首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The initial and rate-limiting enzyme of the oxidative pentose phosphate shunt, glucose-6-phosphate dehydrogenase (G6PD), is inhibited by NADPH and stimulated by NADP(+). Hence, under normal growth conditions, where NADPH levels exceed NADP(+) levels by as much as 100-fold, the activity of the pentose phosphate cycle is extremely low. However, during oxidant stress, pentose phosphate cycle activity can increase by as much as 200-fold over basal levels, to maintain the cytosolic reducing environment. G6PD-deficient (G6PD(-)) cell lines are sensitive to toxicity induced by chemical oxidants and ionizing radiation. Compared to wild-type CHO cells, enhanced sensitivity to ionizing radiation was observed for G6PD(-) cells exposed to single-dose or fractionated radiation. Fitting the single-dose radiation response data to the linear-quadratic model of radiation-induced cytotoxicity, we found that the G6PD(-) cells exhibited a significant enhancement in the alpha component of radiation-induced cell killing, while the values obtained for the beta component were similar in both the G6PD(-) and wild-type CHO cell lines. Here we report that the enhanced alpha component of radiation-induced cell killing is associated with a significant increase in the incidence of ionizing radiation-induced apoptosis in the G6PD(-) cells. These data suggest that G6PD and the oxidative pentose phosphate shunt protect cells from ionizing radiation-induced cell killing by limiting the incidence of radiation-induced apoptosis. The sensitivity to radiation-induced apoptosis was lost when the cDNA for wild-type G6PD was transfected into the G6PD(-) cell lines. Depleting GSH with l-BSO enhanced apoptosis of K1 cells while having no effect in the G6PD(-) cell line  相似文献   

2.
The electrophoretic variants of G6PD and 6PGD isolated from the Bogota Drosophila melanogaster population were characterized developmentally and biochemically. Changes in in vitro enzyme activity during development were comparable to those found for other dehydrogenases: an increase in the larval and adult stage and a decrease in the pupal stage. During the whole life cycle the "S" enzyme of both loci showed a higher activity than the "F" enzyme. MgCl2 had a stimulating effect on the activity of both enzymes whereas their heat stability was decreased. The allozymes of 6PGD had different Vmax's but were comparable with respect to Km values, pH optimum, and stability at 45 C. the allozymes of G6PD showed different Vmax's and differed in stability at 35 C, but had similar Km values and pH optima. As the difference in stability was probably due to differences in molecular structure of the allozymes, the differences in activity found at high pH and high MgCl2 concentration were most probably due to this difference in stability.  相似文献   

3.
J. Labate  W. F. Eanes 《Genetics》1992,132(3):783-787
Demonstrating that naturally occurring enzyme polymorphisms significantly impact metabolic pathway flux is a fundamental step in examining the possible adaptive significance of such polymorphisms. In earlier studies of the glucose-6-phosphate dehydrogenase (G6PD) polymorphism in Drosophila melanogaster, we used two different methods, exploiting both genotype-dependent interactions with the 6Pgd locus, and conventional steady-state kinetics to examine activity differences between the two common allozymes. In this report we use 1-14C- and 6-14C-labeled glucose to estimate directly genotype-dependent flux differences through the pentose shunt. Our results show that G6pdA genotype possesses statistically lower pentose shunt flux than G6pdB at 25 degrees. We estimate this to be about a 32% reduction, which is consistent with the two former studies. These results reflect a significant responsiveness of pentose shunt flux to activity variation at the G6PD-catalyzed step, and predict that the G6PD allozymes generate a polymorphism for pentose shunt flux.  相似文献   

4.
  • 1.1. The detection of G6PD and 6PGD in A. proteus can be used to investigate the functioning of the phosphogluconic (or pentose phosphate) pathway in these amoebae.
  • 2.2. In amoebae cultured at 10°C compared with those kept at 25°C, no differences in the number of G6PD, 6PGD and GlcDH electromorphs are revealed.
  • 3.3. The acclimation of amoebae cultured at 25°C to a relatively low temperature of 10°C is accompanied by an increase in the activities of total Triton-soluble G6PD, 6PGD and GlcDH per cell, a rise in the activity of GlcDH per unit cell protein, and a change in the activity and heat resistance of some G6PD electromorphs.
  相似文献   

5.
Sukhatme VP  Chan B 《FEBS letters》2012,586(16):2389-2395
We show that knockdown of 6-phosphogluconate dehydrogenase (6PGD) of the pentose phosphate pathway (PPP) inhibits growth of lung cancer cells by senescence induction. This inhibition is not due to a defect in the oxidative PPP per se. NADPH and ribose phosphate production are normal in 6PGD knockdown cells and shutdown of PPP by knockdown of glucose-6-phosphate dehydrogenase (G6PD) has little effect on cell growth. Moreover, 6PGD knockdown cells can proliferate when the PPP is bypassed by using fructose instead of glucose in medium. Significantly, G6PD knockdown rescues proliferation of cells lacking 6PGD, suggesting an accumulation of growth inhibitory glucose metabolics in cells lacking 6PGD. Therefore, 6PGD inhibition may provide a novel strategy to treat glycolyic tumors such as lung cancer.  相似文献   

6.
Biosynthesis of steroid hormones in the cortex of the adrenal gland takes place in smooth endoplasmic reticulum and mitochondria and requires NADPH. Four enzymes produce NADPH: glucose-6-phosphate dehydrogenase (G6PD), the key regulatory enzyme of the pentose phosphate pathway, phosphogluconate dehydrogenase (PGD), the third enzyme of that pathway, malate dehydrogenase (MDH), and isocitrate dehydrogenase (ICDH). However, the contribution of each enzyme to NADPH production in the cortex of adrenal gland has not been established. Therefore, activity of G6PD, PGD, MDH, and ICDH was localized and quantified in rat adrenocortical tissue using metabolic mapping, image analysis, and electron microscopy. The four enzymes have similar localization patterns in adrenal gland with highest activities in the zona fasciculata of the cortex. G6PD activity was strongest, PGD, MDH, and ICDH activity was approximately 60%, 15%, and 7% of G6PD activity, respectively. The K(m) value of G6PD for glucose-6-phosphate was two times higher than the K(m) value of PGD for phosphogluconate. As a consequence, virtual flux rates through G6PD and PGD are largely similar. It is concluded that G6PD and PGD provide the major part of NADPH in adrenocortical cells. Their activity is localized in the cytoplasm associated with free ribosomes and membranes of the smooth endoplasmic reticulum, indicating that NADPH-demanding processes related to biosynthesis of steroid hormones take place at these sites. Complete inhibition of G6PD by androsterones suggests that there is feedback regulation of steroid hormone biosynthesis via G6PD.  相似文献   

7.
Glucose-6-phosphate dehydrogenase (G6PD; EC 1.1.1.49) is the key regulatory enzyme of the pentose phosphate pathway and produces NADPH and riboses. In this study, the kinetic properties of G6PD activity were determined in situ in chemically induced hepatocellular carcinomas, and extralesional and control parenchyma in rat livers and were directly compared with those of the second NADPH-producing enzyme of the pentose phosphate pathway, phosphogluconate dehydrogenase (PGD). Distribution patterns of G6PD activity, protein, and mRNA levels were also compared to establish the regulation mechanisms of G6PD activity. In (pre)neoplastic lesions, the V(max) of G6PD was 150-fold higher and the K(m) for G6P was 10-fold higher than in control liver parenchyma, whereas in extralesional parenchyma, the V(max) was similar to that in normal parenchyma but the K(m) was fivefold lower. This means that virtual fluxes at physiological substrate concentrations are 20-fold higher in lesions and twofold higher in extralesional parenchyma than in normal parenchyma. The V(max) of PGD was fivefold higher in lesions than in normal and extralesional liver parenchyma, whereas the K(m) was not affected. Amounts of G6PD protein and mRNA were similar in lesions and in extralesional liver parenchyma. These results demonstrate that G6PD is strongly activated post-translationally in (pre)neoplastic lesions to produce NADPH.  相似文献   

8.
Isogenic lines, in which chromosomes sampled from natural populations of D. melanogaster are substituted into a common genetic background, were used to detect and partially characterize autosomal factors that affect the activities of the two pentose phosphate pathway enzymes, glucose 6-phosphate dehydrogenase (G6PD) and 6-phosphogluconate dehydrogenase (6PGD). The chromosome 3 effects on G6PD and 6PGD are clearly correlated; the chromosome 2 effects, which are not so great, also appear to be correlated, but the evidence in this case is not so strong. Examination of activity variation of ten other enzymes revealed that G6PD and 6PGD are not the only pair of enzymes showing a high positive correlation, but it is among the highest in both sets of lines. In addition, there was some evidence that the factor(s) affecting G6PD and 6PGD may also affect two other metabolically related enzymes, transaldolase and phosphoglucose isomerase.—Rocket immunoelectrophoresis was used to estimate specific CRM levels for three of the enzymes studied: G6PD, 6PGD and ME. This experiment shows that a large part of the activity variation is accounted for by variation in CRM level (especially for chromosome 3 lines), but there remains a significant fraction of the genetic component of activity variation that is not explained by CRM level.—These results suggest that the autosomal factors are modifiers involved in regulation of the expression of the X-linked structural genes for G6PD and 6PGD, but a role in determining part of the enzymes' primary structure cannot be excluded with the present evidence.  相似文献   

9.
Tumor metabolism, an emerging hallmark of cancer, is characterized by aberrant expression of enzymes from various metabolic pathways including glycolysis and PPP (pentose phosphate pathway). Glucose 6 phosphate dehydrogenase (G6PD) and 6-phosphogluconate dehydrogenase (6PGD), oxidative carboxylases of PPP, have been reported to accomplish different biosynthetic and energy requirements of cancer cells. G6PD and 6PGD have been proposed as potential therapeutic targets for cancer therapy during recent years due to their overexpression in various cancers. Here, we have employed enzymatic assay based screening using in-house G6PD and 6PGD assay protocols for the identification of mushroom extracts which could inhibit G6PD or 6PGD enzymatic activity for implications in cancer therapy. For the fulfillment of the objectives of present study, nine edible mushrooms were subjected to green extraction for preparation of ethanolic extracts. 6xhis-G6PD and pET-28a-h6PGD plasmids were expressed in BL21-DE3 E. coli cells for the expression and purification of protein of interests. Using purified proteins, in house enzymatic assay protocols were established. The preliminary screening identified two extracts (Macrolepiota procera and Terfezia boudieri) as potent and selective G6PD inhibitors, while no extract was found highly active against 6PGD. Further, evaluation of anticancer potential of mushroom extracts against lung cancer cells revealed Macrolepiota procera as potential inhibitor of cancer cell proliferation with IC50 value of 6.18 μg/ml. Finally, screening of M. procera-derived compounds against G6PD via molecular docking has identified paraben, quercetin and syringic acid as virtual hit compounds possessing good binding affinity with G6PD. The result of present study provides novel findings for possible mechanism of action of M. procera extract against A549 via G6PD inhibition suggesting that M. procera might be of therapeutic interest for lung cancer treatment.  相似文献   

10.
Summary

After fertilization of sea urchin eggs, there is a rapid increase in cellular levels of NADPH, a metabolite utilized in a variety of biosynthetic reactions during early development. Recent studies have shown that a dramatic increase in the activity of the pentose phosphate shunt occurs in vivo shortly after fertilization, consistent with the hypothesis mat this metabolic pathway is a major supplier of NADPH in sea urchin zygotes. One mechanism that may account, in part, for this increase in pentose shunt activity is the dissociation of glucose-6-phosphate dehydrogenase (G6PDH), the first enzyme of the shunt, from cell structural elements. In vitro, G6PDH is associated with the insoluble matrix obtained from homogenates of unfertilized eggs, and in this state, the enzyme is inhibited. Within minutes of fertilization, G6PDH is released as an active, soluble enzyme. A similar solubilization and activation of G6PDH occurs after fertilization of eggs of other marine invertebrates and in mammalian cells in culture stimulated by growth factors. The occurrence of this phenomenon in such diverse cell types, in response to different stimuli, suggests that the redistribution of G6PDH between insoluble and soluble locations may be involved in the regulation of the pentose phosphate shunt during cell activation in general.  相似文献   

11.
Different homozygous lines of similar genotype with respect to G6pd and 6Pgd were shown to have different enzyme activities for G6PD and 6PGD. Crosses between high and low lines suggested that there were modifying genes present on the autosomes, while others were probably located on the X chromosome. Allelic variation within each electrophoretic class of G6pd and 6Pgd might, however, also have contributed to this variation. An experiment on adaptation to sodium octanoate demonstrated that in adapted flies selection for lower enzyme activity had occurred, which provided further evidence for the existence of genetic differences in activity. Furthermore, a strong positive correlation between the activities of G6PD and 6PGD was found for each genotype. Since no correlation was found between MDH and the two enzymes G6PD and 6PGD, it could be concluded that this correlation was probably rather specific for G6PD and 6PGD. Interaction between genotypes with respect to activity was also found. It was shown that the variation at 6Pgd influenced the activity of G6PD within a genotype. The data are discussed in relation to fitness differences presented in foregoing articles.  相似文献   

12.
G6PD and 6PGD activities were determined in diploid, hyperdiploid, tetraploid, and hybrid cells all originating from the same Chinese hamster cell line (the DON line). A relationship between gene multiplicity and enzyme activity has been observed. The same enzymes were studied in hybrid cells cultivated in selective media. Selection was carried out against and for the HGPRT+ locus. The differences in G6PD and 6PGD activities between the cell lines found under these conditions indicate a positive linkage of the G6PD and HGPRT loci and negative linkage of the 6PGD and HGPRT loci in these Chinese hamster cells.  相似文献   

13.
We studied the maternal effect for two enzymes of the pentose cycle, 6-phosphogluconate dehydrogenase (6PGD) and glucose-6-phosphate dehydrogenase (G6PD), using a genetic system based on the interaction of Pgd? and Zw? alleles, which inactivate 6PGD and G6PD, respectively. The presence and formation of the enzymes was investigated in those individuals that had not received the corresponding genes from the mother. We revealed maternal forms of the enzymes, detectable up to the pupal stage. The activities of “maternal” 6PGD and G6PD per individual increased 20-fold to 30-fold from the egg stage to the 3rd larval instar even in the absence of normal Pgd and Zw genes. Immunologic studies have shown that the increase in 6PGD activity is due to an accumulation of the maternal form of the enzyme molecules. We revealed a hybrid isozyme resulting from an aggregation of the subunits of isozymes controlled by the genes of the mother and embryo itself. These results indicate that the maternal effect in the case of 6PGD is due to a long-lived stable mRNA transmitted with the egg cytoplasm and translated during the development of Drosophila melanogaster.  相似文献   

14.
The survival of malaria parasites in human RBCs (red blood cells) depends on the pentose phosphate pathway, both in Plasmodium falciparum and its human host. G6PD (glucose-6-phosphate dehydrogenase) deficiency, the most common human enzyme deficiency, leads to a lack of NADPH in erythrocytes, and protects from malaria. In P. falciparum, G6PD is combined with the second enzyme of the pentose phosphate pathway to create a unique bifunctional enzyme named GluPho (glucose-6-phosphate dehydrogenase-6-phosphogluconolactonase). In the present paper, we report for the first time the cloning, heterologous overexpression, purification and kinetic characterization of both enzymatic activities of full-length PfGluPho (P. falciparum GluPho), and demonstrate striking structural and functional differences with the human enzymes. Detailed kinetic analyses indicate that PfGluPho functions on the basis of a rapid equilibrium random Bi Bi mechanism, where the binding of the second substrate depends on the first substrate. We furthermore show that PfGluPho is inhibited by S-glutathionylation. The availability of recombinant PfGluPho and the major differences to hG6PD (human G6PD) facilitate studies on PfGluPho as an excellent drug target candidate in the search for new antimalarial drugs.  相似文献   

15.
Developmental profiles of the second- and third-chromosome modifiers of the activities of glucose 6-phosphate dehydrogenase (G6PD) and 6-phosphogluconate dehydrogenase (6PGD) in Drosophila melanogaster were investigated. Third-chromosome modifiers showed very strong effects on both enzyme activities at larval, pupal, and adult stages, whereas second-chromosome effects were detected mainly at larval and adult stages. For both enzyme activities and both chromosomes, the correlation over line means between larval and pupal stages was significantly positive, but the correlation between larval or pupal stage and adult stage was not significant. This result suggests that the actions of modifiers on G6PD and 6PGD activities are influenced by the change of developmental stages. Correlation between G6PD and 6PGD activities was positive and highly significant throughout the developmental stages for both sets of chromosomes, although third-chromosome correlations were slightly higher than second-chromosome correlations. The magnitude of the correlation between G6PD and 6PGD activities does not seem to be influenced by the change of development. Diallel crosses for both sets of chromosomes indicate that the action of activity modifiers is mainly additive for both sets of chromosomes, but dominance effects were detected in some cases in adult males. Significant maternal effects were detected for the third chromosome for both enzyme activities until the pupal stage. The change of the activity modifier action after emergence of the imago and the significant correlation between G6PD and 6PGD activities were also detected for diallel progeny.This work was supported by Public Health Service Grant NIH-GM11546.Paper No. 10211 of the journal series of the North Carolina Agricultural Research Service, Raleigh, North Carolina 27695.  相似文献   

16.
The relationships between gene dosage, enzyme activities and CRM levels have been determined for G6PD and 6PGD. Enzyme activities and CRM levels were directly proportional and increased in genotypes carrying duplications of the respective structural genes. When a duplication consisting of the distal 45% of the X chromosome was used to duplicate Pgd+, 6PGD activity and CRM increased and G6PD activity decreased. When the proximal 55% of the X chromosome was duplicated, G6PD activity and CRM increased whereas 6PGD activity and CRM levels decreased. These observations support the model of dosage compensation of X-linked genes that invokes an autosomal activator in limited concentrations for which X-linked loci compete. The distal 45% of the X chromosome, when duplicated, caused a significant increase in NADP-malic enzyme activity and CRM levels, as if a structural gene for NADP-ME is sex-linked.  相似文献   

17.
Red cell oxidative stress in P. falciparum infection in vitro was investigated in relation to the G6PD-Malaria hypothesis. Glutathione stability was enhanced in infected red cells; glucose consumption and pentose pathway activity were not different in normal and G6PD deficient cells, although parasite growth was impaired in G6PD deficiency. Evidence for a response to oxidative stress was not found. Infected red cells have glutamate dehydrogenase activity which was not found in uninfected cells. This enzyme provides a separate pathway for the generation of NADPH independent from the pentose shunt. The data suggest that a significant oxidative stress is not present in falciparum malaria and that another mechanism may be operative in G6PD deficiency.  相似文献   

18.
Fusions of the first two enzymes in the pentose phosphate pathway, glucose-6-phosphate dehydrogenase (G6PD) and 6-phosphogluconolactonase (6PGL), have been previously described in two distant clades, chordates and species of the malarial parasite Plasmodium. We have analyzed genome and expressed sequence data from a variety of organisms to identify the origins of these gene fusion events. Based on the orientation of the domains and range of species in which homologs can be found, the fusions appear to have occurred independently, near the base of the metazoan and apicomplexan lineages. Only one of the two metazoan paralogs of G6PD is fused, showing that the fusion occurred after a duplication event, which we have traced back to an ancestor of choanoflagellates and metazoans. The Plasmodium genes are known to contain a functionally important insertion that is not seen in the other apicomplexan fusions, highlighting this as a unique characteristic of this group. Surprisingly, our search revealed two additional fusion events, one that combined 6PGL and G6PD in an ancestor of the protozoan parasites Trichomonas and Giardia, and another fusing G6PD with phosphogluconate dehydrogenase (6PGD) in a species of diatoms. This study extends the range of species known to contain fusions in the pentose phosphate pathway to many new medically and economically important organisms.  相似文献   

19.
Polyphenols are the important compounds that have various bioactivities. They constitute vital active agents of not only daily diet but also natural medicines that are used traditionally. It is generally considered that they are safe because they are natural. In some conducted studies, different negative effects of these compounds were mentioned. Twelve phenolic compounds have been assayed to determine the effect of inhibition on glucose‐6‐phosphate dehydrogenase (G6PD) and 6‐phosphogluconate dehydrogenase (6PGD) enzymes activity. For in vitro studies, the enzymes were purified from human erythrocytes using 2′,5′‐ADP Sepharose 4B affinity chromatography. Naringenin, caffeic acid, ellagic acid, ferulic acid, and sinapic acid against two enzymes, hesperidin and polydatin, only on G6PD activity and chrysin solely against 6PGD showed inhibitory effect. Chlorogenic acid, p‐coumaric acid, and syringic acid did not exhibit an effect on the activity of the two enzymes.  相似文献   

20.
Previously, we found a substantially higher glucoses-phosphate dehydrogenase (G6PD) activity and a slightly higher 6-phosphogluconate dehydrogenase (6PGD) activity in bovine fetal erythrocytes than in bovine adult erythrocytes (Steensgaard 1968). Now, we have investigated whether these differences in dehydrogenase activities were followed by characteristic differences in glutathione (GSH) stability and glutathione concentration. The results are shown in Table 1, which also gives the results of the same investigations on normal and G6PD deficient human erythrocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号