any one of three phosphorylated (p)YDXV motifs on nephrin is sufficient to recruit Nck through its Src homology 2 (SH2) domain and induce localized actin polymerization at these clusters. Similarly, Nck SH3 mutants in which only the second or third SH3 domain is functional can mediate nephrin-induced actin polymerization. However, combining such nephrin and Nck mutants attenuates actin polymerization at nephrin-Nck clusters. We propose that the multiple Nck SH2-binding motifs on nephrin and the multiple SH3 domains of Nck act cooperatively to recruit the high local concentration of effectors at sites of nephrin activation that is required to initiate and maintain actin polymerization in vivo. We also find that YDXV motifs in the Tir protein of enteropathogenic Escherichia coli and nephrin are functionally interchangeable, indicating that Tir reorganizes the actin cytoskeleton by molecular mimicry of nephrin-like signaling. Together, these data identify pYDXV/Nck signaling as a potent and portable mechanism for physiological and pathological actin regulation.  相似文献   

7.
8.
Nuclear accumulation of the serum response factor coactivator MAL/MKL1 is controlled by its interaction with G-actin, which results in its retention in the cytoplasm in cells with low Rho activity. We previously identified actin mutants whose expression promotes MAL nuclear accumulation via an unknown mechanism. Here, we show that actin interacts directly with MAL in vitro with high affinity. We identify a further activating mutation, G15S, which stabilises F-actin, as do the activating actins S14C and V159N. The three mutants share several biochemical properties, but can be distinguished by their ability to bind cofilin, ATP and MAL. MAL interaction with actin S14C is essentially undetectable, and that with actin V159N is weakened. In contrast, actin G15S interacts more strongly with MAL than the wild-type protein. Strikingly, the nuclear accumulation of MAL induced by overexpression of actin S14C is substantially dependent on Rho activity and actin treadmilling, while that induced by actin G15S expression is not. We propose a model in which actin G15S acts directly to promote MAL nuclear entry.  相似文献   

9.
Cytoskeletal dynamics are important for efficient function of the secretory pathway. ADP-ribosylation factor, ARF1, triggers vesicle coat assembly and, in concert with Cdc42, regulates actin polymerization and molecular motor-based motility. Drebrin and mammalian Abp1 (mAbp1) are actin-binding proteins found previously to bind to Golgi membranes in an ARF1-dependent manner in vitro. Despite sharing homology through two shared actin binding domains, drebrin and mAbp1 have different subcellular localization and bind to distinct actin structures on the Golgi apparatus. We find that the actin-depolymerizing factor homology (ADFH) and charged/helical actin binding domains of drebrin and mAbp1 are sufficient for regulated binding to Golgi membranes and subcellular localization. We have used mutant proteins and chimeras between mAbp1 and drebrin to identify motifs that direct targeting. We find that a linker region between the ADFH and charged/helical domains confers Golgi binding properties to mAbp1. mAbp1 binds to a specific actin pool through its ADFH/linker domain that is not bound by drebrin. Drebrin localization to the cell surface was found to involve motifs within the charged/helical domain. Our results indicate that targeting of these proteins is directed through multiple distinct interactions with the actin cytoskeleton. The mechanisms for selective recruitment of mAbp1 and drebrin to Golgi membranes indicate how actin-based structures are able to select specific actin-binding proteins and, thus, carry out multiple different functions within cells.  相似文献   

10.
11.
12.
The profilin family consists of a group of ubiquitous highly conserved 12-15 kDa eukaryotic proteins that bind actin, phosphoinositides, poly-l-proline (PLP) and proteins with proline-rich motifs. Some proteins with proline-rich motifs form complexes that have been implicated in the dynamics of the actin cytoskeleton and processes such as vesicular trafficking. A major unanswered question in the field is how profilin achieves the required specificity to bind such an array of proteins. It is now becoming clear that profilin isoforms are subject to differential regulation and that they may play distinct roles within the cell. Considerable evidence suggests that these isoforms have different functional roles in the sorting of diverse proteins with proline-rich motifs. All profilins contain highly conserved aromatic residues involved in PLP binding which are presumably implicated in the interaction with proline-rich motif proteins. We have previously shown that profilin is phosphorylated on tyrosine residues. Here, we show that profilin can bind directly to Phaseolus vulgaris phosphoinositide 3-kinase (PI3K) type III. We demonstrate that a new region around Y72 of profilin, as well as the N- and C-terminal PLP-binding domain, recognizes and binds PLP and PI3K. In vitro binding assays indicate that PI3K type III forms a complex with profilin in a manner that depends on the tyrosine phosphorylation status within the proline-rich-binding domain in profilin. Profilin-PI3K type III interaction suggests that profilin may be involved in membrane trafficking and in linking the endocytic pathway with actin reorganization dynamics.  相似文献   

13.
The Sp-family of transcription factors   总被引:48,自引:0,他引:48  
Suske G 《Gene》1999,238(2):291-300
  相似文献   

14.
CR16, (Glucocorticoid-regulated) belongs to the verprolin family of proteins which are characterized by the presence of a V domain (verprolin) at the N-terminal. Expression of CR16 suppressed the growth and endocytosis defect of vrp1Delta strain without correcting the actin patch polarization defect. The V domain of CR16 is critical for suppression of the growth defect of vrp1Delta strain but not for localisation to cortical actin patches. Mutations in the actin binding motif alone did not abolish the activity of CR16 but the mutations in combination with deletion of N-terminal proline rich motif abolished the ability of CR16 to suppress the growth defect. This suggests that the V domain of CR16 has two functionally redundant motifs and either one of these motifs is sufficient for suppressing the growth defect of vrp1Delta strain. This is in contrast to the observation that both WIP and WIRE require the actin binding motif for their activity.  相似文献   

15.
《Gene》1997,189(2):269-275
An increasing number of four-transmembrane proteins has been found to be associated with CNS and PNS myelin. Some of these proteins play crucial roles in the development and maintenance of the nervous system. In the CNS, proteolipid protein (PLP) is mutated in the myelin disorder Pelizaeus-Merzbacher disease and in spastic paraplegia, while in the PNS, peripheral myelin protein 22 (PMP22) and connexin32 (C×32) are culprit genes in the most frequent forms of hereditary peripheral neuropathies. Myelin and lymphocyte protein (MAL; also called MVP17 or VIP17) and plasmolipin are additional tetraspan proteins that are highly expressed by myelinating glial cells. However, little is known about the role of these proteins in the nervous system. As a prerequisite for functional genetic approaches in the mouse, we have isolated and characterized a mouse MAL cDNA and the corresponding structural MAL gene. Computer-aided analysis and database searches revealed that MAL belongs to a larger gene family which also includes plasmolipin, BENE and the expressed sequence tag (EST) H09290. While the overall amino acid sequence identities between mouse MAL and the related proteins are relatively low (29–37%), the conserved motif -[Q/Y-G-W-V-M-F/Y-V]- which is found at the junction of the first extracellular loop and the second membrane-associated domain serves as a fingerprint for the MAL protein family. Expression analysis of the members of the MAL gene family indicates widespread expression in various tissues, suggesting a common role of these proteins in cell biology.  相似文献   

16.
Sla1 and Rvs167 are yeast proteins required for receptor internalization and organization of the actin cytoskeleton. Here we provide evidence that Sla1 and Rvs167 are orthologues of the mammalian CIN85 and endophilin proteins, respectively, which are required for ligand-stimulated growth factor receptor internalization. Sla1 is similar in domain structure to CIN85 and binds directly to the endophilin-like Rvs167. Akin to CIN85, Sla1 interacts with synaptojanins and a ubiquitin ligase that regulates endocytosis. This ubiquitin ligase, Rsp5, binds directly to both Sla1 and Rvs167. The interaction between Rsp5 and Rvs167 is mediated through Rsp5 WW domains and PXY motifs in the central Gly-Pro-Ala-rich domain of Rvs167. Rvs167 PXY motifs are required for Rsp5-dependent monoubiquitination of Rvs167 on Lys481 in the Src homology 3 (SH3) domain. Mutation of Lys481 --> Arg causes cells to grow slowly on medium containing 1 M NaCl, although this phenotype is not due to the defect in ubiquitination caused by the K481R mutation. We propose that Rsp5 interaction with Sla1-Rvs167 promotes Rvs167 ubiquitination and regulates activity of this protein complex. Rvs167 ubiquitination is not required for general function of Rvs167, but may control specific Rvs167 SH3 domain-protein interactions or negatively regulate SH3 domain activity.  相似文献   

17.
PDZ and LIM domains are modular protein interaction motifs present in proteins with diverse functions. Enigma is representative of a family of proteins composed of a series of conserved PDZ and LIM domains. The LIM domains of Enigma and its most related family member, Enigma homology protein, bind to protein kinases, whereas the PDZ domains of Enigma and family member actin-associated LIM protein bind to actin filaments. Enigma localizes to actin filaments in fibroblasts via its PDZ domain, and actin-associated LIM protein binds to and colocalizes with the actin-binding protein alpha-actinin-2 at Z lines in skeletal muscle. We show that Enigma is present at the Z line in skeletal muscle and that the PDZ domain of Enigma binds to a skeletal muscle target, the actin-binding protein tropomyosin (skeletal beta-TM). The interaction between Enigma and skeletal beta-TM was specific for the PDZ domain of Enigma, was abolished by mutations in the PDZ domain, and required the PDZ-binding consensus sequence (Thr-Ser-Leu) at the extreme carboxyl terminus of skeletal beta-TM. Enigma interacted with isoforms of tropomyosin expressed in C2C12 myotubes and formed an immunoprecipitable complex with skeletal beta-TM in transfected cells. The association of Enigma with skeletal beta-TM suggests a role for Enigma as an adapter protein that directs LIM-binding proteins to actin filaments of muscle cells.  相似文献   

18.
The small GTPase Rap1 induces integrin-mediated adhesion and changes in the actin cytoskeleton. The mechanisms that mediate these effects of Rap1 are poorly understood. We have identified RIAM as a Rap1-GTP-interacting adaptor molecule. RIAM defines a family of adaptor molecules that contain a RA-like (Ras association) domain, a PH (pleckstrin homology) domain, and various proline-rich motifs. RIAM also interacts with Profilin and Ena/VASP proteins, molecules that regulate actin dynamics. Overexpression of RIAM induced cell spreading and lamellipodia formation, changes that require actin polymerization. In contrast, RIAM knockdown cells had reduced content of polymerized actin. RIAM overexpression also induced integrin activation and cell adhesion. RIAM knockdown displaced Rap1-GTP from the plasma membrane and abrogated Rap1-induced adhesion. Thus, RIAM links Rap1 to integrin activation and plays a role in regulating actin dynamics.  相似文献   

19.
Prk1p     
The protein kinase Prk1p (standing for p53 regulating kinase 1) of the yeast Saccharomyces cerevisiae is the prototype of a kinase family identified recently as important regulators of the actin cytoskeleton and endocytosis. These kinases all have a highly homologous serine/threonine kinase domain in their N-terminal region but share no significant homology in other regions. Prk1p also contains a proline-rich motif near its C-terminus that is required for the proper subcellular localization of the protein. The kinase activity of Prk1p has been confirmed by both in vitro and in vivo studies and shown to be essential for the protein's function. To date, several proteins that play essential roles in actin cytoskeleton organization and endocytosis have been identified as the regulatory targets of Prk1p. Phosphorylation on the [L/I/V/N]xx[Q/N/T/S]xTG motifs by Prk1p results in a down-regulation of the functions of these target proteins. The observation that many yeast proteins involved in the actin cytoskeleton organization and endocytosis contain the Prk1p phosphorylation motifs has led to the hypothesis that the Prk1p family of kinases are possibly the general regulators of the actin cytoskeleton and endocytosis in yeast.  相似文献   

20.
The organization of actin filaments into large ordered structures is a tightly controlled feature of many cellular processes. However, the mechanisms by which actin filament polymerization is initiated from the available pool of profilin-bound actin monomers remain unknown in plants. Because the spontaneous polymerization of actin monomers bound to profilin is inhibited, the intervention of an actin promoting factor is required for efficient actin polymerization. Two such factors have been characterized from yeasts and metazoans: the Arp2/3 complex, a complex of seven highly conserved subunits including two actin-related proteins (ARP2 and ARP3), and the FORMIN family of proteins. The recent finding that Arabidopsis thaliana plants lacking a functional Arp2/3 complex exhibit rather modest morphological defects leads us to consider whether the large FORMIN family plays a central role in the regulation of actin polymerization. Here, we have characterized the mechanism of action of Arabidopsis FORMIN1 (AFH1). Overexpression of AFH1 in pollen tubes has been shown previously to induce abnormal actin cable formation. We demonstrate that AFH1 has a unique behavior when compared with nonplant formins. The activity of the formin homology domain 2 (FH2), containing the actin binding activity, is modulated by the formin homology domain 1 (FH1). Indeed, the presence of the FH1 domain switches the FH2 domain from a tight capper (Kd approximately 3.7 nM) able to nucleate actin filaments that grow only in the pointed-end direction to a leaky capper that allows barbed-end elongation and efficient nucleation of actin filaments from actin monomers bound to profilin. Another exciting feature of AFH1 is its ability to bind to the side and bundle actin filaments. We have identified an actin nucleator that is able to organize actin filaments directly into unbranched actin filament bundles. We suggest that AFH1 plays a central role in the initiation and organization of actin cables from the pool of actin monomers bound to profilin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号