首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The major heat shock protein, chaperonin 60, has been established to have intercellular signaling activity in addition to its established protein-folding function. Mycobacterium tuberculosis is one of a small proportion of bacteria to encode two chaperonin 60 proteins. We have demonstrated that chaperonin 60.1 from this bacterium is a very active stimulator of human monocytes. To determine structure/function relationships of chaperonin 60.1 we have cloned and expressed the apical, equatorial, and intermediate domains of this protein. We have found that the signaling activity of M. tuberculosis chaperonin 60.1 resides in the equatorial domain. This activity of the recombinant equatorial domain was completely blocked by treating the protein with proteinase K, ruling out lipopolysaccharide contamination as the cause of the cell activation. Blockade of the activity of the equatorial domain by anti-CD14 monoclonal antibodies reveals that this domain activates monocytes by binding to CD14. Looking at the oligomeric state of the active proteins, using native gel electrophoresis and protein cross-linking we found that recombinant M. tuberculosis chaperonin 60.1 fails to form the prototypic tetradecameric structure of chaperonin 60 proteins under the conditions tested and only forms dimers. It is therefore concluded that the monocyte-stimulating activity of M. tuberculosis Cpn60.1 resides in the monomeric subunit and within this subunit the biological activity is due to the equatorial domain.  相似文献   

2.
Chaperonin 60 is the prototypic molecular chaperone, an essential protein in eukaryotes and prokaryotes, whose sequence conservation provides an excellent basis for phylogenetic analysis. Escherichia coli chaperonin 60 (GroEL), the prototype of this family of proteins, has an established oligomeric‐structure‐based folding mechanism and a defined population of folding partners. However, there is a growing number of examples of chaperonin 60 proteins whose crystal structures and oligomeric composition are at variance with GroEL, suggesting that additional complexities in the protein‐folding function of this protein should be expected. In addition, many organisms have multiple chaperonin 60 proteins, some of which have lost their protein‐folding ability. It is emerging that this highly conserved protein has evolved a bewildering variety of additional biological functions – known as moonlighting functions – both within the cell and in the extracellular milieu. Indeed, in some organisms, it is these moonlighting functions that have been left after the loss of the protein‐folding activity. This highlights the major paradox in the biology of chaperonin 60. This article reviews the relationship between the folding and non‐folding (moonlighting) activities of the chaperonin 60 family and discusses current knowledge on their molecular evolution focusing on protein domains involved in the non‐folding chaperonin functions in an attempt to understand the emerging biology of this evolutionarily ancient protein family.  相似文献   

3.
K C Terlesky  F R Tabita 《Biochemistry》1991,30(33):8181-8186
Two heat-shock proteins that show high identity with the Escherichia coli chaperonin 60 (groEL) and chaperonin 10 (groES) chaperonin proteins were purified and characterized from photolithoautotrophically grown Rhodobacter sphaeroides. The proteins were purified by using sucrose density gradient centrifugation and Mono-Q anion-exchange chromatography. In the presence of 1 mM ATP, the chaperonin 10 and chaperonin 60 proteins bound to each other and comigrated as a large complex during sucrose density gradient centrifugation. The native molecular weights of each protein as determined by gel filtration chromatography were 889,200 for chaperonin 60 and 60,000 for chaperonin 10. Chaperonin 60 is comprised of monomers with a molecular weight of 61,000 and chaperonin 10 is comprised of monomers with a molecular weight of 12,700 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Chaperonin 60 was 9.3% of the total soluble cell protein during photolithoautotrophic growth which increased to 28.5% following heat-shock treatment. When cells were grown photoheterotrophically or chemoheterotrophically, chaperonin 60 was reduced to 6.7% and 3.5%, respectively, of the total soluble protein. The N-terminal amino acid sequence of each protein was determined; chaperonin 60 of R. sphaeroides showed 72% identity to E. coli chaperonin 60 protein, and R. sphaeroides chaperonin 10 showed 45% identity with E. coli chaperonin 10. R. sphaeroides chaperonin 60 catalyzed ATP hydrolysis with a specific activity of 134 nmol min-1 mg-1 (kcat = 0.13 s-1) and was inhibited by R. sphaeroides chaperonin 10, but not E. coli chaperonin 10. The E. coli chaperonin 60 ATPase activity was inhibited by chaperonin 10 from both R. sphaeroides and E. coli.  相似文献   

4.
5.
Biochemical and biophysical characterization of kinases requires large quantities of purified protein. Here, we report the bacterial expression and purification of active Itk kinase domain (a Tec family kinase) using ArcticExpress cells that co-express the chaperonin system Cpn60/10 from Oleispira antarctica. We describe a simple one step MgCl2/ATP/KCl incubation procedure to remove the co-purifying chaperonin impurity. Chaperonin co-purification is a common problem encountered during protein purification and the simple incubation step described here completely overcomes this problem. The approach targets the chaperonin system rather than the protein of interest and is therefore widely applicable to other protein targets.  相似文献   

6.
Higher plant chloroplasts contain two chaperonin 60 family proteins, Cpn60alpha and Cpn60beta, which are known to have divergent amino acid sequences. Although Cpn60alpha and Cpn60beta are present in roughly equal amounts and copurify in their native states, a heterogeneous ensemble of the chaperonin oligomer has not yet been demonstrated. We separately purified Cpn60alpha and Cpn60beta proteins from spinach leaves as the monomeric form. Either antibody raised against one chaperonin 60 protein could coimmunoprecipitate the other chaperonin 60 protein in their oligomeric state but not in its monomeric state, suggesting that the chloroplast Cpn60alpha and Cpn60beta polypeptides actually reside in the same chaperonin oligomer in the stroma. Moreover, the chaperonin oligomers migrated as at least two distinct bands on the native gel electrophoresis, each of which contained both chaperonin 60 proteins. These results suggest that chloroplast chaperonin oligomers might be composed of at least two distinct sets of two chaperonin proteins.  相似文献   

7.
A phylogenetic analysis of chaperonin (heat shock protein 60) sequences from prokaryotes and eukaryotes indicated that a single gene duplication event in the common ancestor of Mycobacterium tuberculosis, M. leprae, and Streptomyces albus gave rise to the duplicate chaperonin genes found in these species (designated HSP65 and GroEL in the mycobacterial species). Comparison of rates of synonymous and nonsynonymous nucleotide substitution in different gene regions suggested that the 5' end of the HSP65 gene was homogenized by an ancient recombination event between M. tuberculosis and M. leprae. In S. albus, the two duplicated chaperonin genes have evolved at essentially the same rate. In both M. tuberculosis and M. leprae, however, the GroEL gene has evolved considerably more rapidly at nonsynonymous nucleotide sites than has the HSP65 gene. Because this difference is not seen at synonymous sites, it must be due to a difference in selective constraint on the proteins encoded by the two genes, rather than to a difference in mutation rate. The difference between GroEL and HSP65 is striking in regions containing epitopes recognized by T cells of the vertebrate host; in certain cross-reactive epitopes conserved across all organisms, nonsynonymous sites in GroEL have evolved twice as fast as those in HSP65. It is suggested that these differences are correlated with differences in the way in which the duplicate chaperonins of M. tuberculosis and M. leprae interact with the host immune system.   相似文献   

8.
A significant proportion of bacteria express two or more chaperonin genes. Chaperonins are a group of molecular chaperones, defined by sequence similarity, required for the folding of some cellular proteins. Chaperonin monomers have a mass of c . 60 kDa, and are typically found as large protein complexes containing 14 subunits arranged in two rings. The mechanism of action of the Escherichia coli GroEL protein has been studied in great detail. It acts by binding to unfolded proteins and enabling them to fold in a protected environment where they do not interact with any other proteins. GroEL can assist the folding of many proteins of different sizes, sequences, and structures, and homologues from many different bacteria can functionally replace GroEL in E. coli . What then are the functions of multiple chaperonins? Do they provide a mechanism for cells to increase their general chaperoning ability, or have they become specialized to take on specific novel cellular roles? Here I will review the genetic, biochemical, and phylogenetic evidence that has a bearing on this question, and show that there is good evidence for at least some specificity of function in multiple chaperonin genes.  相似文献   

9.
Mammalian mitochondrial chaperonin 60 functions as a single toroidal ring.   总被引:20,自引:0,他引:20  
Chaperonins are thought to participate in the process of protein folding in bacteria and in eukaryotic mitochondria and chloroplasts. While some chaperonins are relatively well characterized, the structures of the mammalian chaperonins are unknown. We have expressed a mammalian mitochondrial chaperonin 60 in Escherichia coli and purified the recombinant protein to homogeneity. Structural and biochemical analyses of this protein establish a single toroidal structure of seven subunits, in contrast to the homologous bacterial, fungal, and plant chaperonin 60s, which have double toroidal structures comprising two layers of seven identical subjects each. The recombinant mammalian chaperonin 60, together with the mammalian chaperonin 10 (but not with bacterial chaperonin 10), facilitates the formation of catalytically active ribulose-bisphosphate carboxylase from an unfolded state in the presence of K+ and MgATP. Analysis of the partial reactions involved in this in vitro reconstitution reveals that the single toroid of chaperonin 60 can form stable complexes with both unfolded or partially folded [35S]ribulose-bisphosphate carboxylase and mitochondrial (but not bacterial) chaperonin 10 in the presence of MgATP. We conclude that the minimal functional unit of chaperonin 60 is a single hepatmeric toroid.  相似文献   

10.
The eukaryotic cytosolic chaperonin TRiC (TCP-1 Ring Complex), also known as CCT (Cytosolic Chaperonin containing TCP-1), is a hetero-oligomeric complex consisting of two back-to-back rings of eight different subunits each. The general architecture of the complex has been determined, but the arrangement of the subunits within the complex remains an open question. By assuming that the subunits have a defined arrangement within each ring, we constructed a simple model of TRiC that analyzes the possible arrangements of individual subunits in the complex. By applying the model to existing data, we find that there are only four subunit arrangements consistent with previous observations. Our analysis provides a framework for the interpretation and design of experiments to elucidate the quaternary structure of TRiC/CCT. This in turn will aid in the understanding of substrate binding and allosteric properties of this chaperonin.  相似文献   

11.
Chaperonin action is controlled by cycles of nucleotide binding and hydrolysis. Here, we examine the effects of nucleotide binding on an archaeal group 2 chaperonin. In contrast to the ordered apo state of the group 1 chaperonin GroEL, the unliganded form of the homo-16-mer Methanococcus maripaludis group 2 chaperonin is very open and flexible, with intersubunit contacts only in the central double belt of equatorial domains. The intermediate and apical domains are free of contacts and deviate significantly from the overall 8-fold symmetry. Nucleotide binding results in three distinct, ordered 8-fold symmetric conformations--open, partially closed, and fully closed. The partially closed ring encloses a 40% larger volume than does the GroEL-GroES folding chamber, enabling it to encapsulate proteins up to 80 kDa, in contrast to the fully closed form, whose cavities are 20% smaller than those of the GroEL-GroES chamber.  相似文献   

12.
The crystal structure of Mycobacterium tuberculosis chaperonin 10 (cpn10(Mt)) has been determined to a resolution of 2.8 A. Two dome-shaped cpn10(Mt) heptamers complex through loops at their bases to form a tetradecamer with 72 symmetry and a spherical cage-like structure. The hollow interior enclosed by the tetradecamer is lined with hydrophilic residues and has dimensions of 30 A perpendicular to and 60 A along the sevenfold axis. Tetradecameric cpn10(Mt) has also been observed in solution by dynamic light scattering. Through its base loop sequence cpn10(Mt) is known to be the agent in the bacterium responsible for bone resorption and for the contribution towards its strong T-cell immunogenicity. Superimposition of the cpn10(Mt) sequences 26 to 32 and 66 to 72 and E. coli GroES 25 to 31 associated with bone resorption activity shows them to have similar conformations and structural features, suggesting that there may be a common receptor for the bone resorption sequences. The base loops of cpn10s in general also attach to the corresponding chaperonin 60 (cpn60) to enclose unfolded protein and to facilitate its correct folding in vivo. Electron density corresponding to a partially disordered protein subunit appears encapsulated within the interior dome cavity of each heptamer. This suggests that the binding of substrates to cpn10 is possible in the absence of cpn60.  相似文献   

13.
The Chaperonin 60 (Cpn60) proteins have, in addition to their well-known functions of protein folding and protection, a range of intercellular signalling activities. As part of a study to investigate the biological activity of the Cpn60 proteins, particularly from pathogenic organisms, we have cloned and expressed three Cpn60 proteins from Homo sapiens, Helicobacter pylori and Chlamydia pneumoniae. The Cpn60 proteins were purified to apparent homogeneity using a combination of nickel column affinity chromatography and Reactive Red dye affinity columns. Insoluble protein was solubilised using 8 M urea and then re-folded on the nickel column by stepwise removal of the urea. The immunostimulant LPS was removed by addition of the antibiotic polymyxin B as part of the purification process.  相似文献   

14.
Current treatments for Mycobacterium tuberculosis infections require long and complicated regimens that can lead to patient non-compliance, increasing incidences of antibiotic-resistant strains, and lack of efficacy against latent stages of disease. Thus, new therapeutics are needed to improve tuberculosis standard of care. One strategy is to target protein homeostasis pathways by inhibiting molecular chaperones such as GroEL/ES (HSP60/10) chaperonin systems. M. tuberculosis has two GroEL homologs: GroEL1 is not essential but is important for cytokine-dependent granuloma formation, while GroEL2 is essential for survival and likely functions as the canonical housekeeping chaperonin for folding proteins. Another strategy is to target the protein tyrosine phosphatase B (PtpB) virulence factor that M. tuberculosis secretes into host cells to help evade immune responses. In the present study, we have identified a series of GroEL/ES inhibitors that inhibit M. tuberculosis growth in liquid culture and biochemical function of PtpB in vitro. With further optimization, such dual-targeting GroEL/ES and PtpB inhibitors could be effective against all stages of tuberculosis – actively replicating bacteria, bacteria evading host cell immune responses, and granuloma formation in latent disease – which would be a significant advance to augment current therapeutics that primarily target actively replicating bacteria.  相似文献   

15.

Background  

Chaperonin proteins are well known for the critical role they play in protein folding and in disease. However, the recent identification of three diverged chaperonin paralogs associated with the human Bardet-Biedl and McKusick-Kaufman Syndromes (BBS and MKKS, respectively) indicates that the eukaryotic chaperonin-gene family is larger and more differentiated than previously thought. The availability of complete genome sequences makes possible a definitive characterization of the complete set of chaperonin sequences in human and other species.  相似文献   

16.
All living organisms contain a unique class of molecular chaperones called 60?kDa heat shock proteins (HSP60 – also known as GroEL in bacteria). While some organisms contain more than one HSP60 or GroEL isoform, at least one isoform has always proven to be essential. Because of this, we have been investigating targeting HSP60 and GroEL chaperonin systems as an antibiotic strategy. Our initial studies focused on applying this antibiotic strategy for treating African sleeping sickness (caused by Trypanosoma brucei parasites) and drug-resistant bacterial infections (in particular Methicillin-resistant Staphylococcus aureus – MRSA). Intriguingly, during our studies we found that three known antibiotics – suramin, closantel, and rafoxanide – were potent inhibitors of bacterial GroEL and human HSP60 chaperonin systems. These findings prompted us to explore what other approved drugs, natural products, and known bioactive molecules might also inhibit HSP60 and GroEL chaperonin systems. Initial high-throughput screening of 3680 approved drugs, natural products, and known bioactives identified 161 hit inhibitors of the Escherichia coli GroEL chaperonin system (4.3% hit rate). From a purchased subset of 60 hits, 29 compounds (48%) re-confirmed as selective GroEL inhibitors in our assays, all of which were nearly equipotent against human HSP60. These findings illuminate the notion that targeting chaperonin systems might be a more common occurrence than we previously appreciated. Future studies are needed to determine if the in vivo modes of action of these approved drugs, natural products, and known bioactive molecules are related to GroEL and HSP60 inhibition.  相似文献   

17.
Mitochondria contain a protein, hsp60, that is induced by heat shock and has been shown to function as a chaperonin in the assembly of mitochondrial enzyme complexes composed of proteins encoded by nuclear genes and imported from the cytosol. To determine whether products of mitochondrial genes are also assembled through an interaction with hsp60, we looked for association between hsp60 and proteins synthesized by isolated mitochondria. We have determined by electrophoretic, centrifugal, and immunological assays that at least two of those proteins become physically associated with hsp60. In mitochondrial matrix extracts, this association could be disrupted by the addition of Mg-ATP. One of the proteins that formed a stable association with hsp60 was the alpha subunit of the multicomponent complex F1-ATPase. We have not identified the other protein. These results indicate that hsp60 can function in the folding and assembly of mitochondrial proteins encoded by both mitochondrial and nuclear genes.  相似文献   

18.
Mycobacterium tuberculosis, the etiologic agent of tuberculosis (TB) possesses at least five genes predicted to encode proteins with NlpC/P60 hydrolase domains, including the relatively uncharacterized Rv2190c. As NlpC/P60 domain-containing proteins are associated with diverse roles in bacterial physiology, our objective was to characterize Rv2190c in M. tuberculosis growth and virulence. Our data indicate that lack of Rv2190c is associated with impaired growth, both in vitro and during an in vivo mouse model of TB. These growth defects are associated with altered colony morphology and phthiocerol dimycocerosate levels, indicating that Rv2190c is involved in cell wall maintenance and composition. In addition, we have demonstrated that Rv2190c is expressed during active growth phase and that its protein product is immunogenic during infection. Our findings have significant implications, both for better understanding the role of Rv2190c in M. tuberculosis biology and also for translational developments.  相似文献   

19.
20.
A novel ATPase activity that was strongly activated in the presence of either cobalt or manganese ion was discovered in the chaperonin from hyperthermophilic Pyrococcus furiosus (Pfu-cpn). Surprisingly, a significant ADPase activity was also detected under the same conditions. A more extensive search revealed similar nucleotide hydrolysis activities in other thermostable chaperonins. Chaperonin activity, i.e., thermal stabilization and refolding of malate dehydrogenase from the guanidine-hydrochloride unfolded state were also detected for Pfu-cpn under the same conditions. We propose that the novel cobalt/manganese-dependent ATP/ADPase activity may be a common trait of various thermostable chaperonins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号