首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Staphylococcus aureus, virulence and colonization-associated surface proteins are covalently anchored to the cell wall by the transpeptidase Sortase A (SrtA). In order to better understand the contribution of specific active site residues to substrate recognition and catalysis, we performed mutational analysis of several key residues in the SrtA active site. Analysis of protein stability, kinetic parameters, solvent isotope effects, and pH-rate profiles for key SrtA variants are consistent with a reverse protonated Cys184-His120 catalytic dyad, and implicate a role for Arg197 in formation of an oxyanion hole to stabilize the transition state. In contrast, mutation of Asp185 and Asp186 produced negligible effects on catalysis, and no evidence was found to support the existence of a functional catalytic triad. Mutation of Thr180, Leu181, and Ile182 to alanine produced modest decreases in SrtA activity and led to substrate inhibition. Thermodynamic stability measurements by SUPREX (stability of unpurified proteins from rates of H/D exchange) revealed decreases in conformational stability that correlate with the observed substrate inhibition for each variant, signifying a potential role for the conserved 180TLITC184 motif in defining the active-site architecture of SrtA. In contrast, mutation of Thr183 to alanine led to a significant 1200-fold decrease in kcat, which appears to be unrelated to conformational stability. Potential explanations for these results are discussed, and a revised model for SrtA catalysis is presented.  相似文献   

2.
Thr(93), Ser(94), Thr(140), and Ser(306) are conserved in all adenylosuccinate lyases (ASL) and are close to other amino acids previously identified by mutagenesis as being in the active site. To test their involvement in the enzyme's function, each of these amino acids was replaced by alanine. All the mutants exhibit circular dichroism spectra which are similar to that of wild-type enzyme, indicating there is no appreciable change in secondary structure. T93A exhibits 0.5% of the V(max) of wild-type ASL with a 10-fold increase in K(m) for adenylosuccinate. S94A has 65% of the V(max) of wild-type ASL with little change in K(m). T140A exhibits 0.03% of the activity of wild-type enzyme with an 11-fold increase in K(m). S306A has 0.4% of the V(max) of wild-type ASL with a sevenfold increase in K(m). Measurements of the pH-V(max) profile reveal a pK(2) value for S94A of 7.83 and S306A of 7.65, in contrast to 8.24 for the wild-type enzyme and 8.42 for T93A. Thr(93) may orient adenylosuccinate optimally for catalysis, while Ser(94) stabilizes protonated His(89), a determinant of pK(2). Thr(140) may, through hydrogen bonding, interact with Asn(270), an amino acid essential for catalysis. Ser(306) may be involved in a hydrogen bond network that ultimately stabilizes protonated His(68), which is probably the general acid in the reaction of enzyme with substrate. The results of this paper demonstrate the importance in the catalytic function of ASL of hydrogen bonds and hydrogen bonding networks involving serine and threonine.  相似文献   

3.
The mammalian mitochondrial NADP-dependent isocitrate dehydrogenase is a citric acid cycle enzyme and an important contributor to cellular defense against oxidative stress. The Mn(2+)-isocitrate complex of the porcine enzyme was recently crystallized; its structure indicates that Ser(95), Asn(97), and Thr(78) are within hydrogen-bonding distance of the gamma-carboxylate of enzyme-bound isocitrate. We used site-directed mutagenesis to replace each of these residues by Ala and Asp. The wild-type and mutant enzymes were expressed in Escherichia coli and purified to homogeneity. All the enzymes retain their native dimeric structures and secondary structures as monitored by native gel electrophoresis and circular dichroism, respectively. V(max) of the three alanine mutants is decreased to 24%-38% that of wild-type enzyme, with further decreases in the aspartate mutants. For T78A and S95A mutants, the major changes are the 10- to 100-fold increase in the K(m) values for isocitrate and Mn(2+). The results suggest that Thr(78) and Ser(95) function to strengthen the enzyme's affinity for Mn(2+)-isocitrate by hydrogen bonding to the gamma-carboxylate of isocitrate. For the Asn(97) mutants, the K(m) values are much less affected. The major change in the N97A mutant is the increase in pK(a) of the ionizable metal-liganded hydroxyl of enzyme-bound isocitrate from 5.23 in wild type to 6.23 in the mutant enzyme. The hydrogen bond between Asn(97) and the gamma-carboxylate of isocitrate may position the substrate to promote a favorable lowering of the pK of the enzyme-isocitrate complex. Thus, Thr(78), Ser(95), and Asn(97) perform important but distinguishable roles in catalysis by porcine NADP-specific isocitrate dehydrogenase.  相似文献   

4.
To improve the catalytic activity of atrazine chlorohydrolase (AtzA), amino acid residues involved in substrate binding (Gln71) and catalytic efficiency (Val12, Ile393, and Leu395) were targeted to generate site-saturation mutagenesis libraries. Seventeen variants were obtained through Haematococcus pluvialis-based screening, and their specific activities were 1.2–5.2-fold higher than that of the wild type. For these variants, Gln71 tended to be substituted by hydrophobic amino acids, Ile393 and Leu395 by polar ones, especially arginine, and Val12 by alanine, respectively. Q71R and Q71M significantly decreased the Km by enlarging the substrate-entry channel and affecting N-ethyl binding. Mutations at sites 393 and 395 significantly increased the kcat/Km, probably by improving the stability of the dual β-sheet domain and the whole enzyme, owing to hydrogen bond formation. In addition, the contradictory relationship between the substrate affinity improvement by Gln71 mutation and the catalytic efficiency improvement by the dual β-sheet domain modification was discussed.  相似文献   

5.
Arginines R23, R178, R179 and R218 in thymidylate synthase (TS, EC 2. 1.1.45) are hydrogen bond donors to the phosphate moiety of the substrate, dUMP. In order to investigate how these arginines contribute to enzyme function, we prepared complete replacement sets of mutants at each of the four sites in Lactobacillus casei TS. Mutations of R23 increase K:(m) for dUMP 2-20-fold, increase K:(m) for cofactor 8-40-fold and decrease k(cat) 9-20-fold, reflecting the direct role of the R23 side chain in binding and orienting the cofactor in ternary complexes of the enzyme. Mutations of R178 increase K:(m) for dUMP 40-2000-fold, increase K:(m) for cofactor 3-20-fold and do not significantly affect k(cat). These results are consistent with the fact that this residue is an integral part of the dUMP-binding wall and contributes to the orientation and ordering of several other dUMP binding residues. Kinetic parameters for all R179 mutations except R179P were not significantly different from wild-type values, reflecting the fact that this external arginine does not directly contact the cofactor or other ligand-binding residues. R218 is essential for the structure of the catalytic site and all mutations of this arginine except R218K were inactive.  相似文献   

6.
Cellobiose dehydrogenase is an extracellular flavocytochrome, which catalyzes the oxidation of cellobiose and other soluble oligosaccharides to their respective lactones, while reducing various one- and two-electron acceptors. Two residues at the active site of the flavin domain, His689 and Asn732, have been proposed to play critical roles in the oxidation of the substrate. To test these proposals, each residue was substituted with either a Gln, Asn, Glu, Asp, Val, Ala, and/or a His residue by site-directed mutagenesis, using a homologous expression system previously developed in our laboratory. This enabled an examination of the functional, stereochemical, and electrostatic constraints for binding and oxidation of the substrate. The steady-state kinetic parameters for the variant proteins were compared using cellobiose and its epimer, lactose, as the substrates. The H689 variants all exhibit >1000-fold lower k(cat) values, while the K(m) values for both substrates in these variants are similar to that of the wild-type enzyme. This supports the proposed role of this His residue as a general base in catalysis. The N732 variants exhibit a range of kinetic parameters: the k(cat) values for oxidation are 5-4000-fold lower than that for the wild-type enzyme, while the K(m) values vary between similar to and 60-fold higher than that for the wild-type. The difference in binding energy between cellobiose and lactose was calculated using the relationship delta(delta G) = -RT ln[(k(cat)/K(m))(lactose)/(k(cat)/K(m))(cellobiose)]. This calculation for the wild-type enzyme suggests that lactose binds considerably more weakly than cellobiose (7.2 kJ/mol difference), which corresponds to one extra (cumulative) hydrogen bond for cellobiose over lactose. Mutations at Asn732 result in a further weakening of lactose binding over cellobiose (2-4 kJ/mol difference). The results support a role for Asn732 in the binding of the substrate.  相似文献   

7.
The subclass B2 CphA (Carbapenemase hydrolysing Aeromonas) beta-lactamase from Aeromonas hydrophila is a Zn(2+)-containing enzyme that specifically hydrolyses carbapenems. In an effort to evaluate residues potentially involved in metal binding and/or catalysis (His(118), Asp(120), His(196) and His(263)) and in substrate specificity (Val(67), Thr(157), Lys(224) and Lys(226)), site-directed mutants of CphA were generated and characterized. Our results confirm that the first zinc ion is in interaction with Asp(120) and His(263), and thus is located in the 'cysteine' zinc-binding site. His(118) and His(196) residues seem to be interacting with the second zinc ion, as their replacement by alanine residues has a negative effect on the affinity for this second metal ion. Val(67) plays a significant role in the binding of biapenem and benzylpenicillin. The properties of a mutant with a five residue (LFKHV) insertion just after Val(67) also reveals the importance of this region for substrate binding. This latter mutant has a higher affinity for the second zinc ion than wild-type CphA. The T157A mutant exhibits a significantly modified activity spectrum. Analysis of the K224Q and N116H/N220G/K224Q mutants suggests a significant role for Lys(224) in the binding of substrate. Lys(226) is not essential for the binding and hydrolysis of substrates. Thus the present paper helps to elucidate the position of the second zinc ion, which was controversial, and to identify residues important for substrate binding.  相似文献   

8.
The contributions to substrate binding and catalysis of 13 amino acid residues of the Caenorhabditis elegans diadenosine tetraphosphate pyrophosphohydrolase (Ap(4)A hydrolase) predicted from the crystal structure of an enzyme-inhibitor complex have been investigated by site-directed mutagenesis. Sixteen glutathione S-transferase-Ap(4)A hydrolase fusion proteins were expressed and their k(cat) and K(m) values determined after removal of the glutathione S-transferase domain. As expected for a Nudix hydrolase, the wild type k(cat) of 23 s(-1) was reduced by 10(5)-, 10(3)-, and 30-fold, respectively, by replacement of the conserved P(4)-phosphate-binding catalytic residues Glu(56), Glu(52), and Glu(103) by Gln. K(m) values were not affected, indicating a lack of importance for substrate binding. In contrast, mutating His(31) to Val or Ala and Lys(83) to Met produced 10- and 16-fold increases in K(m) compared with the wild type value of 8.8 microm. These residues stabilize the P(1)-phosphate. H31V and H31A had a normal k(cat) but K83M showed a 37-fold reduction in k(cat). Lys(36) also stabilizes the P(1)-phosphate and a K36M mutant had a 10-fold reduced k(cat) but a relatively normal K(m). Thus both Lys(36) and Lys(83) may play a role in catalysis. The previously suggested roles of Tyr(27), His(38), Lys(79), and Lys(81) in stabilizing the P(2) and P(3)-phosphates were not confirmed by mutagenesis, indicating the absence of phosphate-specific binding contacts in this region. Also, mutating both Tyr(76) and Tyr(121), which clamp one substrate adenosine moiety between them in the crystal structure, to Ala only increased K(m) 4-fold. It is concluded that interactions with the P(1)- and P(4)-phosphates are minimum and sufficient requirements for substrate binding by this class of enzyme, indicating that it may have a much wider substrate range then previously believed.  相似文献   

9.
Stabilization of an oxyanion transition state is important to catalysis of peptide bond hydrolysis in all proteases. For subtilisin BPN', a bacterial serine protease, structural data suggest that two hydrogen bonds stabilize the tetrahedral-like oxyanion intermediate: one from the main chain NH of Ser221 and another from the side chain NH2 of Asn155. Molecular dynamic studies (Rao, S., N., Singh, U., C. Bush, P. A., and Kollman, P. A. (1987) Nature 328, 551-554) have indicated the gamma-hydroxyl of Thr220 may be a third hydrogen bond donor even though it is 4A away in the static x-ray structure. We have probed the role of Thr220 by replacing it with serine, cysteine, valine, or alanine by site-directed mutagenesis. These substitutions were intended to alter the size and hydrogen bonding ability of residue 220. Removal of the gamma-hydroxyl group reduced the transition state stabilization energy (delta delta GT) by 1.8-2.1 kcal/mol depending upon the substitution. By comparison, removal of the gamma-methyl group in the Thr220 to serine mutation only decreased delta GT by 0.5 kcal/mol. The gamma-hydroxyl of Thr220 is most important for catalysis, not substrate binding, because virtually all of the effects were on kcat and not KM. The role of the Thr220 hydroxyl is functionally independent from the amide NH2 of Asn155 because the free energy effects of double alanine mutants at these two positions are additive. These data indicate that a distal hydrogen bond donor, namely the hydroxyl of Thr220, plays a functionally important role in stabilizing the oxyanion transition state in subtilisin which is independent of Asn155.  相似文献   

10.
Biotinylation in vivo is an extremely selective post-translational event where the enzyme biotin protein ligase (BPL) catalyzes the covalent attachment of biotin to one specific and conserved lysine residue of biotin-dependent enzymes. The biotin-accepting lysine, present in a conserved Met-Lys-Met motif, resides in a structured domain that functions as the BPL substrate. We have employed phage display coupled with a genetic selection to identify determinants of the biotin domain (yPC-104) of yeast pyruvate carboxylase 1 (residues 1075-1178) required for interaction with BPL. Mutants isolated using this strategy were analyzed by in vivo biotinylation assays performed at both 30 degrees C and 37 degrees C. The temperature-sensitive substrates were reasoned to have structural mutations, leading to compromised conformations at the higher temperature. This interpretation was supplemented by molecular modeling of yPC-104, since these mutants mapped to residues involved in defining the structure of the biotin domain. In contrast, substitution of the Met residue N-terminal to the target lysine with either Val or Thr produced mutations that were temperature-insensitive in the in vivo assay. Furthermore, these two mutant proteins and wild-type yPC-104 showed identical susceptibility to trypsin, consistent with these substitutions having no structural effect. Kinetic analysis of enzymatic biotinylation using purified Met --> Thr/Val mutant proteins with both yeast and Escherichia coli BPLs revealed that these substitutions had a strong effect upon K(m) values but not k(cat). The Met --> Thr mutant was a poor substrate for both BPLs, whereas the Met --> Val substitution was a poor substrate for bacterial BPL but had only a 2-fold lower affinity for yeast BPL than the wild-type peptide. Our data suggest that substitution of Thr or Val for the Met N-terminal of the biotinyl-Lys results in mutants specifically compromised in their interaction with BPL.  相似文献   

11.
Choline kinase catalyzes the phosphorylation of choline by ATP, the first committed step in the CDP-choline pathway for phosphatidylcholine biosynthesis. To begin to elucidate the mechanism of catalysis by this enzyme, choline kinase A-2 from Caenorhabditis elegans was analyzed by systematic mutagenesis of highly conserved residues followed by analysis of kinetic and structural parameters. Specifically, mutants were analyzed with respect to K(m) and k(cat) values for each substrate and Mg(2+), inhibitory constants for Mg(2+) and Ca(2+), secondary structure as monitored by circular dichroism, and sensitivity to unfolding in guanidinium hydrochloride. The most severe impairment of catalysis occurred with the modification of Asp-255 and Asn-260, which are located in the conserved Brenner's phosphotransferase motif, and Asp-301 and Glu-303, in the signature choline kinase motif. For example, mutation of Asp-255 or Asp-301 to Ala eliminated detectable catalytic activity, and mutation of Asn-260 and Glu-303 to Ala decreased k(cat) by 300- and 10-fold, respectively. Additionally, the K(m) for Mg(2+) for mutants N260A and E303A was approximately 30-fold higher than that of wild type. Several other residues (Ser-86, Arg-111, Glu-125, and Trp-387) were identified as being important: Catalytic efficiencies (k(cat)/K(m)) for the enzymes in which these residues were mutated to Ala were reduced to 2-25% of wild type. The high degree of structural similarity among choline kinase A-2, aminoglycoside phosphotransferases, and protein kinases, together with the results from this mutational analysis, indicates it is likely that these conserved residues are located at the catalytic core of choline kinase.  相似文献   

12.
CTP synthetase is an essential enzyme that generates the CTP required for the synthesis of nucleic acids and membrane phospholipids. In this study, we examined the phosphorylation of the human CTPS1-encoded CTP synthetase 1 by protein kinase A. CTP synthetase 1 was expressed and purified from a Saccharomyces cerevisiae ura7Delta ura8Delta double mutant that lacks CTP synthetase activity. Using purified CTP synthetase 1 as a substrate, protein kinase A activity was time- and dose-dependent. The phosphorylation, which primarily occurred on a threonine residue, was accompanied by a 50% decrease in CTP synthetase 1 activity. The synthetic peptide LGKRRTLFQT that contains the protein kinase A motif for Thr(455) was a substrate for protein kinase A. A Thr(455) to Ala (T455A) mutation in CTP synthetase 1 was constructed by site-directed mutagenesis and was expressed and purified from the S. cerevisiae ura7Delta ura8Delta mutant. The T455A mutation caused a 78% decrease in protein kinase A phosphorylation and the loss of the phosphothreonine residue and a major phosphopeptide that were present in the purified wild type enzyme phosphorylated by protein kinase A. The CTP synthetase 1 activity of the T455A mutant enzyme was 2-fold higher than the wild type enzyme. In addition, the T455A mutation caused a 44% decrease in the amount of human CTP synthetase 1 that was phosphorylated in S. cerevisiae cells, and this was accompanied by a 2.5-fold increase in the cellular concentration of CTP and a 1.5-fold increase in the choline-dependent synthesis of phosphatidylcholine.  相似文献   

13.
In class C beta-lactamases, the strictly conserved Asn152 forms part of an extended active-site hydrogen-bonding network. To probe its role in catalysis, all 19 mutants of Enterobacter cloacae P99 cephalosporinase Asn152 were simultaneously constructed and screened in Escherichia coli for their in vivo activity. The screen identified the previously uncharacterized mutants Asn152Ser, Asn152Thr, and Asn152Gly, which possess significant activity and altered substrate selectivity. In vitro measurement of Michaelis-Menten kinetic constants revealed that the Asn152Ser mutation causes a selectivity switch for penicillin G versus cefoxitin. Asn152Thr showed a 63-fold increase in k (cat) for oxacillin, a slow substrate for wild-type cephalosporinase. The results contribute to a growing body of data showing that mutation of highly conserved residues in the active site can result in substrate selectivity changes. The library screening method presented here would be applicable to substrate selectivity determination in other readily screenable enzymes.  相似文献   

14.
Mevalonate kinase serine/threonine residues have been implicated in substrate binding and inherited metabolic disease. Alignment of >20 mevalonate kinase sequences indicates that Ser-145, Ser-146, Ser-201, and Thr-243 are the only invariant residues with alcohol side chains. These residues have been individually mutated to alanine. Structural integrity of the mutants has been demonstrated by binding studies using fluorescent and spin-labeled ATP analogs. Kinetic characterization of the mutants indicates only modest changes in K(m)((ATP)). K(m) for mevalonate increases by approximately 20-fold for S146A, approximately 40-fold for T243A, and 100-fold for S201A. V(max) changes for S145A, S201A, and T243A are < or =3-fold. Thus, the 65-fold activity decrease associated with the inherited human T243I mutation seems attributable to the nonconservative substitution rather than any critical catalytic function. V(max) for S146A is diminished by 4000-fold. In terms of V/K(MVA), this substitution produces a 10(5)-fold effect, suggesting an active site location and catalytic role for Ser-146. The large k(cat) effect suggests that Ser-146 productively orients ATP during catalysis. K(D(Mg-ATP)) increases by almost 40-fold for S146A, indicating a specific role for Ser-146 in liganding Mg(2+)-ATP. Instead of mapping within a proposed C-terminal ATP binding motif, Ser-146 is situated in a centrally located motif, which characterizes the galactokinase/homoserine kinase/ mevalonate kinase/phosphomevalonate kinase protein family. These observations represent the first functional demonstration that this region is part of the active site in these related phosphotransferases.  相似文献   

15.
Site-directed mutagenesis is a powerful tool for identifying active-site residues essential for catalysis; however, this approach has only recently become available for acetate kinase. The enzyme from Methanosarcina thermophila has been cloned and hyper-produced in a highly active form in Escherichia coli (recombinant wild-type). The role of arginines in this acetate kinase was investigated. Five arginines (R91, R175, R241, R285, and R340) in the M. thermophila enzyme were selected for individual replacement based on their high conservation among sequences of acetate kinase homologues. Replacement of R91 or R241 with alanine or leucine produced variants with specific activities less than 0.1% of the recombinant wild-type enzyme. The circular dichroism spectra and other properties of these variants were comparable to those of recombinant wild-type, indicating no global conformational changes. These results indicate that R91 and R241 are essential for activity, consistent with roles in catalysis. The variant produced by conservative replacement of R91 with lysine had approximately 2% of recombinant wild-type activity, suggesting a positive charge is important in this position. The K(m) value for acetate of the R91K variant increased greater than 10-fold relative to recombinant wild-type, suggesting an additional role for R91 in binding this substrate. Activities of both the R91A and R241A variants were rescued 20-fold when guanidine or derivatives were added to the reaction mixture. The K(m) values for ATP of the rescued variants were similar to those of recombinant wild-type, suggesting that the rescued activities are the consequence of replacement of important functional groups and not changes in the catalytic mechanism. These results further support roles for R91 and R241 in catalysis. Replacement of R285 with alanine, leucine, or lysine had no significant effect on activity; however, the K(m) values for acetate increased 6-10-fold, suggesting R285 influences the binding of this substrate. Phenylglyoxal inhibition and substrate protection experiments with the recombinant wild-type enzyme and variants were consistent with the presence of one or more essential arginine residues in the active site as well as with roles for R91 and R241 in catalysis. It is proposed that R91 and R241 function to stabilize the previously proposed pentacoordinate transition state during direct in-line transfer of the gamma-phosphate of ATP to acetate. The kinetic characterization of variants produced by replacement of R175 and R340 with alanine, leucine, or lysine indicated that these residues are not involved in catalysis but fulfill important structural roles.  相似文献   

16.
Val(121) is positioned immediately above the extrahelical cytosine in HhaI DNA C(5)-cytosine methyltransferase, and replacement with alanine dramatically interferes with base flipping and catalysis. DNA binding and k(cat) are decreased 10(5)-fold for the Val(121) --> Ala mutant that has a normal circular dichroism spectrum and AdoMet affinity. The magnitude of this loss of function is comparable with removal of the essential catalytic Cys(81). Surprisingly, DNA binding is completely recovered (increase of 10(5)-fold) with a DNA substrate lacking the target cytosine base (abasic). Thus, interfering with the base flipping transition results in a dramatic loss of binding energy. Our data support an induced fit mechanism in which tight DNA binding is coupled to both base flipping and protein loop rearrangement. The importance of the proximal protein segment (His(127)-Thr(132)) in maintaining this critical interaction between Val(121) and the flipped cytosine was probed with single site alanine substitutions. None of these mutants are significantly altered in secondary structure, AdoMet or DNA affinity, k(methylation), k(inactivation), or k(cat). Although Val(121) plays a critical role in both extrahelical base stabilization and catalysis, its position and mobility are not influenced by individual residues in the adjacent peptide region. Structural comparisons with other DNA methyltransferases and DNA repair enzymes that stabilize extrahelical nucleotides reveal a motif that includes a positively charged or polar side chain and a hydrophobic residue positioned adjacent to the target DNA base and either the 5'- or 3'-phosphate.  相似文献   

17.
The nucleotide sequence of the gene (pepA) of a zymogen of an aspartic proteinase from Penicillium janthinellum with a 71% identity in the deduced amino acid sequence to penicillopepsin (which we propose to call penicillopepsin-JT1) has been determined. The gene consists of 60 codons for a putative leader sequence of 20 amino acid residues, a sequence of about 150 nucleotides that probably codes for an activation peptide and a sequence with two introns that codes for the active aspartic proteinase. This gene, inserted into the expression vector pGPT-pyrG1, was expressed in an aspartic proteinase-free strain of Aspergillus niger var. awamori in high yield as a glycosylated form of the active enzyme that we call penicillopepsin-JT2. After removal of the carbohydrate component with endoglycosidase H, its relative molecular mass is between 33,700 and 34,000. Its kinetic properties, especially the rate-enhancing effects of the presence of alanine residues in positions P3 and P2' of substrates, are similar to those of penicillopepsin-JT1, endothiapepsin, rhizopuspepsin, and pig pepsin. Earlier findings suggested that this rate-enhancing effect was due to a hydrogen bond between the -NH- of P3 and the hydrogen bond accepting oxygen of the side chain of the fourth amino acid residue C-terminal to Asp215. Thr219 of penicillopepsin-JT2 was mutated to Ser, Val, Gly, and Ala. Thr219Ser showed an increase in k(cat) when a P3 residue was present in the substrate, which was similar to that of the wild-type, whereas the mutants Thr219Val, Thr219Gly, and Thr219Ala showed no significant increase when a P3 residue was added. The results show that the putative hydrogen bond alone is responsible for the increase. We propose that by locking the -NH- of P3 to the enzyme, the scissile peptide bond between P1 and P1' becomes distorted toward a tetrahedral conformation and becomes more susceptible to nucleophilic attack by the catalytic apparatus without the need of a conformational change in the enzyme.  相似文献   

18.
Bowers KE  Fierke CA 《Biochemistry》2004,43(18):5256-5265
Protein farnesyltransferase (FTase) requires both Zn(2+) and Mg(2+) for efficient catalysis of the formation of a thioether bond between carbon-1 of farnesyldiphosphate (FPP) and the cysteine thiolate contained in the carboxy-terminal CaaX sequence of target proteins. Millimolar concentrations of Mg(2+) accelerate catalysis by as much as 700-fold in FTase. Although FTase lacks a typical DDXXD Mg(2+) binding site found in other enzymes that use Mg(2+) for diphosphate stabilization, D352beta in FTase has been implicated in binding Mg(2+) (Pickett et al. (2003) J. Biol. Chem. 278, 51243). Structural studies demonstrate that the diphosphate (PPi) group of FPP resides in a binding pocket made up of highly positively charged side chains, including residues R291beta and K294beta, prior to formation of an active conformation. Analysis of the Mg(2+) dependence of FTase mutants demonstrates that these positively charged residues decrease the Mg(2+) affinity up to 40-fold. In addition, these residues enhance the farnesylation rate constant by almost 80-fold in the presence of Mg(2+), indicating that these residues are not simply displaced by Mg(2+) during the reaction. Mutations at R291beta increase the pK(a) observed in the magnesium affinity, suggesting that this arginine stabilizes the deprotonated form of the PPi leaving group. Furthermore, binding and catalysis data using farnesylmonophosphate (FMP) as a substrate indicate that the side chains of R291beta and K294beta interact mainly with the beta-phosphate of FPP during the chemical reaction. These results allow refinement of the model of the Mg(2+) binding site and demonstrate that positive charge stabilizes the developing charge on the diphosphate leaving group.  相似文献   

19.
Coproporphyrinogen oxidase (CPO) is the sixth enzyme in the heme biosynthetic pathway, catalyzing two sequential oxidative decarboxylations of propionate moieties on coproporphyrinogen-III forming protoporphyrinogen-IX through a monovinyl intermediate, harderoporphyrinogen. Site-directed mutagenesis studies were carried out on three invariant amino acids, aspartate 400, arginine 262, and arginine 401, to determine residue contribution to substrate binding and/or catalysis by human recombinant CPO. Kinetic analyses were performed on mutant enzymes incubated with three substrates, coproporphyrinogen-III, harderoporphyrinogen, or mesoporphyrinogen-VI, in order to determine catalytic ability to perform the first and/or second oxidative decarboxylation. When Asp400 was mutated to alanine no divinyl product was detected, but the production of a small amount of monovinyl product suggested the K(m) value for coproporphyrinogen-III did not change significantly compared to the wild-type enzyme. Upon mutation of Arg262 to alanine, CPO was again a poor catalyst for the production of a divinyl product, with a catalytic efficiency <0.01% compared to wild-type, including a 15-fold higher K(m) for coproporphyrinogen-III. The efficiency of divinyl product formation for mutant enzyme Arg401Ala was approximately 3% compared to wild-type CPO, with a threefold increase in the K(m) value for coproporphyrinogen-III. These data suggest Asp400, Arg262, and Arg401 are active site amino acids critical for substrate binding and/or catalysis. Possible roles for arginine 262 and 401 include coordination of carboxylate groups of coproporphyrinogen-III, while aspartate 400 may initiate deprotonation of substrate, resulting in an oxidative decarboxylation.  相似文献   

20.
Adenylosuccinate synthetase catalyzes a reversible reaction utilizing IMP, GTP and aspartate in the presence of Mg2+ to form adenylosuccinate, GDP and inorganic phosphate. Comparison of similarly liganded complexes of Plasmodium falciparum, mouse and Escherichia coli AdSS reveals H-bonding interactions involving nonconserved catalytic loop residues (Asn429, Lys62 and Thr307) that are unique to the parasite enzyme. Site-directed mutagenesis has been used to examine the role of these interactions in catalysis and structural organization of P. falciparum adenylosuccinate synthetase (PfAdSS). Mutation of Asn429 to Val, Lys62 to Leu and Thr307 to Val resulted in an increase in Km values for IMP, GTP and aspartate, respectively along with a 5 fold drop in the kcat value for N429V mutant suggesting the role of these residues in ligand binding and/or catalysis. We have earlier shown that the glycolytic intermediate, fructose 1,6 bisphosphate, which is an inhibitor of mammalian AdSS is an activator of the parasite enzyme. Enzyme kinetics along with molecular docking suggests a mechanism for activation wherein F16BP seems to be binding to the Asp loop and inducing a conformation that facilitates aspartate binding to the enzyme active site. Like in other AdSS, a conserved arginine residue (Arg155) is involved in dimer crosstalk and interacts with IMP in the active site of the symmetry related subunit of PfAdSS. We also report on the biochemical characterization of the arginine mutants (R155L, R155K and R155A) which suggests that unlike in E. coli AdSS, Arg155 in PfAdSS influences both ligand binding and catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号