首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wu GJ  Wen ZH  Chang YC  Yang SN  Tao PL  Wong CS 《Life sciences》2006,78(16):1801-1807
Neuropathic pain syndromes respond poorly to opioid treatment. In our previous studies, we found that intrathecal (i.t.) injection of pertussis toxin (PTX) produces thermal hyperalgesia, which is poorly responsive to morphine and is accompanied by an increase in cerebrospinal fluid (CSF) levels of excitatory amino acids (EAAs) and protein kinase C (PKC) activation. In the present study, rats were implanted with an i.t. catheter for drug injection and a microdialysis probe for CSF dialysate collection. On the fourth day after injection of PTX (2 microg, i.t.), there was a significant reduction in the antinociceptive effect of morphine (10 microg, i.t.) which was accompanied by an increase in levels of EAAs. Pretreatment with the PKC inhibitor, chelerythrine (25 microg, i.t.) one hour before morphine injection markedly inhibited both effects. These results suggest that, in PTX-treated rats, PKC plays an important role in inhibiting the morphine-induced spinal EAA release, which might be related to the reduced antinociceptive effect of morphine.  相似文献   

2.
Treatment of neuropathic pain with opioid analgesics remains controversial and a major concern is the risk of addiction. Here, we investigated this issue with spared nerve injury (SNI) model of neuropathic pain in rats and mice. SNI prevented conditioned place preference (CPP) induced by low dose (3.5 mg/kg) of morphine (MOR), which was effective for anti-allodynia, but not by high dose (?5.0 mg/kg) of MOR. Tumor necrosis factor-alpha (TNF-α) was upregulated in nucleus accumbens (NAcc) following SNI. The inhibitory effect of SNI on MOR-induced CPP was blocked by either genetic deletion of TNF receptor 1 (TNFR1) or microinjection of anti-TNF-α into the NAcc and was mimicked by intra-NAcc injection of TNF-α in sham rats. Furthermore, SNI reduced dopamine (DA) level and upregulated dopamine transporter (DAT) in the NAcc, but did not affect total tyrosine hydroxylase (TH) or phospho-TH (p-TH), a rate-limiting enzyme of catecholamine biosynthesis, in ventral tegmental area (VTA). Accordingly, the increase in DA reuptake but not decrease in its synthesis may lead to the reduction of DA level. Finally, the upregulation of DAT in the NAcc of SNI animals was again blocked by either genetic deletion of TNFR1 or NAcc injection of anti-TNF-α, and was mimicked by NAcc injection of TNF-α in sham animals. Thus, our data provided novel evidence that upregulation of TNF-α in NAcc may attenuate MOR-induced rewarding by upregulation of DAT in NAcc under neuropathic pain condition.  相似文献   

3.
Our studies indicate that, in the presence of particular isoforms of adenylyl cyclase (i.e., type 7 AC), moderately intoxicating concentrations of ethanol will significantly potentiate transmitter-mediated activation of the cAMP signaling cascade. Activation of this signaling cascade may have important implications for the mechanisms by which ethanol produces intoxication, and/or for the mechanisms of neuroadaptation leading to tolerance to, and physical dependence on, ethanol. We initiated a series of studies to investigate the phosphorylation of AC7 by PKC, the role of this phosphorylation in modulating the sensitivity of AC7 to activation by Gsalpha, and the PKC isotype(s) involved in the phosphorylation of AC7. The T7 epitope-tagged AC7 expressed in Sf9 and HEK293 cells was found to be phosphorylated in vitro by the catalytic subunit of PKC. Treatment of AC7-transfected HEK293 cells with phorbol dibutyrate (PDBu) or ethanol increased the phosphorylation of AC7 and its responsiveness to Gsalpha. In human erythroleukemia (HEL) cells, which endogeneously express AC7, ethanol and PDBu increased AC activity stimulated by PGE(1). The potentiation by both PDBu and ethanol was found to be sensitive to the PKC delta-selective inhibitor, rottlerin. The potentiation of AC activity by ethanol in HEL cells was also selectively attenuated by the RACK inhibitory peptide specific for PKC delta, and by expression of the dominant negative, catalytically inactive, form of PKC delta. These data demonstrate that AC7 can be phosphorylated by PKC, leading to an increase in functional activity, and ethanol can potentiate AC7 activity through a PKC delta-mediated phosphorylation of AC7.  相似文献   

4.

Background

Tolerance to the analgesic effect of opioids is a pharmacological phenomenon that occurs after their prolonged administration. It has been shown that morphine-induced tolerance is associated with apoptosis in the central nervous system and neuroprotective agents which prevented apoptosis signaling could attenuate tolerance to the analgesic effects. On the other hand donepezil, an acetylcholinesterase inhibitor, has been reported to have neuroprotective effects. Therefore in this study, the effect of systemic administration of donepezil on morphine-induced tolerance and apoptosis in the rat cerebral cortex and lumbar spinal cord was evaluated. Various groups of rats received morphine (ip) and different doses of donepezil (0, 0.5, 1, 1.5 mg/kg/day). Nociception was assessed using tail flick apparatus. Tail flick latency was recorded when the rat shook its tail. For apoptosis assay other groups of rats received the above treatment and apoptosis was evaluated by in situ terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling (TUNEL) method.

Results

The results showed that administration of donepezil (0.5, 1, 1.5 mg/kg, ip) delayed the morphine tolerance for 9, 12 and 17 days, respectively. Furthermore pretreatment injection of donepezil attenuated the number of apoptotic cells in the cerebral cortex and lumbar spinal cord compared to the control group.

Conclusion

In conclusion, we found that systemic administration of donepezil attenuated morphine-induced tolerance and apoptosis in the rat cerebral cortex and lumbar spinal cord.  相似文献   

5.
Carnitine (4-N-trimethylammonium-3-hydroxybutyric acid), a compound necessary for a transfer of fatty acids for their oxidation within the cell, accumulates in brain although β-oxidation of fatty acids is very low in neurons. Carnitine accumulates to lower extent in the brain than in peripheral tissues and the mechanism of its transport through the blood–brain barrier is discussed, with the involvement of two transporters, OCTN2 and B0,+ being presented. A limitation by the blood–brain barrier of carnitine supply for the brain and the mechanism of its transport to neural cells by a protein belonging to neurotransmitters' transporters superfamily is further discussed.

Due to the beneficial effects of administration of acetylcarnitine in case of patients with dementia, the role of this acylcarnitine is presented in the context of neuronal cell metabolism and the role of acetylcarnitine in the synthesis of acetylcholine. The roles of long-chain acyl derivatives of carnitine, in particular palmitoylcarnitine, responsible for interaction with the membranes, lipids acylation and specific interactions with proteins have been summarized. Stimulation of protein palmitoylation and a possibility of changing the acylation status of G proteins is described, as well as interaction of palmitoylcarnitine with protein kinase C. Diminished interaction of the isoform δ of this kinase with GAP-43 (B-50, neuromodulin), whose expression increases upon accumulation of either carnitine or palmitoylcarnitine points to a possible regulation of differentiation by these compounds and their role in neuroregeneration.  相似文献   


6.
7.
Previous evidence demonstrates that low dose morphine systemic administration induces acute thermal hyperalgesia in normal mice through μOR stimulation of the inositol signaling pathway. We investigated the site of action of morphine and the mechanism of action of μOR activation by morphine to NMDA receptor as it relates to acute thermal hyperalgesia. Our experiments show that acute thermal hyperalgesia is blocked in periaqueductal gray with the μOR antagonist CTOP, the NMDA antagonist MK801 and the protein kinase C inhibitor chelerythrine. Therefore, a site of action of systemically administered morphine low dose on acute thermal hyperalgesic response appears to be located at the periaqueductal gray. At this supraspinal site, μOR stimulation by systemically morphine low dose administration leads to an increased phosphorylation of specific subunit of NMDA receptor. Our experiments show that the phosphorylation of subunit 1 of NMDA receptor parallels the acute thermal hyperalgesia suggesting a role for this subunit in morphine-induced hyperalgesia. Protein kinase C appears to be the key element that links μOR activation by morphine administration to mice with the recruitment of the NMDA/glutamatergic system involved in the thermal hyperalgesic response.  相似文献   

8.
The present study was undertaken to further investigate the role of glial cells in the development of the neuropathic pain-like state induced by sciatic nerve ligation in mice. At 7 days after sciatic nerve ligation, the immunoreactivities (IRs) of the specific astrocyte marker glial fibrillary acidic protein (GFAP) and the specific microglial marker OX-42, but not the specific oligodendrocyte marker O4, were increased on the ipsilateral side of the spinal cord dorsal horn in nerve-ligated mice compared with that on the contralateral side. Furthermore, a single intrathecal injection of activated spinal cord microglia, but not astrocytes, caused thermal hyperalgesia in naive mice. Furthermore, 5-bromo-2'-deoxyuridine (BrdU)-positive cells on the ipsilateral dorsal horn of the spinal cord were significantly increased at 7 days after nerve ligation and were highly co-localized with another microglia marker, ionized calcium-binding adaptor molecule 1 (Iba1), but neither with GFAP nor a specific neural nuclei marker, NeuN, in the spinal dorsal horn of nerve-ligated mice. The present data strongly support the idea that spinal cord astrocytes and microglia are activated under the neuropathic pain-like state, and that the proliferated and activated microglia directly contribute to the development of a neuropathic pain-like state in mice.  相似文献   

9.
Previous studies have suggested that protein kinase C (PKC) isoforms differentially influence the sensitivity of gamma-aminobutyric acid(A) (GABA(A) ) receptor responses in brain. Both PKCgamma and PKCepsilon knock-out mice exhibit altered ethanol potentiation of GABA(A) receptor mediated Cl(-) flux. Furthermore, chronic ethanol consumption alters GABA(A) receptor function and receptor subunit peptide expression by mechanisms that are not yet understood. The present study explored the possibility that PKC isoforms are directly associated with GABA(A) receptors, and this association is influenced by chronic ethanol exposure. GABA(A) receptors containing alpha1 or alpha4 subunits were immunoprecipitated from solubilized protein derived from the membrane fraction of rat cerebral cortex using selective antibodies. Immunoprecipitated receptors were screened by western blot analysis for the presence of PKCdelta, gamma and epsilon isoforms. We found pronounced labeling of PKCgamma but not PKCdelta or PKCepsilon in the alpha1 and alpha4 subunit immunoprecipitates. Immunoprecipitation with PKCgamma, but not with IgG antibody also yielded GABA(A) receptor alpha1 and alpha4 subunits in the immunoprecipitate. The association of PKCgamma with alpha1-containing receptors was decreased 44 +/- 11% after chronic ethanol consumption. In contrast, PKCgamma associated with alpha4-containing receptors was increased 32 +/- 7% after chronic ethanol consumption. These results suggest that PKCgamma may be involved in GABA(A) receptor adaptations following chronic ethanol consumption.  相似文献   

10.
We examined pain-related behavioral reactions and non-pain behavioral manifestations in mice under conditions of the formalin test. Levels of analgesia induced by i.p. injections of analgin, microwave irradiation of an antinociceptive acupuncture point (AP), E-36, or combined application of the above factors were measured. The duration of the pain behavioral reaction (licking of the injured limb) decreased due to irradiation of the AP with microwaves and to injection of 8.3 mg/kg analgin by 24.3% and 53.8%, on average, respectively. Combination of injection of analgin in a smaller dose (4.2 mg/kg) and microwave irradiation of the AP suppressed manifestations of the pain behavioral reaction by 43.4%. Thus, combination of pharmacologically induced analgesia with the action of microwaves on the antinociceptive AP allows one to significantly decrease the doses of analgesic preparations necessary to provide a full-level analgesic effect; in such a way, side effects of the respective drugs can be weakened. Neirofiziologiya/Neurophysiology, Vol. 38, No. 1, pp. 46–51, January–February, 2006.  相似文献   

11.
It has been proposed, with some supporting evidence, that development of opiate tolerance and dependence requires protein synthesis. However, a quantitative, biologically based model within which to analyse and support the data has been lacking. Utilizing such a framework or model, we recently compared the time course of onset of opiate dependence in laboratory animals, with the mathematical time course of general changes in protein levels. Not only did the time course of onset of dependence parallel the time course of increasing levels of a protein, but also the half-life of the putative protein required by the model was very similar to those of many brain proteins. In this study, we have more extensively tested the model by producing and examining a much more detailed and surprisingly complex time course of the onset of dependence. Applying the protein synthesis time course model to the data suggested the presence of two distinct components of dependence, an early transient component and a later long-lasting component. These components appear to correspond to acute and chronic dependence, respectively. The protein synthesis hypothesis more readily applies to the chronic dependence portion. Because consideration of the model can generate components that correspond to accepted and well-known components of dependence, both the utility of the model as well as the hypothesis that opiate dependence at least partially requires protein synthesis are supported. It is also possible that individual components of the withdrawal syndrome have individual and unique rate limiting mechanisms. In any case, time course analysis may be helpful in revealing underlying mechanisms of change.  相似文献   

12.
Thermal hyperalgesia and tactile allodynia induced by sciatic nerve ligation were completely suppressed by repeated intrathecal (i.t.) injection of a TrkB/Fc chimera protein, which sequesters endogenous brain-derived neurotrophic factor (BDNF). In addition, BDNF heterozygous (+/-) knockout mice exhibited a significant suppression of nerve ligation-induced thermal hyperalgesia and tactile allodynia compared with wild-type mice. After nerve ligation, BDNF-like immunoreactivity on the superficial laminae of the ipsilateral side of the spinal dorsal horn was clearly increased compared with that of the contralateral side. It should be noted that a single i.t. injection of BDNF produced a long-lasting thermal hyperalgesia and tactile allodynia in normal mice, and these responses were abolished by i.t. pre-treatment with either a Trk-dependent tyrosine kinase inhibitor K-252a or a selective protein kinase C (PKC) inhibitor Ro-32-0432. Supporting these findings, we demonstrated here for the first time that the increase in intracellular Ca2+ concentration by application of BDNF in cultured mouse spinal neurons was abolished by pre-treatment with either K-252a or Ro-32-0432. Taken together, these findings suggest that the binding of spinally released BDNF to TrkB by nerve ligation may activate PKC within the spinal cord, resulting in the development of a neuropathic pain-like state in mice.  相似文献   

13.
The present study investigated the effect of single and repeated electroconvulsive shock (ECS) on proteinkinase C in rat cerebral cortex, cerebellum, hippocampus and striatum using [3H]Phorbol-12, 13-butyrate binding. In the postictal period and 24 hr after a single ECS there was no alteration in any brain region. Twenty four hr after 10 once-daily ECS there was a significant decrease the number of binding sites in cerebral cortex (30%) and in cerebellum (20%) without a change in the affinity constant. These findings are discussed with regard to earlier reports on phosphoinositide turnover following chemically and electrically induced seizures.  相似文献   

14.
Droperidol causes the blockage of the dopamine receptors in the central nervous system that are involved in pain transmission. However, the mechanism of action of droperidol in pain-related neurons is not clear, and it is still unknown whether opioids are involved in the modulation of this processing. The present study examines the effect of droperidol on the pain-evoked response of pain-excitation neurons (PENs) and pain-inhibition neurons (PINs) in the caudate nucleus (Cd) of rats. The trains of electric impulses applied to the sciatic nerve were used as noxious stimulation. Our results revealed that droperidol decreased the frequency of PEN discharge, and increased the frequency PIN discharge evoked by the noxious stimulation in the Cd of normal rats, while administration of droperidol to morphine-dependent rats produced the opposite response. Those demonstrated that droperidol is involved in the modulation of nociceptive information transmission in Cd, and there were completely opposite responses to painful stimulation between normal and morphine-dependent rats after administration of droperidol.  相似文献   

15.

Objective

To investigate whether aloperine (ALO) has antinociceptive effects on neuropathic pain induced by chronic constriction injury, whether ALO reduces ROS against neuropathic pain, and what are the mechanisms involved in ALO attenuated neuropathic pain.

Methods

Mechanical and cold allodynia, thermal and mechanical hyperalgesia and spinal thermal hyperalgesia were estimated by behavior methods such as Von Frey filaments, cold-plate, radiant heat, paw pressure and tail immersion on one day before surgery and days 7, 8, 10, 12 and 14 after surgery, respectively. In addition, T-AOC, GSH-PX, T-AOC and MDA in the spinal cord (L4/5) were measured to evaluate anti-oxidation activity of ALO on neuropathic pain. Expressions of NF-κB and pro-inflammatory cytokines (TNF-α, IL-6, IL-1β) in the spinal cord (L4/5) were analyzed by using Western blot.

Results

Administration of ALO (80 mg/kg and 40 mg/kg, i.p.) significantly increased paw withdrawal threshold, paw pressure, paw withdrawal latencies, tail-curling latencies, T-AOC, GSH-PX and T-SOD concentration, reduced the numbers of paw lifts and MDA concentration compared to CCI group. ALO attenuated CCI induced up-regulation of expressions of NF-κB, TNF-α, IL-6, IL-1β at the dose of 80 mg/kg (i.p.). Pregabalin produced similar effects serving as positive control at the dose of 10 mg/kg (i.p.).

Conclusion

ALO has antinociceptive effects on neuropathic pain induced by CCI. The antinociceptive effects of ALO against neuropathic pain is related to reduction of ROS, via suppression of NF-κB pathway.  相似文献   

16.
Both the protein kinase C (PK-C) activator, phorbol 12-myristate 13-acetate (PMA), and the cyclic AMP-dependent protein kinase (PK-A) activator, 8-bromo-cyclic AMP (8-BR), have been shown to increase 32P incorporation into glial fibrillary acidic protein (GFAP) and vimentin in cultured astrocytes. Also, treatment of astrocytes with PMA or 8-BR results in the morphological transformation of flat, polygonal-shaped cells into stellate, process-bearing cells, suggesting the possibility that signals mediated by these two kinase systems converge at the level of protein phosphorylation to elicit similar changes in cell morphology. Therefore, studies were conducted to determine whether treatment with PMA and 8-BR results in the phosphorylation of the same tryptic peptide fragments on GFAP and vimentin in astrocytes. Treatment with PMA increased 32P incorporation into all the peptide fragments that were phosphorylated by 8-BR on both vimentin and GFAP; however, PMA also stimulated phosphorylation of additional fragments of both proteins. The phosphorylation of vimentin and GFAP resulting from PMA or 8-BR treatment was restricted to serine residues in the N-terminal domain of these proteins. Studies were also conducted to compare the two-dimensional tryptic phosphopeptide maps of GFAP and vimentin from intact cells treated with PMA and 8-BR with those produced when the proteins were phosphorylated with purified PK-C or PK-A. PK-C phosphorylated the same fragments of GFAP and vimentin that were phosphorylated by PMA treatment. Additionally, PK-C phosphorylated some tryptic peptide fragments of these proteins that were not observed with PMA treatment in intact cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Abstract: The effects of morphine on the affinity and distribution of GABA receptors in the mouse regions (striatum, medulla, diencephalon, cortex, and cerebellum) were investigated in relation to: (a) acute administration, (b) chronic administration (tolerance), (c) precipitated withdrawal by naloxone, an opiate antagonist, and (d) abrupt withdrawal for 8 and 24 h. The alterations in the affinity as reflected by the dissociation constant (KD) and the number of receptors (Bmax) in the synaptic membranes obtained from controls and various treatments were determined by radioligand binding assay using [3H]muscimol as a ligand. Significant changes were observed in striatum, medulla, and diencephalon, whereas other regions including whole brain exhibited marginal changes. In general the number of GABA receptors increased after tolerance development, which upon abrupt withdrawal returned to control levels except in the case of naloxone-induced precipitated withdrawal. The affinity changes in different regions were diverse in nature and were not evident in the whole brain membranes. These results indicate that: (a) the regional alterations in the affinity and distribution of GABA receptors may play a role in the induction, maintenance, and regression of morphine tolerance; (b) abrupt withdrawal and antagonist precipitated withdrawal affect the GABA system differently, (c) chronic morphine treatment appears to influence the GABA receptors in the cerebellum, a region generally known for its lack of opiate receptors.  相似文献   

18.
Wang GB  Wu LZ  Yu P  Li YJ  Ping XJ  Cui CL 《Peptides》2011,32(4):713-721
Alleviating opiate withdrawal syndrome in addicts is a critical precondition to break away from drug and further to prevent reuse. Electroacupuncture (EA) was claimed to be effective for alleviating withdrawal syndrome, but the optimal protocol remained unclear. In the present study we found that (1) 100 Hz EA administered 12-24 h after the last morphine injection suppressed the withdrawal syndrome in rats, multiple sessions of EA were more effective than single session, with the after-effect lasting for at least 7 days. (2) A down-regulation of preprodynorphin (PPD) mRNA level was observed in spinal cord, PAG and hypothalamus 60 h after the last morphine injection, which could be reversed by multiple sessions, but not a single session of EA. (3) Accompanied with the decrease of PPD mRNA level, there was an up-regulation of p-CREB in the three CNS regions, which was abolished by 100 Hz EA treatment. The findings suggest that down-regulation of p-CREB and acceleration of dynorphin synthesis in spinal cord, PAG and hypothalamus may be implicated in the cumulative effect of multiple 100 Hz EA treatment for opioid detoxification.  相似文献   

19.
Proteolytic cleavage of protein kinase C (PKC) under cell-free conditions generates a co-factor independent, free catalytic subunit (PKM). However, the difficulty in visualizing PKM in intact cells has generated controversy regarding its physiological relevance. In the present study, treatment of SH-SY-5Y cells with 2-O-tetradecanoylphorbol 13-acetate resulted in complete down-regulation of PKC within 24 h without detection of PKM. By contrast, low levels of PKM were transiently detected following ionophore-mediated calcium influx under conditions which induced no detectable PKC loss. PKM was not detected during rapid cell-free degradation of partially purified SH-SY-5Y PKCα by purified human brain mM calpain. However, when the kinetics of PKC degradation were slowed by lowering levels of calpain, PKM was transiently detected. PKM was also only transiently observed following calpain-mediated degradation of purified rat brain PKCα. Densitometric analyses indicated that, once formed, PKM was degraded approximately 10 times faster than PKC. These data provide an explanation as to why PKM is difficult to observe in situ, and indicate that PKM should not be considered as an ‘unregulated’ kinase, since its persistence is apparently strictly regulated by proteolysis.  相似文献   

20.
Neuropathic pain is a serious physical disabling condition resulting from lesion or dysfunction of the peripheral sensory nervous system. Despite the fact that the mechanisms underlying neuropathic pain are poorly understood, the involvement of voltage-gated calcium (CaV) channels in its pathophysiology has justified the use of drugs that bind the CaV channel α2δ auxiliary subunit, such as gabapentin (GBP), to attain analgesic and anti-allodynic effects in models involving neuronal sensitization and nerve injury. GBP binding to α2δ inhibits nerve injury-induced trafficking of the α1 pore forming subunits of CaV channels, particularly of the N-type, from the cytoplasm to the plasma membrane of pre-synaptic terminals in dorsal root ganglion neurons and dorsal horn spinal neurons. In the search for alternative forms of treatment, in this study we describe the synthesis and pharmacological profile of a GABA derivative, 2-aminoadamantane-1-carboxylic acid (GZ4), which displays a close structure–activity relationship with GBP. Behavioral assessment using von Frey filament stimuli showed that GZ4 treatment reverted mechanical allodynia/hyperalgesia in an animal model of spinal nerve ligation-induced neuropathic pain. In addition, using the patch clamp technique we show that GZ4 treatment significantly decreased whole-cell currents through N-type CaV channels heterologously expressed in HEK-293 cells. Interestingly, the behavioral and electrophysiological time course of GZ4 actions reflects that its mechanism of action is similar but not identical to that of GBP. While GBP actions require at least 24 h and imply uptake of the drug, which suggests that the drug acts mainly intracellularly affecting channels trafficking to the plasma membrane, the faster time course (1–3 h) of GZ4 effects suggests also a direct inhibition of Ca2+ currents acting on cell surface channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号