首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitrous acid-induced lesions in phage T4 were shown to be efficiently repaired by multiplicity reactivation. Mutants defective in genes 32, 46, 47, x and y showed substantially less MR 2 of these lesions than wild type. The gene 47 mutant, which showed the least MR of nitrous acid lesions, also showed virtually no MR of ultraviolet lesions. Mutations in genes 30, 44 and v did not affect MR of nitrous acid-induced lesions. Each of the mutations which lowered MR was shown previously to reduce recombination. Our results suggest that the gene functions employed in MR are the same functions used in genetic recombination, and, based on this, we propose a tentative recombinational model for MR.The mutants defective in genes 32, 46 and 47, which are deficient in recombination, were shown to be more sensitive to nitrous acid inactivation than wild-type phage upon single infection. Our results indicate that, in wild-type single infections, about 20% of nitrous acid-induced lethal lesions may be repaired by a recombinational post-replication form of repair.  相似文献   

2.
Summary A temperature sensitive ligase allele of phage T4 reduced or eliminated HNO2 induced reversion of am mutants. Since at the temperatures used, the ligase mutant is defective in the repair of some types of lethal lesions (i.e., UV, MMS and EMS induced lesions) these results indicate that HNO2 mutagenesis may occur through a ligase dependent repair pathway. In contrast, 2AP induced mutation was not inhibited by mutants defective in the gene 30 ligase or in genes 32, 39, 41, 44, 45, 46, 47, 49, 52, 56, 58–61 and v. This indicates that 2AP mutagenesis probably does not depend on a repair pathway in phage T4.  相似文献   

3.
Several kinds of DNA repair and reactivation processes have been found to occur by recombination in E. coli and its phages. Recombinational repair appears to be a major mechanism for overcoming lesions induced by various agents including ultraviolet light, X-rays, [32P]-decay, nitrous acid and psoralen-plus-light. When the lesions caused by the above agents are not repaired by recombinational repair or other accurate repair modes they generally lead to lethality. However a minority of these unrepaired lesions lead to mutations through replication errors or error-prone repair. In higher organisms accumulation of unrepaired lethal lesions or mutations in somatic cells may cause aging. Perpetuation of a species depends on preventing accumulation of these types of defects in the germ line. It is proposed that the recombinational acts occurring during meiosis may largely reflect the recombinational removal or repair of DNA lesions to conserve the germ line. It is further suggested that the repair function of recombination may be as significant as the better studied function of recombination, the generation of diversity. The ubiquitous occurrence of recombination in the biological world implies that it arose very early in evolution. The possibility that recombination initially arose as a repair process is discussed.  相似文献   

4.
Mutagenic and error-free DNA repair in Streptomyces   总被引:2,自引:0,他引:2  
Summary Two mutants of Streptomyces fradiae defective in DNA repair have been characterized for their responses to the mutagenic and lethal effects of several chemical mutagens and ultraviolet (UV) light. S. fradiae JS2 (mcr-2) was more sensitive than wild type to agents which produce bulky lesions resulting in large distortions of the double helix [i.e. UV-light, 4-nitroquinoline-1-oxide (NQO), and mitomycin C (MC)] but not to agents which produce small lesions [i.e. hydroxylamine (HA), methyl methanesulfonate (MMS), ethyl methanesulfonate (EMS) and N-methyl-N-nitro-N-nitrosoguanidine (MNNG)]. JS2 expressed a much higher frequency of mutagenesis induced by UV-light at low doses and thus appeared to be defective in an error-free excision repair pathway for bulky lesions analogous to the uvr ABC pathway of Escherichia coli. S. fradiae JS4 (mcr-4) was defective in repair of damage by most agents which produce small or bulky lesions (i.e., HA, NQO, MMS, MNNG, MC, and UV, but not EMS). JS4 was slightly hypermutable by EMS and MMS but showed reduced mutagenesis by NQO and HA. This unusual phenotype suggests that the mcr-4 + protein plays some role in error-prone repair in S. fradiae.  相似文献   

5.
The bacteriophage T4-encoded type II DNA topoisomerase is the major target for the antitumour agent m-AMSA (4-(9-acridinylamino)methanesulphon-m-anisidide) in phage-infected bacterial cells. Inhibition of the purified enzyme by m-AMSA results in formation of a cleavage complex that contains the enzyme covalently attached to DNA on both sides of a double-strand break. In this article, we provide evidence that this cleavage complex is responsible for inhibition of phage growth and that recombinational repair can reduce sensitivity to the antitumour agent, presumably by eliminating the complex (or some derivative thereof). First, topoisomerase-deficient mutants were shown to be resistant to m-AMSA, indicating that m-AMSA inhibits growth by inducing the cleavage complex rather than by inhibiting enzyme activity. Second, mutations in several phage genes that encode recombination proteins (uvsX, uvsY, 46 and 59) increased the sensitivity of phage T4 to m-AMSA, strongly suggesting that recombination participates in the repair of topoisomerase-mediated damage. Third, m-AMSA stimulated recombination in phage-infected bacterial cells, as would be expected from the recombinational repair of DNA damage. Finally, m-AMSA induced the production of cleavage complexes involving the T4 topoisomerase within phage-infected cells.  相似文献   

6.
Caffeine potentiates the lethal effects of ultraviolet and ionising radiation on wild-type Schizosaccharomyces pombe cells. In previous studies this was attributed to the inhibition by caffeine of a novel DNA repair pathway in S. pombe that was absent in the budding yeast Saccharomyces cerevisiae. Studies with radiation-sensitive S. pombe mutants suggested that this caffeine-sensitive pathway could repair ultraviolet radiation damage in the absence of nucleotide excision repair. The alternative pathway was thought to be recombinational and to operate in the G2 phase of the cell cycle. However, in this study we show that cells held in G1 of the cell cycle can remove ultraviolet-induced lesions in the absence of nucleotide excision repair. We also show that recombination-defective mutants, and those now known to define the alternative repair pathway, still exhibit the caffeine effect. Our observations suggest that the basis of the caffeine effect is not due to direct inhibition of recombinational repair. The mutants originally thought to be involved in a caffeine-sensitive recombinational repair process are now known to be defective in arresting the cell cycle in S and/or G2 following DNA damage or incomplete replication. The gene products may also have an additional role in a DNA repair or damage tolerance pathway. The effect of caffeine could, therefore, be due to interference with DNA damage checkpoints, or inhibition of the DNA damage repair/tolerance pathway. Using a combination of flow cytometric analysis, mitotic index analysis and fluorescence microscopy we show that caffeine interferes with intra-S phase and G2 DNA damage checkpoints, overcoming cell cycle delays associated with damaged DNA. In contrast, caffeine has no effect on the DNA replication S phase checkpoint in reponse to inhibition of DNA synthesis by hydroxyurea. Received: 16 June 1998 / Accepted: 13 July 1998  相似文献   

7.
Bacteria can have multiple copies of a gene at separate locations on the same chromosome. Some of these gene families, including tuf (translation elongation factor EF‐Tu) and rrl (ribosomal RNA), encode functions critically important for bacterial fitness. Genes within these families are known to evolve in concert using homologous recombination to transfer genetic information from one gene to another. This mechanism can counteract the detrimental effects of nucleotide sequence divergence over time. Whether such mechanisms can also protect against the potentially lethal effects of mobile genetic element insertion is not well understood. To address this we constructed two different length insertion cassettes to mimic mobile genetic elements and inserted these into various positions of the tuf and rrl genes. We measured rates of recombinational repair that removed the inserted cassette and studied the underlying mechanism. Our results indicate that homologous recombination can protect the tuf and rrl genes from inactivation by mobile genetic elements, but for insertions within shorter gene sequences the efficiency of repair is very low. Intriguingly, we found that physical distance separating genes on the chromosome directly affects the rate of recombinational repair suggesting that relative location will influence the ability of homologous recombination to maintain homogeneity.  相似文献   

8.
9.
The mechanisms by which DNA interstrand cross-links (ICLs) are repaired in mammalian cells are unclear. Studies in bacteria and yeasts indicate that both nucleotide excision repair (NER) and recombination are required for their removal and that double-strand breaks are produced as repair intermediates in yeast cells. The role of NER and recombination in the repair of ICLs induced by nitrogen mustard (HN2) was investigated using Chinese hamster ovary mutant cell lines. XPF and ERCC1 mutants (defective in genes required for NER and some types of recombination) and XRCC2 and XRCC3 mutants (defective in RAD51-related homologous recombination genes) were highly sensitive to HN2. Cell lines defective in other genes involved in NER (XPB, XPD, and XPG), together with a mutant defective in nonhomologous end joining (XRCC5), showed only mild sensitivity. In agreement with their extreme sensitivity, the XPF and ERCC1 mutants were defective in the incision or "unhooking" step of ICL repair. In contrast, the other mutants defective in NER activities, the XRCC2 and XRCC3 mutants, and the XRCC5 mutant all showed normal unhooking kinetics. Using pulsed-field gel electrophoresis, DNA double-strand breaks (DSBs) were found to be induced following nitrogen mustard treatment. DSB induction and repair were normal in all the NER mutants, including XPF and ERCC1. The XRCC2, XRCC3, and XRCC5 mutants also showed normal induction kinetics. The XRCC2 and XRCC3 homologous recombination mutants were, however, severely impaired in the repair of DSBs. These results define a role for XPF and ERCC1 in the excision of ICLs, but not in the recombinational components of cross-link repair. In addition, homologous recombination but not nonhomologous end joining appears to play an important role in the repair of DSBs resulting from nitrogen mustard treatment.  相似文献   

10.
RAD55 belongs to a group of genes required for resistance to ionizing radiation, RAD50-RAD57, which are thought to define a pathway of recombinational repair. Since all four alleles of RAD55 are temperature conditional (cold sensitive) for their radiation phenotype, we investigated the phenotype produced by null mutations in the RAD55 gene, constructed in vitro and transplaced to the yeast chromosome. The X-ray sensitivity of these null mutant strains was surprisingly suppressed by increased temperature, osmotic strength of the growth medium and heterozygosity at the mating-type locus. These first two properties, temperature conditionality and osmotic remediability, are commonly associated with missense mutations; these rad55 null mutants are unique in that they exhibit these properties although the mutant gene cannot be expressed. X-ray-induced mitotic recombination was also cold sensitive in rad55 mutant diploids. Although mitotic growth was unaffected in these strains, meiosis was a lethal event at both high and low temperatures. Whereas the phenotype of rad55 null mutants is consistent with a role of RAD55 in recombination and recombinational repair, there is evidence for considerable RAD55-independent recombination, at least in mitotic cells, which is influenced by temperature and MAT. We discuss models for the role of RAD55 in recombination to explain the unusual properties of rad55 mutants.  相似文献   

11.
Twenty-one X-linked recessive lethal and sterile mutations balanced by an unlinked X-chromosome duplication have been identified following EMS treatment of the small nematode, Caenorhabditis elegans. The mutations have been assigned by complementation analysis to 14 genes, four of which have more than one mutant allele. Four mutants, all alleles, are temperature-sensitive embryonic lethals. Twelve mutants, in ten genes, are early larval lethals. Two mutants are late larval lethals, and the expression of one of these is influenced by the number of X chromosomes in the genotype. Two mutants are maternal-effect lethals; for both, oocytes made by mutant hermaphrodites are rescuable by wild-type sperm. One of the maternal-effect lethals and two larval lethals are allelic. One mutant makes defective sperm. The lethals and steriles have been mapped by recombination and by complementation testing against 19 deficiencies identified after X-ray treatment. The deficiencies divide the region, about 15% of the X-chromosome linkage map, into at least nine segments. The deficiencies have also been used to check the phenotypes of hemizygous lethal and sterile hermaphrodites.  相似文献   

12.
Caffeine potentiates the lethal effects of ultraviolet and ionising radiation on wild-type Schizosaccharomyces pombe cells. In previous studies this was attributed to the inhibition by caffeine of a novel DNA repair pathway in S. pombe that was absent in the budding yeast Saccharomyces cerevisiae. Studies with radiation-sensitive S. pombe mutants suggested that this caffeine-sensitive pathway could repair ultraviolet radiation damage in the absence of nucleotide excision repair. The alternative pathway was thought to be recombinational and to operate in the G2 phase of the cell cycle. However, in this study we show that cells held in G1 of the cell cycle can remove ultraviolet-induced lesions in the absence of nucleotide excision repair. We also show that recombination-defective mutants, and those now known to define the alternative repair pathway, still exhibit the caffeine effect. Our observations suggest that the basis of the caffeine effect is not due to direct inhibition of recombinational repair. The mutants originally thought to be involved in a caffeine-sensitive recombinational repair process are now known to be defective in arresting the cell cycle in S and/or G2 following DNA damage or incomplete replication. The gene products may also have an additional role in a DNA repair or damage tolerance pathway. The effect of caffeine could, therefore, be due to interference with DNA damage checkpoints, or inhibition of the DNA damage repair/tolerance pathway. Using a combination of flow cytometric analysis, mitotic index analysis and fluorescence microscopy we show that caffeine interferes with intra-S phase and G2 DNA damage checkpoints, overcoming cell cycle delays associated with damaged DNA. In contrast, caffeine has no effect on the DNA replication S phase checkpoint in reponse to inhibition of DNA synthesis by hydroxyurea.  相似文献   

13.
Summary Mutation of the recN gene of Escherichia coli in a recBC sbcB genetic background blocks conjugational recombination and confers increased sensitivity to UV light and mitomycin C. The basis for this phenotype was investigated by monitoring the properties associated with recN mutations in otherwise wild-type strains. It was established that recN single mutants are almost fully resistant to UV irradiation, and that there is no detectable defect in repair of UV lesions by excision, error-prone, or recombinational mechanisms. However, recN mutations confer sensitivity to mitomycin C and ionizing radiation both in wild-type and recB sbcB strains. The sensitivity to ionizing radiation is correlated with a deficiency in the capacity to repair DNA double-strand breaks by a UV inducible mechanism. Recombinant phages that complement the recombination and repair defects of recN recBC sbcB mutants have been identified, and the recN gene has been cloned from these phages into a low copy-number plasmid.  相似文献   

14.
Topoisomerase Involvement in Multiplicity Reactivation of Phage T4   总被引:2,自引:1,他引:1       下载免费PDF全文
The products of phage T4 genes 39, 52 and probably 60 have been previously characterized as forming a type II DNA topoisomerase. Other evidence suggested that this topoisomerase promotes normal initiation of DNA replication, and that when it is defective its loss is partially compensated for by the host gyrase. We present evidence here that mutants defective in genes 39, 52 and 60 have reduced ability to carry out multiplicity reactivation (MR, a form of recombinational repair) of phage DNA damaged either by mitomycin C (MMC) or psoralen plus near-UV light (PUVA). We also observed that there is not extensive superhelicity in the intracellular phage DNA either in the presence or absence of the phage topoisomerase. This tends to rule out the possibility that the topoisomerase influences MR by controlling the general superhelicity of the phage DNA. The dependence of MR on topoisomerase could occur in several possible ways. However, we favor the explanation that the lesions are bypassed by a postreplication recombinational repair process that is influenced by the topoisomerase through its role in initiating replication.  相似文献   

15.
Saccharomyces cerevisiae Srs2 helicase plays at least two distinct functions. One is to prevent recombinational repair through its recruitment by sumoylated Proliferating Cell Nuclear Antigen (PCNA), evidenced in postreplication-repair deficient cells, and a second one is to eliminate potentially lethal intermediates formed by recombination proteins. Both actions are believed to involve the capacity of Srs2 to displace Rad51 upon translocation on single-stranded DNA (ssDNA), though a role of its helicase activity may be important to remove some toxic recombination structures. Here, we described two new mutants, srs2R1 and srs2R3, that have lost the ability to hinder recombinational repair in postreplication-repair mutants, but are still able to remove toxic recombination structures. Although the mutants present very similar phenotypes, the mutated proteins are differently affected in their biochemical activities. Srs2R1 has lost its capacity to interact with sumoylated PCNA while the biochemical activities of Srs2R3 are attenuated (ATPase, helicase, DNA binding and ability to displace Rad51 from ssDNA). In addition, crossover (CO) frequencies are increased in both mutants. The different roles of Srs2, in relation to its eventual recruitment by sumoylated PCNA, are discussed.  相似文献   

16.
To isolate Saccharomyces cerevisiae mutants defective in recombinational DNA repair, we constructed a strain that contains duplicated ura3 alleles that flank LEU2 and ADE5 genes at the ura3 locus on chromosome V. When a HO endonuclease cleavage site is located within one of the ura3 alleles, Ura+ recombination is increased over 100-fold in wild-type strains following HO induction from the GAL1, 10 promoter. This strain was used to screen for mutants that exhibited reduced levels of HO-induced intrachromosomal recombination without significantly affecting the spontaneous frequency of Ura+ recombination. One of the mutations isolated through this screen was found to affect the essential gene CDC1. This mutation, cdc1-100, completely eliminated HO-induced Ura+ recombination yet maintained both spontaneous preinduced recombination levels and cell viability, cdc1-100 mutants were moderately sensitive to killing by methyl methanesulfonate and gamma irradiation. The effect of the cdc1-100 mutation on recombinational double-strand break repair indicates that a recombinationally silent mechanism other than sister chromatid exchange was responsible for the efficient repair of DNA double-strand breaks.  相似文献   

17.
Summary Two different pathways A and 1 are known to control the repair of UV lesions in the yeast Schizosaccharomyces pombe. The relation between the UV-induced intergenic mitotic crossing over (MCO) and the repair of prelethal lesions controlled by these pathways were studied in the following strains: UVS1,1/UVS1,1, where pathway A acts; UVSA/UVSA where pathway 1 acts, UVS+/UVS+ (wild type) and UVS1A/UVS1A (double mutant). The analysis of the survival and MCO induction curves, and the comparison, as a function of the dose and as a function of survival, of the MCO induction curves corresponding to the different strains, show that the repair pathway 1 controls a mechanism involving recombination, and that the repair pathway A controls a mechanism which removes prerecombinational lesions. Studies were done with UVS1,1/UVS1,1 cells in different physiological conditions affecting the repair efficiency of prelethal lesions (irradiation during the logarithmic growth phase, liquid holding). In all cases the more efficient the repair of prelethal lesions is, the smaller is the recombination inducibility. This is expected if pathway A controls an excision repair mechanism.The effect of the repair inhibitor, caffeine, was studied. It inhibits only the repair of UV prelethal lesions controlled by pathway 1. The involvement of recombination in the repair of UV lesions in UVS+/UVS+ and UVSA/UVSA cells is also shown by the fact that the sensitization to the lethal effect of UV by caffeine in these strains is correlated with a decrease in UV MCO inducibility. Caffeine has no effect either on the UV survival, or on the MCO inducibility in UVS1,1/UVS1,1 cells. It is concluded that it inhibits the recombinational repair pathway and not the excision repair pathway.The MCO induction observed in UVS1/UVS1 and UVS1A/UVS1A cells could be due to the presence of a second recombinational pathway, not sensitive to caffeine. At least a fraction of the prerecombinational lesions would not be prelethal, and they are repairable by the excision repair mechanism.  相似文献   

18.
All organisms possess mechanisms to repair double strand breaks (dsbs) generated in their DNA by damaging agents. Site-specific dsbs are also introduced during V(D)J recombination. Four complementation groups of radiosensitive rodent mutants are defective in the repair of dsbs, and are unable to carry out V(D)J recombination effectively. The immune defect in Severe Combined Immunodeficient (scid) mice also results from an inability to undergo effective V(D)J recombination, and scid cell lines display a repair defect and belong to one of these complementation groups. These findings indicate a mechanistic overlap between the processes of DNA repair and V(D)J recombination. Recently, two of the genes defined by these complementation groups have been identified and shown to encode components of DNA-dependent protein kinase (DNA-PK). We review here the three fields which have become linked by these findings, and discuss the involvement of DNA-PK in dsb rejoining and in V(D)J recombination.  相似文献   

19.
Summary Disruption/deletion mutations in genes of the RAD52 epistasis group of Saccharomyces cerevisiae were examined for their effects on recombination between single-and double-stranded circular DNA substrates and chromosomal genes in a transformation assay. In rad50 mutants there was a small reduction in recombination with single-stranded DNA at the leu2-3, 112 allele; in addition there was an almost complete elimination of recombination at trpl-1 for both single- and double-stranded DNA. Reintroduction of a wild-type RAD50 gene on a replicating plasmid carrying CEN4 restored recombinational competence at trpl-1, indicating that rad50 is defective in gene replacement of this allele. In rad52 mutants a reduction of 30%-50% in recombination involving either single- or double-stranded circular DNA was observed in each experiment when compared to the wild type. This reduction of recombination in rad52 mutants was similar for recombination at the ura352 mutant locus where only integration events have been observed, and at the trpl-1 mutant locus, where recombination occurs predominantly by gene replacement. Neither the rad54 nor the rad57 mutations had a significant effect on recombination with single- or double-stranded DNA substrates.  相似文献   

20.
We have studied the recombinational repair of a double-strand break (DSB) in a plasmid-borneade2::HO-site by an intactade2 allele following the induction of a galactose-inducibleGAL-HO gene. IfGAL-HO expression is not attenuated by the presence of a low level of glucose in the galactose medium, deleterious effects are observed. Our comparison of the effects of severalrad mutations on the relative efficiencies of DSB repair at both theade2::HO-site and at the chromosomalMAT locus indicate that the two processes share common functions. Not surprisingly, most of the recombination-defective mutants found using our assay are alleles of genes in theRAD52 epistasis group. The recombination and repair deficiencies vary among the different mutant groups and also among mutants within a group. In general, there is a correlation between the extents of the recombination and repair defects. Our screen also turned up a novelrfa1 allele with a pronounced deficiency in DSB repair and recombination and asrs2 mutation which causes only a mild defect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号