首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zhang J  King M  Suggs L  Ren P 《Biomacromolecules》2007,8(10):3015-3024
A depsipeptide is a chemical structure consisting of both ester and amide bonds. Quantum mechanics calculations have been performed to investigate the conformational properties of a depsidipeptide in the gas and solution phases. Similar to an alanine dipeptide, the depsidipeptide exhibits a strong preference for the polyproline II (PPII) helical conformation. Meanwhile, due to the changes in the intramolecular interaction, the propensity for beta-sheets and alpha-helices diminishes while an unusual inclination for the (phi,psi) = (-150 degrees ,0 degrees ) conformation was observed. A molecular mechanics model has been developed for polydepsipeptides based on the quantum mechanical study. Both simulated annealing and replica exchange molecular dynamics simulations have been carried out on oligodepsipeptide sequences with alternating depsi and natural residues in solution. Novel helical structures have been indicated from the simulations. When glycine is used as the alternating natural amino acid residue, the PPII conformation of a depsi residue stabilizes the peptide into a right-handed helical structure while the alpha-helical conformation of the depsi residue favors an overall left-handed helical structure. The free energy analysis indicates that both the left- and the right-handed helices are equally likely to exist. When charged lysine is introduced as the alternating natural residue, however, it is found that the depsipeptide sequence prefers an extended conformation as in PPII. Our results indicate that the depsipeptide is potentially useful in designing protein mimetics with controllable structure, function, and chemistry.  相似文献   

2.
Nucleoside-phospholipid conjugates containing a nucleotidyl residue and two long alkyl chains have been synthesized and their self-organization and morphology have been investigated. In particular, 5'-phosphatidylcytidine spontaneously assembled to form linear and circular strands. Image processing analysis of the electron micrograph of the strands confirmed that they are indeed double helix reminiscent of the double-helical structure of nucleic acids. The linear and circular strands from 5'-phosphatidylcytidine had grooves of approximately 100 A in diameter and right-handed helical pitch of approximately 240 A.  相似文献   

3.
Popenda L  Adamiak RW  Gdaniec Z 《Biochemistry》2008,47(18):5059-5067
The RNA single bulge motif is an unpaired residue within a strand of several complementary base pairs. To gain insight into structural changes induced by the presence of the adenosine bulge on RNA duplex, the solution structures of RNA duplex containing a single adenine bulge (5'-GCAGAAGAGCG-3'/5'-CGCUCUCUGC-3') and a reference duplex with all Watson-Crick base pairs (5'-GCAGAGAGCG-3'/5'-CGCUCUCUGC-3') have been determined by NMR spectroscopy. The reference duplex structure is a regular right-handed helix with all of the attributes of an A-type helix. In the bulged duplex, single adenine bulge stacks into the helix, and the bulge region forms a well-defined structure. Both structures were analyzed by the use of calculated helical parameters. Distortions induced by the accommodation of unpaired residue into the helical structure propagate over the entire structure and are manifested as the reduced base pairs inclination and x-displacement. Intrahelical position of bulged adenine A5 is stabilized by efficient stacking with 5'-neighboring residues G4.  相似文献   

4.
In order to form more stable triple helical structures or to prevent their degradation in cells, oligonucleotide analogs are routinely used, either in the backbone or among the bases. The target sequence chosen for this study is a 16-base-long oligopurine-oligopyrimidine region present in the human neurotrophin 4/5 gene. Seven different chemical modifications were tested for their effect on (i) triple helix formation and (ii) i-DNA stability. i-DNA is a tetrameric structure involving hemiprotonated C x C+ base pairs, which may act as a competing structure for triplex formation, especially in the case of a cytosine-rich third strand. At acid pH, oligophosphoramidates formed the most stable triple helix, whereas oligonucleotides including 5-propynyl-dU formed a stable i-motif which precluded triplex formation. Only two candidates stabilized triple helices at neutral pH: oligonucleotides with phosphoramidate linkage and phosphodiester oligonucleotides containing 5-methyl-dC and 5-propynyl-dU.  相似文献   

5.
Energy minimization has been carried out on three poly(purine).poly(pyrimidine) sequences--d(G)10.d(C)10, d(A)10.d(T)10, and d(AG)5.d(CT)5--using the molecular mechanics program AMBER (Assisted Model Building and Energy Refinement). In order to extensively scan the conformational space available, five different helical models were studied, three of them being right-handed helices while the other two were left helical. For all three sequences the right-handed A- and B-type helices are energetically slightly preferred over the left helices, but the energy difference between the various right-handed helices is only marginal. A detailed analysis has been carried out to characterize the local structural variability in the refined structures, both in terms of torsion angles as well as other parameters such as base-pair tilt, wedge roll, and wedge tilt, etc. All three sequences exhibit similar structural features for a particular form, but both the forms A and B show significant deviations from fiber models. In particular, the A-form structures have higher unit rise (2.7 A), and lower unit twist (31 degrees) and base-pair tilt (12 degrees), compared to the fiber model, which has corresponding values of 2.56 A, 32.7 degrees, and 20 degrees, respectively. All these changes indicate that the refined models are closer to the A-form structure observed in crystals of oligonucleotides. In the refined B-for models, the helical parameters are close to the fiber B-form, although the torsion angles show considerable variations. None of the three sequences examined, including the d(A)n.d(T)n sequence, show any pronounced curvature for the B-form structure.  相似文献   

6.
The structural and energetic consequences of cytosine methylation in the 5-position on the supercoil-dependent B-Z equilibrium in alternating dC-dG sequences cloned into recombinant plasmids were investigated. The helical parameters determined with the band shift method for right-handed [10.7 base pairs (bp)/turn] and left-handed (12.8 bp/turn) 5MedC-dG inserts were different from the helical repeat values for unmethylated dC-dG inserts (10.5 bp/turn in the right-handed and 11.5 bp/turn in the left-handed form). We analyzed the thermodynamic parameters delta GBZ (free energy difference per base pair between right-handed and left-handed helix structure), delta Gjx (free energy for formation of one B-Z junction), and b (helix unwinding at a junction region) for varying lengths of dC-dG inserts by two-dimensional gel electrophoresis and application of a statistical mechanics model. A comparison of plasmids fully methylated in vitro with HhaI methylase and their unmethylated counterparts revealed that delta Gjx is not significantly changed by cytosine methylation. However, this base modification results in an approximate 3-fold decrease of delta GBZ and an approximate 2-fold decrease of the unwinding b at B-Z junction regions. Analysis of a pair of related plasmids, each containing two dC-dG blocks, revealed qualitatively different transition behaviors. When the two dC-dG blocks were separated by 95 bp of a mixed sequence, they underwent independent B to Z transitions with separate nucleation events and junction formations. When the two blocks were separated by only a 4 bp GATC sequence, only one nucleation event was necessary, and the Z-helix spread across the nonalternating GATC region.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
A molecular dynamics (MD) simulation was performed on the α-helix H8-HC5, the C-terminal part of myoglobin (residue 132–153), under periodic boundary conditions in two different solutions, water and water with 30% (v/v) 2,2,2-trifluoroethanol (TFE), at 300 K to investigate the stability of the helix. In both simulations, the initial configuration was a canonical right-handed α-helix. In the course of the MD trajectory in water (200 ps), the helix clearly destabilized and began to unfold after 100 ps. In the TFE solution, two stable parts of helical regions were observed after 70 ps of a 200-ps MD simulation, supporting the notion that TFE acts as a structure-forming solvent. © 1993 John Wiley & Sons, Inc.  相似文献   

8.
A sequential assignment procedure is outlined, based on two-dimensional NOE ( NOESY ) and two-dimensional J-correlated spectroscopy ( COSY ), for assigning the nonexchangeable proton resonances in NMR spectra of oligonucleotides. As presented here the method is generally applicable to right-handed helical oligonucleotides of intermediate size. We applied it to a lac operator DNA fragment consisting of d( TGAGCGG ) and d( CCGCTCA ) and obtained complete assignments for the adenine H8, guanine H8, cytosine H6 and H5, thymine H6 and 5-methyl, and the deoxyribose H1', H2', H2", H3', and H4' resonances, as well as some H5', H5" (pairwise) assignments. These assignments are required for the analysis of two-dimensional NOE and J-coupling data in terms of the solution structure of oligonucleotides.  相似文献   

9.
We have investigated the conformational potentials of several DNA oligonucleotides containing sequences related to 5'-CGA in neutral pH and low pH (< 5.0) conditions. One-dimensional proton NMR spectra show that d(CGATCG), d(TCGATCGA), and d(CGATCGATCG) exhibit new sets of resonances at low pH (approximately 3.8-4.4), when compared to those from the neutral pH samples. The low pH form and the neutral pH form are in slow equilibrium. Analyses of the data suggest that these sequences under low pH conditions adopt structures distinct from B-DNA. Two-dimensional nuclear Overhauser effect spectroscopy (2D NOESY) data from the DNA hexamer d(CGATCG) of the neutral and low pH samples were used to analyze their respective structures in solution. An iterative NOE spectral-driven refinement procedure, SPEDREF [Robinson, H., & Wang, A. H.-J. (1992) Biochemistry 31, 3524-3533], was used to show that the neutral pH structure is close to canonical B-DNA. In contrast, analysis of the low pH form using the 2D NOESY data suggests that its structure is consistent with a right-handed parallel-stranded (PS) double helix with symmetrical non-Watson-Crick (C+:C, G:G, A:A, T:T) homo base pairs. Supporting evidence for the PS helix includes the asymmetric inversion-recovery relaxation times associated with the two ends of the helix. The structure is favored by the 5'-CGA sequence in which the cytosines provide the C+:C pairing for the nucleation step and the GpA step is significantly stabilized by the interstrand G-A stacking interactions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The compact, largely helical structure of sperm whale and harbor seal myoglobins undergoes an abrupt one-step transition between pH 4.5 and 3.5 as monitored by changes in either the heme Soret band absorbance or circular dichroism probes of secondary structure, for which a modified Tanford-Kirkwood theory provides identification of certain dominant electrostatic interactions responsible for the loss of stability. A similar treatment permits identification of the electrostatic interactions primarily responsible for a process in which the anchoring of the A helix to other parts of the molecule is weakened. This process is detected with both myoglobins, in a pH range approximately 1 unit higher than the onset of the overall unfolding process, through changes in the circular dichroic spectra near 295 nm which correspond to the L1 O-O band of the only two tryptophan residues in these proteins, residues 7 and 14. In each case protonation of certain sites in neighboring parts of the molecule can be identified as producing destabilizing interactions with components of the A helix, particularly with lysine 6.  相似文献   

11.
The crystal and molecular structure of the peptide Boc-L -Ala-Δphe-Δphe-NHMe, containing two consecutive dehydro-phenylalanine (Δphe) residues, has been solved by x-ray diffraction. Two independent molecules, X and Y, are present in the crystallographic unit. Their conformation corresponds approximately to an incipient 310-helix stabilized by two intramolecular hydrogen bonds. The (?, ψ) torsion angles, however, have negative and positive signs in the two molecules X and Y, respectively. Therefore, in spite of the presence of an amino acid residue of the L configuration, the two helical molecules have opposite screw senses, even though the right-handed helix is less distorted than the left-handed one in correspondence of the L -Ala residue. The CD spectra in various solvents exhibit exciton bands originating from dipole–dipole interaction between the Δphe side chains. Addition of DMSO to the chloroform solution produces, as a first step, a strong increasing of the CD bands, which are then progressively canceled by increasing DMSO concentration. The nmr data parallel the behavior observed in the CD spectra. In CDCl3 solution, the temperature coefficients of the NH resonances are consistent with the involvement of the last two amide protons of the sequence in intramolecular hydrogen bonds, but only negligibly small nuclear Overhauser effects (NOE) are observed. Addition of 5% DMSO-d6 allows the observation of diagnostic NOEs. CD and nmr data indicate that the solid state structure is retained in solution, and are consistent with the presence of right-handed and left-handed conformers, with a prevalence of the more stable right-handed one. © 1993 John Wiley & Sons, Inc.  相似文献   

12.
We have used NMR spectroscopy and limited proteolysis to characterize the structural properties of the Parkinson's disease-related protein alpha-synuclein in lipid and detergent micelle environments. We show that the lipid or micelle surface-bound portion of the molecule adopts a continuously helical structure with a single break. Modeling alphaS as an ideal alpha-helix reveals a hydrophobic surface that winds around the helix axis in a right-handed fashion. This feature is typical of 11-mer repeat containing sequences that adopt right-handed coiled coil conformations. In order to bind a flat or convex lipid surface, however, an unbroken helical alphaS structure would need to adopt an unusual, slightly unwound, alpha11/3 helix conformation (three complete turns per 11 residues). The break we observe in the alphaS helix may allow the protein to avoid this unusual conformation by adopting two shorter stretches of typical alpha-helical structure. However, a quantitative analysis suggests the possibility that the alpha11/3 conformation may in fact exist in lipid-bound alphaS. We discuss how structural features of helical 11-mer repeats could play a role in the reversible lipid binding function of alpha-synuclein and generalize this argument to include the 11-mer repeat-containing apolipoproteins, which also require the ability to release readily from lipid surfaces. A search of protein sequence databases confirms that synuclein-like 11-mer repeats are present in other proteins that bind lipids reversibly and predicts such a role for a number of hypothetical proteins of unknown function.  相似文献   

13.
Using the scanning tunnelling microscopy we have directly observed the parallel stranded DNA of 43 bp in length, containing alternating AT-stretches. The double helix is right-handed and has the same width of each grooves equal to 17.4 A. The average pitch of the helical turn is about 34 A. The parallel double helix possesses no more than 8.6 bases per one turn. The diameter of the parallel stranded DNA molecule is 17-18 A. We conclude that in parallel DNA double helix the angle between N-glycoside bounds in trans-Crick-Watson base pairs is close to 180 degrees.  相似文献   

14.
Specimen-tilting in an electron microscope was used to determine the three-dimensional architecture of the helical complexes formed with DNA by the closely related single-stranded DNA binding proteins of fd and IKe filamentous viruses. The fd gene 5 protein is the only member of the DNA-helix-destabilizing class of proteins whose structure has been determined crystallographically, and yet a parameter essential to molecular modeling of the co-operative interaction of this protein with DNA, the helix handedness, has not been available prior to this work. We find that complexes formed by titrating fd viral DNA with either the fd or IKe gene 5 protein have a left-handed helical sense. Complexes isolated from Escherichia coli infected by fd virus are also found to be left-handed helical; hence, the left-handed fd helices are not an artefact of reconstitution in vitro. Because the proteins and nucleic acid of the complexes are composed of asymmetric units which cannot be fitted equivalently to right-handed and left-handed helices, these results rule out a previous computer graphics atomic model for the helical fd complexes: a right-handed helix had been assumed for the model. Our work provides a defined three-dimensional structural framework within which to model the protein-DNA and protein-protein interactions of two structurally related proteins that bind contiguously and co-operatively on single-stranded DNAs.  相似文献   

15.
Raman and Raman optical activity (ROA) spectra were collected for four RNA oligonucleotides based on the EMCV IRES Domain I to assess the contributions of helix, GNRA tetraloop, U·C mismatch base pair and pyrimidine-rich bulge structures to each. Both Raman and ROA spectra show overall similarities for all oligonucleotides, reflecting the presence of the same base paired helical regions and GNRA tetraloop in each. Specific bands are sensitive to the effect of the mismatch and asymmetric bulge on the structure of the RNA. Raman band changes are observed that reflect the structural contexts of adenine residues, disruption of A-form helical structure, and incorporation of pyrimidine bases in non-helical regions. The ROA spectra are also sensitive to conformational mobility of ribose sugars, and verify a decrease in A-type helix content upon introduction of the pyrimidine-rich bulge. Several Raman and ROA bands also clearly show cooperative effects between the mismatch and pyrimidine-rich bulge motifs on the structure of the RNA. The complementary nature of Raman and ROA spectra provides detailed and highly sensitive information about the local environments of bases, and secondary and tertiary structures, and has the potential to yield spectral signatures for a wide range of RNA structural motifs.  相似文献   

16.
The dodecamer d(CGCGAATTCGCG) forms a right-handed B-DNA double helix of a Watson-Crick type both in crystal and solution. It is the first piece of DNA longer than one helix turn whose molecular structure has become known at the atomic resolution. The article reviews qualitative aspects of its structure with a special emphasis on local variations in the disposition of base pairs in the double helix.  相似文献   

17.
A molecular dynamics simulation of a simple model membrane system composed of a single amphiphilic helical peptide (ace-K2GL16K2A-amide) in a fully hydrated 1,2-dimyristoyl-sn-glycero-3-phosphocholine bilayer was performed for a total of 1060 ps. The secondary structure of the peptide and its stability were described in terms of average dihedral angles, phi and psi, and the C alpha torsion angles formed by backbone atoms; by the average translation per residue along the helix axis; and by the intramolecular peptide hydrogen bonds. The results indicated that residues 6 through 15 remain in a stable right-handed alpha-helical conformation, whereas both termini exhibit substantial fluctuations. A change in the backbone dihedral angles for residues 16 and 17 is accompanied by the loss of two intramolecular hydrogen bonds, leading to a local but long-lived disruption of the helix. The dynamics of the peptide was characterized in terms of local and global helix motions. The local motions of the N-H bond angles were described in terms of the autocorrelation functions of P2[cos thetaNH(t, t + tau)] and reflected the different degrees of local peptide order as well as a variation in time scale for local motions. The chi1 and chi2 dihedral angles of the leucine side chains underwent frequent transitions between potential minima. No connection between the side-chain positions and their mobility was observed, however. In contrast, the lysine side chains displayed little mobility during the simulation. The global peptide motions were characterized by the tilting and bending motions of the helix. Although the peptide was initially aligned parallel to the bilayer normal, during the simulation it was observed to tilt away from the normal, reaching an angle of approximately 25 degrees by the end of the simulation. In addition, a slight bend of the helix was detected. Finally, the solvation of the peptide backbone and side-chain atoms was also investigated.  相似文献   

18.
Two 4-ns molecular dynamics simulations of calcium loaded calmodulin in solution have been performed, using both standard nonbonded cutoffs and Ewald summation to treat electrostatic interactions. Our simulation results are generally consistent with solution experimental studies of calmodulin structure and dynamics, including NMR, cross-linking, fluorescence and x-ray scattering. The most interesting result of the molecular dynamics simulations is the detection of large-scale structural fluctuations of calmodulin in solution. The globular N- and C-terminal domains tend to move approximately like rigid bodies, with fluctuations of interdomain distances within a 7 A range and of interdomain angles by up to 60 deg. Essential dynamics analysis indicates that the three dominant types of motion involve bending of the central helix in two perpendicular planes and a twist in which the domains rotate in opposite directions around the central helix. In the more realistic Ewald trajectory the protein backbone remains mostly within a 2-3 A root-mean-square distance from the crystal structure, the secondary structure within the domains is conserved and middle part of the central helix becomes disordered. The central helix itself exhibits limited fluctuations, with its bend angle exploring the 0-50 degrees range and the end-to-end distance falling in 39-43 A. The results of the two simulations were similar in many respects. However, the cutoff trajectory exhibited a larger deviation from the crystal, loss of several helical hydrogen bonds in the N-terminal domain and lack of structural disorder in the central helix.  相似文献   

19.
Electron micrographs of RecA-DNA filaments, formed under several different conditions, have been analyzed and the filament images reconstructed in three dimensions. In the presence of ATP and a non-hydrolyzable ATP analog. ATP-gamma-S, the RecA protein forms with DNA a right-handed helical complex with a pitch of approximately 95 A. The most detailed view of the filament was obtained from analysis of RecA filaments on double-stranded DNA in the presence of ATP-gamma-S. There are approximately six subunits of RecA per turn of the helix, but both this number and the pitch are variable. From the examination of single filaments and filament-filament interactions, a picture of an extremely flexible protein structure emerges. The subunits of RecA protein are seen to be arranged in such a manner that the bound DNA must be partially exposed and able to come into contact with external DNA molecules. The RecA structure determined in the presence of ATP-gamma-S appears to be the same as the "pre-synaptic" state that occurs with ATP, in which there is recognition and pairing between homologous DNA molecules.  相似文献   

20.
An hypothesis is tested that individual peptides corresponding to the transmembrane helices of the membrane protein, rhodopsin, would form helices in solution similar to those in the native protein. Peptides containing the sequences of helices 1, 4 and 5 of rhodopsin were synthesized. Two peptides, with overlapping sequences at their termini, were synthesized to cover each of the helices. The peptides from helix 1 and helix 4 were helical throughout most of their length. The N- and C-termini of all the peptides were disordered and proline caused opening of the helical structure in both helix 1 and helix 4. The peptides from helix 5 were helical in the middle segment of each peptide, with larger disordered regions in the N- and C-termini than for helices 1 and 4. These observations show that there is a strong helical propensity in the amino acid sequences corresponding to the transmembrane domain of this G-protein coupled receptor. In the case of the peptides from helix 4, it was possible to superimpose the structures of the overlapping sequences to produce a construct covering the whole of the sequence of helix 4 of rhodopsin. As similar superposition for the peptides from helix 1 also produced a construct, but somewhat less successfully because of the disordering in the region of sequence overlap. This latter problem was more severe for helix 5 and therefore a single peptide was synthesized for the entire sequence of this helix, and its structure determined. It proved to be helical throughout. Comparison of all these structures with the recent crystal structure of rhodopsin revealed that the peptide structures mimicked the structures seen in the whole protein. Thus similar studies of peptides may provide useful information on the secondary structure of other transmembrane proteins built around helical bundles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号