首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The bioelectric properties of frog sciatic nerves have been measured during exposure to homogeneous, stationary magnetic fields. The action potential amplitude, conduction velocity, absolute refractory period and relative refractory period were found to be unaffected by a continuous 4-h exposure to perpendicular or parallel 2.0 T (1 T equal 10(4) G) magnetic fields. These parameters also remained unchanged during a 1-h post-exposure period. The conduction velocity was similarly found to be unchanged when the field was applied continuously for 17 h. Exposure of sciatic nerves to a 1.0-T field led to no alteration in the threshold for neural excitation. The absence of magnetic field effects on nerve electrical activity observed in the present experiments contrasts with the positive findings reported previously by other investigators. These discrepancies may be attributable to an inadequate control of ambient temperature in the earlier studies.  相似文献   

2.
D B Pribor  A Nara 《Cryobiology》1973,10(1):33-44
Desheathed frog sciatic nerves were tested for membrane damage by noting changes in their conduction velocity, externally recorded action potential, and absolute refractory period. Nerves were exposed for 45–60 min depending on the treatment to 1.5 osmolar environments consisting of concentrated Ringer's solution or Ringer's solution plus glycerol, sucrose, or dimethyl sulfoxide (DMSO). The nerves were exposed to these hypertonic solutions in one of four ways: (1) Gradual exposure plus gradual de-exposure, (2) Gradual exposure (plus direct de-exposure), (3) (direct exposure plus) plus gradual de-exposure, (4) Direct exposure (plus direct de-exposure). After treatment the nerves were allowed to recover for 45–60 min depending on the type of treatment in normal Ringer's solution. The results suggest the following: (1) Concentrated salt solutions damage nerve axons due to increased ion concentration rather than increased tonicity. (2) The effect of osmotic shock on sciatic nerves is relatively minor and completely reversible. (3) Axon membranes behave as simple permeability barriers with respect to sucrose and DMSO, but they appear to behave as dynamic entities which alter their metastable states with respect to concentrated salt or concentrated glycerol in Ringer's solution. (4) Freeze-thaw damage to sciatic nerve axon membranes—and perhaps to any cell membrane—is probably due to increased ionic concentration as well as increased osmolarity.  相似文献   

3.
At low energy density (0.03 mJ/mm2), extracorporeal shock waves (ESW), originally developed for clinical lithotripsy, have successfully been used for anti-inflammatory treatment of soft tissues. Since nitric oxide plays a critical role in inflammation, we hypothesized for ESW to increase NO production in cells. Using human umbilical vein endothelial cells as a model system, we observed that ESW, at low energy density, rapidly induced an enhancement of eNOS activity. In these cells, eNOS activity is modulated by tyrosine- and serine-phosphorylation. ESW shifted eNOS to a less-tyrosine-phosphorylated form, without affecting its serine-phosphorylation, thus accounting for its rapid enzyme activation. LPS/IFN-gamma treatment of human umbilical vein endothelial cells induced a rapid inhibition of eNOS activity and concomitant NF-kappaB activation which were efficiently counteracted by ESW treatment. Therefore, the present results indicate that the molecular mechanism of clinically observed anti-inflammatory action of ESW should include tyrosine-dephosphorylation of eNOS, a successive increase in NO production and suppression of NF-kappaB activation.  相似文献   

4.
5.
Summary The effects of chlorpromazine hydrochloride (CPZ HCl) and prochlorperazin-metansulfonate (PCPZ) on the fast axonal transport of labelled proteins were examined in vitro in a peripheral frog nerve.A 0.1 mM concentration of CPZ HCl and PCPZ reduced the amount of transported proteins by more than 50 per cent. An almost complete block was obtained with a 0.5 mM concentration of these two drugs. The lower concentration hardly affected the protein synthesis. The transport inhibiting effect of 0.1 mM of the drugs was reversible but not that of the higher concentration.The number of microtubuli was strongly decreased and the number of filaments increased at the transport inhibiting concentrations. The ultrastructural changes induced by 0.1 mM of the phenothiazine tranquilizer were largely reversible. The local anesthetics lidocaine (18.3 mM) and tetracaine (3.3 mM) both caused similar changes, i.e. a reduction in the number of microtubuli. No ultrastructural effects were observed after treatment with 1 mM ouabain. These three drugs are known to block the axonal flow in the present system at the above mentioned concentrations.The biochemical and ultrastructural results are discussed in relation to those induced by other drugs affecting axonal transport.The present work was supported by grants from Statens Naturvetenskapliga Forskningsråd (No. 2535-8), C.-B. Nathorsts Vetenskapliga och Allmännyttiga Stiftelser, the Swedish Medical Research Council (B73-12X-2543-05B), H. Hierta's Stiftelse and W. och M. Lundgrens Stiftelse. Thanks are due to Mrs B. Egnér, Mrs E. Fjällstedt, Mrs. E. Norström and Mrs U. Svedin for expert technical assistance.  相似文献   

6.
1. Interferon-gamma (IFN-gamma) has been shown to suppress N-acetyltransferase (NAT) activity in cultured rat pineal glands when stimulated with isoproterenol (ISO). 2. Conversely, IFN-gamma has also been shown to increase the melatonin content of the rat pineal gland in organ culture. 3. Circumstantial evidence leads to a hypothesis that the NAT suppressive effect may be due to the action of IFN-gamma on the sympathetic nerve terminals. 4. To test this hypothesis, pineal glands from intact (INT) and superior cervical ganglionectomized (SCGX) rats, which had been operated 5 days earlier, were cultured with either ISO or ISO + IFN-gamma. 5. The concentration of ISO was 10(-8) M and that of IFN-gamma was 300 antiviral units/ml. 6. The pineals were incubated for a total period of 5.5 hr, after which the activities of NAT and hydroxyindole-O-methyltransferase (HIOMT) and the levels of melatonin and cAMP were estimated. 7. Suppression of NAT by IFN-gamma was observed in the pineals from INT rats, but not in those from SCGX animals. 8. IFN-gamma significantly enhanced melatonin levels over those in ISO-stimulated pineals and culture media from the SCGX animals, but not from the INT animals. 9. IFN-gamma treatment had no effect on either the HIOMT activity or cAMP levels. 10. The results indicate that the IFN-gamma-induced NAT suppression requires the integrity of the sympathetic nerve terminals and the IFN-gamma-induced enhancement of melatonin production is accomplished through its direct action on pinealocytes.  相似文献   

7.
AimsTransient receptor potential (TRP) vanilloid-1 (TRPV1) and melastatin-8 (TRPM8) channels play a role in transmitting sensory information in primary-afferent neurons. TRPV1 agonists at high concentrations inhibit action potential conduction in the neurons and thus have a local anesthetic effect. The purpose of the present study was to know whether TRPM8 agonist menthol at high concentrations has a similar action and if so whether there is a structure–activity relationship among menthol-related chemicals.Main methodsCompound action potentials (CAPs) were recorded from the frog sciatic nerve by using the air-gap method.Key findings(?)-Menthol and (+)-menthol concentration-dependently reduced CAP peak amplitude with the IC50 values of 1.1 and 0.93 mM, respectively. This (?)-menthol activity was resistant to non-selective TRP antagonist ruthenium red; TRPM8 agonist icilin did not affect CAPs, indicating no involvements of TRPM8 channels. p-Menthane, (+)-limonene and menthyl chloride at 7–10 mM minimally affected CAPs. On the other hand, (?)-menthone, (+)-menthone, (?)-carvone, (+)-carvone and (?)-carveol (in each of which chemicals OH or O group was added to p-menthane and limonene) and (+)-pulegone inhibited CAPs with extents similar to that of menthol. 1,8-Cineole and 1,4-cineole were less effective while thymol and carvacrol were more effective than menthol in inhibiting CAPs.SignificanceMenthol-related chemicals inhibited CAPs and were thus suggested to exhibit local anesthetic effects comparable to those of lidocaine and cocaine as reported previously for frog CAPs. This result may provide information to develop local anesthetics on the basis of the chemical structure of menthol.  相似文献   

8.
AimsAlthough capsaicin not only activates transient receptor potential vanilloid-1 (TRPV1) channels but also inhibits nerve conduction, the latter action has not yet been fully examined. The purpose of the present study was to know whether various vanilloids have an inhibitory action similar to that of capsaicin and further to compare their actions with that of local anesthetic procaine.Main methodsFast-conducting compound action potentials (CAPs) were recorded from frog sciatic nerve fibers by using the air-gap method.Key findingsCapsaicin reversibly and concentration-dependently reduced the peak amplitude of the CAP. TRPV1 antagonist capsazepine did not affect the capsaicin activity, and powerful TRPV1 agonist resiniferatoxin had no effect on CAPs, indicating no involvement of TRPV1 channels. Capsaicin analogs and other various vanilloids also inhibited CAPs in a concentration-dependent manner. An efficacy sequence of these inhibitions was capsaicin = dihydrocapsaicin > capsiate > eugenol > guaiacol  zingerone  vanillin > vanillylamine. Vanillic acid had almost no effect on CAPs; olvanil and curcumin appeared to be effective less than capsaicin. Capsaicin and eugenol were, respectively, ten- and two-fold effective more than procaine in CAP inhibition, while each of guaiacol, zingerone and vanillin was five-fold effective less than procaine.SignificanceVarious vanilloids exhibit CAP inhibition, the extent of which is determined by the property of the side chain bound to the vanillyl group, and some of them are more effective than procaine. These results may serve to unveil molecular mechanisms for capsaicin-induced conduction block and to develop antinociceptive drugs related to capsaicin.  相似文献   

9.
10.
11.
An opioid tramadol more effectively inhibits compound action potentials (CAPs) than its metabolite mono-O-demethyl-tramadol (M1). To address further this issue, we examined the effects of opioids (morphine, codeine, ethylmorphine and dihydrocodeine) and cocaine on CAPs by applying the air-gap method to the frog sciatic nerve. All of the opioids at concentrations less than 10 mM reduced the peak amplitude of the CAP in a reversible and dose-dependent manner. The sequence of the CAP peak amplitude reductions was ethylmorphine>codeine>dihydrocodeine> or = morphine; the effective concentration for half-maximal inhibition (IC(50)) of ethylmorphine was 4.6 mM. All of the CAP inhibitions by opioids were resistant to a non-specific opioid-receptor antagonist naloxone. The CAP peak amplitude reductions produced by morphine, codeine and ethylmorphine were related to their chemical structures in such that this extent enhanced with an increase in the number of -CH(2) in a benzene ring, as seen in the inhibitory actions of tramadol and M1. Cocaine reduced CAP peak amplitudes with an IC(50) value of 0.80 mM. It is concluded that opioids reduce CAP peak amplitudes in a manner being independent of opioid-receptor activation and with an efficacy being much less than that of cocaine. It is suggested that the substituted groups of -OH bound to the benzene ring of morphine, codeine and ethylmorphine as well as of tramadol and M1, the structures of which are quite different from those of the opioids, may play an important role in producing nerve conduction block.  相似文献   

12.
Summary Mucociliary transport, ciliary activity, and mucus secretion were studied in the palate of the frog Rana pipiens by direct observation, stroboscopic synchronization of ciliary beating, and histochemistry. Excised palates were studied in vitro, and intact palates were studied in vivo. Electrical stimulation of the glossopharyngeal nerve in vivo or of the palatine nerve in vitro stimulated all three activities. The effect was mimicked by acetylcholine and pilocarpine, enhanced by physostigmine, and blocked by atropine but unaffected by d-tubocurarine. Stimulation increased the number of cilia beating and their rate of beating, the number of goblet cells secreting and, for small acidic cells, the amount of mucus secreted, and the rate and extent of particle transport. The response to tactile stimulation was locally restricted in vitro but widespread in vivo. It was concluded that, although there is a low basal rate of mucus secretion and ciliary activity that is independent of nervous control, stimulation of these activities in the intact animal is mediated through the central nervous system and cholinergic nerves to the palate.Supported in part by Grant HL-16730 from the U.S. Public Health Service  相似文献   

13.
The effect of meperidine (3 X 10(4) M) on the action potential of frog sciatic nerve was examined by means of the double sucrose gap technique. Meperidine decreased the amplitude, maximum rate of depolarization, and maximum rate of repolarization of the action potential but had no effect on the resting potential. This depression in amplitude and maximum rate of rise was partially blocked by naloxone (1 X 10(-8) M) while the maximum rate of depolarization was further depressed. The data suggest that the effect of meperidine is due to two mechanisms, a nonspecific local anaesthetic like effect and an opiate receptor mediated effect.  相似文献   

14.
Azide (0.2 to 5.0 mM) and chloretone (2.0 to 15.0 mM) reversibly inhibited 20 to 90 per cent of the resting respiration of frog sciatic nerves, and caused a loss of potassium and a gain of sodium in this tissue. The changes in ionic contents that developed after 5 or 10 hours were roughly correlated with the degree of respiratory depression, but the time courses of these changes were different with the two reagents. In azide these changes appeared to begin immediately, while in chloretone, at concentrations between 3.0 and 5.0 mM, the ionic shifts developed after a delay of several hours. Fifteen millimolar chloretone produced immediate changes in ionic contents several times greater than those produced by anoxia. The changes in ionic distribution produced in 5 hours by anoxia, 5.0 mM azide, or 5.0 mM chloretone were at least partially reversible; those produced by 15.0 mM chloretone were irreversible. With the exception of 15.0 mM chloretone the ionic shifts produced by these reagents may be due primarily to the depression of the respiration, although there are indications that azide acts, in addition, by another pathway. Concentrations of azide or chloretone that depressed the resting rate of oxygen consumption more than 50 per cent produced a slow conduction block, while 15.0 mM chloretone blocked conduction within 15 minutes.  相似文献   

15.
16.
17.
J Boyes  A Bird 《Cell》1991,64(6):1123-1134
  相似文献   

18.
The dorsomedial motor nuclei were demonstrated by the cobalt-labeling technique applied to the so-called somatic motor cranial nerves. The motoneurons constituting these nuclei are oval-shaped and smaller than the motoneurons in the ventrolateral motor nuclei. They give rise to ventral and dorsal dendrite groups which have extensive arborization areas. A dorsolateral cell group in the rostral three quarters of the oculomotorius nucleus innervates ipsilateral eye muscles (m.obl.inf., m.rect.inf., m.rect.med.) and a ventromedial cell group innervates the contralateral m. rectus superior. Ipsilateral axons originate from ventral dendrites, contralateral axons emerge from the medial aspect of cell bodies, or from dorsal dendrites, and form a "knee" as they turn around the nucleus on their way to join the ipsilateral axons. A few labeled small cells found dorsal and lateral to the main nucleus in the central gray matter are regarded as representing the nucleus of Edinger-Westphal. The trochlearis nucleus is continuous with the ventromedial cell group of the oculomotorius nucleus. The axons originate in dorsal dendrites, run dorsally along the border of the gray matter and pierce the velum medullare on the contralateral side. A compact dendritic bundle of oculomotorius neurons traverse the nucleus, and side branches appear to be in close apposition to the trochlearis neurons. A dorsomedial and a ventrolateral cell group becomes labeled via the abducens nerve. The former supplies the m. rectus lateralis, while the latter corresponds to the accessorius abducens nucleus which innervates the mm. rectractores. Neurons in this latter nucleus are large and multipolar, resembling the neurons in the ventrolateral motor nuclei. Their axons originate from dorsal dendrites and form a "knee" around the dorsomedial aspect of the abducens nucleus. Cobalt applied to the hypoglossus nerve reaches a dorsomedial cell group (the nucleus proper), spinal motoneurons and sympathetic preganglionic neurons. Of the dorsomedial motor cells, the hypoglossus neurons are the largest, and a branch of their ventral dendrites terminates on the contralateral side. Some functional and developmental biological aspects of the morphological findings, such as the crossing axons and the peculiar morphology of the accessory abducens nucleus, are discussed.  相似文献   

19.
A single injection of Escherichia coli lipopolysaccharide (LPS; intraperitoneally [i.p.] and intravenously [i.v.]) reliably induces peripheral nerve disturbances in the hindlimbs of inbred Australian albino Wistar (AaW) rats. In the series of experiments presented here, we aimed to characterize this syndrome by examining electrophysiologic, immunologic, and immunochemical features. The LPS-induced neurologic sequelae in AaW rats were transient, at least partly reversible by drug treatment, and were not associated with any detectable neuropathologic findings by light microscopy. Neurologic sequelae were prevented by administration of dexamethasone and by pretreatment with the macrophage inhibitor gadolinium chloride, suggesting that they were caused by LPS-induced activation of peripheral macrophages. Sequelae were associated with early decreases in compound muscle-action potential amplitudes, indicating impaired functioning of either proximal sciatic nerve axons and/or neuromuscular synapses. Spinal somatosensory-evoked potential latencies also were increased, indicating impaired somatosensory function at the sciatic nerve, dorsal roots, spinal cord, and/or postsynaptic interneurons, although the precise location of impairment could not be delineated. Similarities between this syndrome and immune-mediated polyneuropathies in humans are discussed.  相似文献   

20.
Synthetic oligodeoxynucleotides (ODNs) containing unmethylated CpG motifs are known to stimulate immune responses and are potent adjuvants in higher vertebrates, but so far the effects in fish are poorly described. We here report that CpG ODNs induce IL-1beta expression and production of interferon-like cytokines in rainbow trout head-kidney macrophages, whereas ODNs with an inverted motif (GpC) have a much less stimulatory effect. We further demonstrate that endosomal maturation is essential for CpG signalling, as chloroquine, a compound known to block endosomal acidification, inhibits cytokine expression in the macrophages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号