首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 627 毫秒
1.
We have investigated expression of the homeobox gene Prox 1 during eye degeneration and sensory organ compensation in cavefish embryos. The teleost Astyanax mexicanus consists of sighted surface-dwelling forms (surface fish) and several populations of blind cave-dwelling forms (cavefish), which have evolved independently. Eye formation is initiated during cavefish development, but the lens vesicle undergoes apoptosis, and the eye subsequently arrests and degenerates. The requirement of Prox 1 for lens fiber differentiation and γ-crystallin expression in the mouse suggests that changes in the expression of this gene could be involved in cavefish eye degeneration. Surface fish and cavefish embryos stained with a Prox 1 antibody showed Prox 1 expression in the lens, neuroretina, myotomes, heart, hindbrain, and gut, as reported in other vertebrates. We found that Prox 1 expression is not altered during cavefish lens development. Prox 1 protein was detected in the lens vesicle as soon as it formed and persisted until the time of lens degeneration in each cavefish population. The cavefish lens vesicle was also shown to express a γ-crystallin gene, suggesting that Prox 1 is functional in cavefish lens development. In addition to the tissues described above, Prox 1 is expressed in developing taste buds and neuromasts in cavefish, which are enhanced to compensate for blindness. It is concluded that the Prox 1 gene is not involved in lens degeneration, but that expansion of the Prox 1 expression domain occurs during taste bud and neuromast development in cavefish. Received: 31 July 1999 / Accepted: 8 November 1999  相似文献   

2.
The lens represents an ideal model system for studying many of the cellular and molecular events of differentiation. It is composed of two ectodermally-derived cell types: the lens epithelial cells and the lens fibre cells, which are derived from the lens epithelial cells by differentiation. Programmed removal of nuclei and other organelles from the lens fibre cells ensures that an optically clear structure is created, while the morphology of the degenerating nuclei is similar to that observed during apoptosis and is accompanied by DNA fragmentation. These observations suggest the existence of biochemical parallels between the process of lens fibre cell organelle loss and classical apoptosis. For example, proteins encoded by the bcl-2 and caspase gene families are expressed in developing lenses and nuclear degeneration in lens fibre cells can be inhibited in vivo by overexpression of bcl-2 and in vitro by incubation of differentiating lens epithelial cell cultures with caspase inhibitors. Thus, the developing lens may represent a particularly useful model system for researchers interested in apoptosis. In this review, the recent literature pertaining to lens fibre cell organelle loss and its relationship to apoptosis is reviewed and possible future research directions are suggested.  相似文献   

3.
Lens apoptosis plays a central role in cavefish eye degeneration. Heat shock proteins (hsps) can regulate apoptosis; therefore, we examined the relationship between constitutive hsp70 and hsp90 expression and lens apoptosis. The model system is Astyanax mexicanus, a teleost species consisting of an eyed surface-dwelling (surface fish) form and numerous blind cave-dwelling (cavefish) forms. Optic primordia are formed in the cavefish embryo but they subsequently undergo lens apoptosis, arrest in development and degenerate. Astyanax hsp90 and hsp70 DNAs were isolated to use as probes to compare gene expression during surface fish and cavefish development. Hsp90beta, which encodes one of two hsp90 isoforms, was not expressed in the surface fish or cavefish lens, whereas hsp70 was expressed in the lens of both forms, suggesting that neither is directly involved in lens apoptosis. In contrast, hsp90alpha, the other hsp90 isoform, was expressed in the cavefish but not the surface fish lens. Hsp90alpha expression peaked shortly before the beginning of lens apoptosis in three convergent cavefish populations, suggesting a close relationship with lens apoptosis. The absence of hsp90beta in the lens allowed us to use geldanamycin and radicicol, specific inhibitors of hsp90 chaperone function, to determine whether lens cell death requires hsp90alpha expression. Both inhibitors blocked TUNEL labeling in the cavefish lens, suggesting that hsp90alpha is required for apoptosis. In contrast to their effects on the lens, these inhibitors induced TUNEL labeling in the surface epidermis, presumably due to effects on hsp90beta function, implying that the two-hsp90 isoforms may have contrasting roles in cell survival. We conclude that hsp90alpha plays a novel role in lens apoptosis and cavefish eye degeneration.  相似文献   

4.
The lens influences retinal growth and differentiation during vertebrate eye development but the mechanisms are not understood. The role of the lens in retinal growth and development was studied in the teleost Astyanax mexicanus, which has eyed surface-dwelling (surface fish) and blind cave-dwelling (cavefish) forms. A lens and laminated retina initially develop in cavefish embryos, but the lens dies by apoptosis. The cavefish retina is subsequently disorganized, apoptotic cells appear, the photoreceptor layer degenerates, and retinal growth is arrested. We show here by PCNA, BrdU, and TUNEL labeling that cell proliferation continues in the adult cavefish retina but the newly born cells are removed by apoptosis. Surface fish to cavefish lens transplantation, which restores retinal growth and rod cell differentiation, abolished apoptosis in the retina but not in the RPE. Surface fish lens deletion did not cause apoptosis in the surface fish retina or affect RPE differentiation. Neither lens transplantation in cavefish nor lens deletion in surface fish affected retinal cell proliferation. We conclude that the lens acts in concert with another optic component, possibly the RPE, to promote retinal cell survival. Accordingly, deficiency in both optic structures may lead to eye degeneration in cavefish.  相似文献   

5.
Protein distribution patterns across eye lenses from the Asiatic toad Bufo gargarizans were investigated and individual crystallin classes characterised. Special fractionation that follows the growth mode of the lens was used to yield nine fractions corresponding to layers laid down at different chronological (developmental) stages. Proportions of soluble and insoluble crystallins within each fraction were measured by Bradford assay. Water‐soluble proteins in all fractions were separated by size‐exclusion HPLC and constituents of each class further characterised by electrophoresis, RP‐HPLC and MS analysis. In outer lens layers, α‐crystallin is the most abundant soluble protein but is not found in soluble proteins in the lens centre. Water‐soluble β‐crystallins also decrease from their highest level in the outer lens to negligible mounts in the central lens. The proportion of soluble γ‐crystallin increases significantly towards the lens centre where this is the only soluble protein present. Insoluble protein levels increase significantly towards the lens centre. In B. gargarizans lenses, as with other anurans, the predominant water‐soluble protein class is γ‐crystallin. No taxon‐specific crystallins were found. The relationship between the protein distribution patterns and the functional properties of the lens this species is discussed.  相似文献   

6.
α‐Crystallin, the major protein of mammalian eye lens, is a member of the small heat shock protein family and is a molecular chaperone. We previously reported that its molecular chaperone function as well as stability increased in presence of Zn+2. Despite the effect of Zn+2 on the structure and function of α‐crystallin, evidence for direct interaction between them remained elusive. We now present the MALDI mass spectrometric data that shows direct evidence of Zn+2 binding to recombinant αA‐ and αB‐crystallin. The binding stoichiometry was over three Zn+2 per subunit of α‐crystallin at zinc/protein molar ratio of 20. Observation of multiple Zn+2 binding is consistent with the large increase in thermodynamic stability. Sequence‐based analysis of αA‐ and αB‐crystallin predicted both proteins to be nonzinc binding proteins. Our dynamic light scattering data shows that Zn+2 stabilizes the oligomeric structure of α‐crystallin by bridging neighboring subunits in multiple centers. Despite the low affinity binding, the intersubunit bridging by multiple Zn+2 makes the oligomer so stable that oligomer breakdown does not occur even at 6M urea. The subunit bridging has been supported by our FRET data that showed absence of subunit exchange in presence of zinc. MALDI data also showed that the interaction of α‐crystallin with Zn+2 is quite different from other bivalent metal ions. Bound Zn+2 could be easily removed by dialysis of the complex. The relevance of such weak interaction on the stability of the oligomeric structure of α‐crystallin and its function in the eye lens has been discussed. © 2010 Wiley Periodicals, Inc. Biopolymers 95: 105–116, 2011.  相似文献   

7.
γ‐crystallins are highly specialized proteins of the vertebrate eye lens where they survive without turnover under high molecular crowding while maintaining transparency. They share a tightly folded structural template but there are striking differences among species. Their amino acid compositions are unusual. Even in mammals, γ‐crystallins have high contents of sulfur‐containing methionine and cysteine, but this reaches extremes in fish γM‐crystallins with up to 15% Met. In addition, fish γM‐crystallins do not conserve the paired tryptophan residues found in each domain in mammalian γ‐crystallins and in the related β‐crystallins. To gain insight into important, evolutionarily conserved properties and functionality of γ‐crystallins, zebrafish (Danio rerio) γM2b and γM7 were compared with mouse γS and human γD. For all four proteins, far UV CD spectra showed the expected β‐sheet secondary structure. Like the mammalian proteins, γM7 was highly soluble but γM2b was much less so. The heat and denaturant stability of both fish proteins was lower than either mammalian protein. The ability of full‐length and truncated versions of human αB‐crystallin to retard aggregation of the heat denatured proteins also showed differences. However, when solution behavior was investigated by sedimentation velocity experiments, the diverse γ‐crystallins showed remarkably similar hydrodynamic properties with low frictional ratios and partial specific volumes. The solution behavior of γ‐crystallins, with highly compact structures suited for the densely packed environment of the lens, seems to be highly conserved and appears largely independent of amino acid composition.  相似文献   

8.
Recent studies have suggested that the isomerization/racemization of aspartate residues in proteins increases in aged tissues. One such residue is Asp151 in lens‐specific αA‐crystallin. Although many isomerization/racemization sites have been reported in various proteins, the factors that lead to those modifications in proteins in vivo remain obscure. Therefore, an in vitro system is needed to assess the mechanisms of modifications of Asp under various conditions. Deamidation of Asn to Asp in proteins occurs more rapidly than isomerization/racemization of Asp, although the reaction passes through the same intermediate in both pathways. Here, therefore, we replaced Asp151 in human lens αA‐crystallin with Asn by using site‐directed mutagenesis. The recombinant protein was expressed in Escherichia coli and used to investigate the deamidation/isomerization/racemization of Asn151 after incubation at 50°C for various durations and under different pH. After incubation, the mutant αA‐crystallin was subjected to enzymatic digestion followed by liquid chromatography–MS/MS to evaluate the ratio of modifications in Asn151‐containing peptides. The Asp151Asn αA‐crystallin mutant showed rapid deamidation to Asp with the formation of specific Asp isomers. In particular, deamidation increased greatly under basic conditions. By contrast, subunit–subunit interactions between αA‐crystallin and αB‐crystallin had little effect on the modification of Asn151. Our findings suggest that the Asp151Asn αA‐crystallin mutant represents a good in vitro model protein to assess deamidation, isomerization, and the racemization intermediates. Furthermore, our in vitro results show a different trend from in vivo data, implying the presence of specific factors that induce racemization from L‐Asp to D‐Asp residues in vivo.  相似文献   

9.
10.
Low molecular weight peptides derived from the breakdown of crystallins have been reported in adult human lenses. The proliferation of these LMW peptides coincides with the earliest stages of cataract formation, suggesting that the protein cleavages involved may contribute to the aggregation and insolubilization of crystallins. This study reports the identification of 238 endogenous LMW crystallin peptides from the cortical extracts of four human lenses representing young, middle and old‐age human lenses. Analysis of the peptide terminal amino acids showed that Lys and Arg were situated at the C‐terminus with significantly higher frequency compared to other residues, suggesting that trypsin‐like proteolysis may be active in the lens cortical fiber cells. Selected reaction monitoring analysis of an endogenous αA‐crystallin peptide (αA57‐65) showed that the concentration of this peptide in the human lens increased gradually to middle age, after which the rate of αA57‐65 formation escalated significantly. Using 2D gel electrophoresis/nanoLC‐ESI‐MS/MS, 12 protein complexes of 40–150 kDa consisting of multiple crystallin components were characterized from the water soluble cortical extracts of an adult human lens. The detection of these protein complexes suggested the possibility of crystallin cross‐linking, with these complexes potentially acting to stabilize degraded crystallins by sequestration into water soluble complexes. Proteins 2015; 83:1878–1886. © 2015 Wiley Periodicals, Inc.  相似文献   

11.
Lenses within the schizochroal eyes of phacopine trilobites are made principally of calcite, and characterization of them using light microscopy and high‐resolution electron imaging and diffraction has revealed an array of microstructural arrangements that suggest a common original pattern across the suborder. The low convexity lenses of Odontochile hausmanni and Dalmanites sp. contain calcite fibres termed trabeculae. The c axis of trabecular calcite lies parallel to the lens axis, and adjacent trabeculae are distinguished by small differences in their a axis orientations. Despite the common alignment, the boundaries between trabeculae cross‐cut the c axis as they fan out towards the lens base. Trabeculae are absent from the lens immediately beneath the visual surface, and instead, a radial fringe is present and is composed of micrometre‐thick sheets of calcite whose c axes are oriented at a low angle to the visual surface. High convexity lenses are more common than those of lower convexity among the species studied, and they have a much thicker radial fringe. Beneath this fringe, all of the lens calcite is oriented with its c axis parallel to the lens axis and it lacks trabeculae. We propose that both the high and low convexity lenses formed by rapid growth of calcite from a surface that migrated inwards from the cornea, and they may have had an amorphous calcium carbonate precursor. The trabeculae and radial fringes are unlikely to have had any beneficial effect on the transmission or focusing of light, but rather are the outcomes of an elegant solution to the problem of how to construct a biconvex lens from a crystalline solid.  相似文献   

12.
DNA methylation is one of the key mechanisms underlying the epigenetic regulation of gene expression. During DNA replication, the methylation pattern of the parent strand is maintained on the replicated strand through the action of Dnmt1 (DNA Methyltransferase 1). In mammals, Dnmt1 is recruited to hemimethylated replication foci by Uhrf1 (Ubiquitin-like, Containing PHD and RING Finger Domains 1). Here we show that Uhrf1 is required for DNA methylation in vivo during zebrafish embryogenesis. Due in part to the early embryonic lethality of Dnmt1 and Uhrf1 knockout mice, roles for these proteins during lens development have yet to be reported. We show that zebrafish mutants in uhrf1 and dnmt1 have defects in lens development and maintenance. uhrf1 and dnmt1 are expressed in the lens epithelium, and in the absence of Uhrf1 or of catalytically active Dnmt1, lens epithelial cells have altered gene expression and reduced proliferation in both mutant backgrounds. This is correlated with a wave of apoptosis in the epithelial layer, which is followed by apoptosis and unraveling of secondary lens fibers. Despite these disruptions in the lens fiber region, lens fibers express appropriate differentiation markers. The results of lens transplant experiments demonstrate that Uhrf1 and Dnmt1 functions are required lens-autonomously, but perhaps not cell-autonomously, during lens development in zebrafish. These data provide the first evidence that Uhrf1 and Dnmt1 function is required for vertebrate lens development and maintenance.  相似文献   

13.
Human age‐onset cataracts are believed to be caused by the aggregation of partially unfolded or covalently damaged lens crystallin proteins; however, the exact molecular mechanism remains largely unknown. We have used microseconds of molecular dynamics simulations with explicit solvent to investigate the unfolding process of human lens γD‐crystallin protein and its isolated domains. A partially unfolded folding intermediate of γD‐crystallin is detected in simulations with its C‐terminal domain (C‐td) folded and N‐terminal domain (N‐td) unstructured, in excellent agreement with biochemical experiments. Our simulations strongly indicate that the stability and the folding mechanism of the N‐td are regulated by the interdomain interactions, consistent with experimental observations. A hydrophobic folding core was identified within the C‐td that is comprised of a and b strands from the Greek key motif 4, the one near the domain interface. Detailed analyses reveal a surprising non‐native surface salt‐bridge between Glu135 and Arg142 located at the end of the ab folded hairpin turn playing a critical role in stabilizing the folding core. On the other hand, an in silico single E135A substitution that disrupts this non‐native Glu135‐Arg142 salt‐bridge causes significant destabilization to the folding core of the isolated C‐td, which, in turn, induces unfolding of the N‐td interface. These findings indicate that certain highly conserved charged residues, that is, Glu135 and Arg142, of γD‐crystallin are crucial for stabilizing its hydrophobic domain interface in native conformation, and disruption of charges on the γD‐crystallin surface might lead to unfolding and subsequent aggregation.  相似文献   

14.
Ghosh JG  Shenoy AK  Clark JI 《Biochemistry》2007,46(21):6308-6317
Protein pin arrays assessed interactions between alphaB crystallin and 12 regulatory proteins, including EGF, FGF-2, IGF-1, NGF-beta, TGF-beta, VEGF, insulin, beta-catenin, caspase-3, caspase-8, Bcl-2, and Bcl-xL, which are important in cellular differentiation, proliferation, signaling, cytoskeletal assembly, and apoptosis. FGF-2, NGF-beta, VEGF, insulin, and beta-catenin had strong interactions with human alphaB crystallin peptides, and the alphaB crystallin interactive sequences for these proteins were identified. The seven remaining proteins (EGF, IGF-1, TGF-beta, caspase-3, caspase-8, BCl-2, and Bcl-xL) did not interact with alphaB crystallin. The alphaB crystallin sequences that interacted with FGF-2, NGF-beta, VEGF, insulin, and beta-catenin overlapped with sequences that selectively interact with partially unfolded proteins, suggesting a common function for alphaB crystallin in chaperone activity and the regulation of cell growth and differentiation. Chaperone assays conducted with full-length alphaB crystallin and synthetic alphaB crystallin peptides confirmed the ability of alphaB crystallin to protect against the aggregation of FGF-2 and VEGF, suggesting that alphaB crystallin protects these proteins against unfolding and aggregation under conditions of stress. This is the first report in which sequences involved in interactions with regulatory proteins, including FGF-2, NGF-beta, VEGF, insulin, and beta-catenin, were identified in a small heat shock protein.  相似文献   

15.
The early morphogenesis of the lens and the expression of the γs-crystallin gene was studied in epigean Astyanax fasciatus and its cave-dwelling derivative. At early stages, the lens of the cave fish develops in a way that is similar to the epigean form. Later, the developmental timing is delayed and growth ceases in the cave-fish lens. With the beginning of cytodifferentiation, the development of the lens breaks down. Crystallin lens fibres are not produced at any time and the γs-crystallin gene, which is transcribed during a limited period in the lens of epigean fishes, is not active in cave specimens. This study confirms earlier immunofluorescence observations that demonstrated the lack of crystallin proteins in the cave-fish lens, but is in contrast to results on the blind mole rat, which showed a persistence of functioning crystallins in the degenerated lens of this species. The significance of developmental constraints in regressive evolution is discussed.  相似文献   

16.
A new population of blind, cave dwelling tetra fish of the genus Astyanax was discovered in Granadas Cave, in the Balsas drainage, southern México. All blind Mexican tetras previously described are from Tampico and San Luis Potosí, northern México. The discovery of a new blind morph thus represents an independent colonization and convergent adaptation to the cave environment by this fish. Individuals of this population display variability of their troglomorphic features. Some individuals presented asymmetrical degeneration of the eyes, where one was normal, but the other somewhat reduced in size and complexity. Loss of pigmentation and eye reduction, although sometimes correlated, were not always linked; reduced eyes were found on pigmented fish and unpigmented fish often possessed normal eyes. Some individuals had reduced lens size or an absence of lens altogether. Retina is highly modified with photoreceptors sometimes absent. Eye reduction was correlated with a diminished size of the optic lobes and an increase of the prosencephalon. Modifications of the skull involve closing in of the circumorbital series of bones. Certain aspects of behavior are also modified.  相似文献   

17.
18.
α‐Crystallin is a member of small heat shock proteins and is believed to play an exceptional role in the stability of eye lens proteins. The disruption or denaturation of the protein arrangement or solubility of the crystallin proteins can lead to vision problems including cataract. In the present study, we have examined the effect of chemical denaturants urea and guanidine hydrochloride (GdnHCl) on α‐crystallin aggregation, with special emphasis on protein conformational changes, unfolding, and amyloid fibril formation. GdnHCl (4 M) induced a 16 nm red shift in the intrinsic fluorescence of α‐crystallin, compared with 4 nm shift by 8 M urea suggesting a major change in α‐crystallin structure. Circular dichroism analysis showed marked increase in the ellipticity of α‐crystallin at 216 nm, suggesting gain in β‐sheet structure in the presence of GdnHCl (0.5–1 M) followed by unfolding at higher concentration (2–6 M). However, only minor changes in the secondary structure of α‐crystallin were observed in the presence of urea. Moreover, 8‐anilinonaphthalene‐1‐sulfonic acid fluorescence measurement in the presence of GdnHCl and urea showed changes in the hydrophobicity of α‐crystallin. Amyloid studies using thioflavin T fluorescence and congo red absorbance showed that GdnHCl induced amyloid formation in α‐crystallin, whereas urea induced aggregation in this protein. Electron microscopy studies further confirmed amyloid formation of α‐crystallin in the presence of GdnHCl, whereas only aggregate‐like structures were observed in α‐crystallin treated with urea. Our results suggest that α‐crystallin is susceptible to unfolding in the presence of chaotropic agents like urea and GdnHCl. The destabilized protein has increased likelihood to fibrillate. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
The functional roles of bioelectrical signals (ES) created by the flow of specific ions at the mammalian lens equator are poorly understood. We detected that mature, denucleated lens fibers expressed high levels of the α1 and β1 subunits of Na+/K+‐ATPase (ATP1A1 and ATP1B1 of the sodium pump) and had a hyperpolarized membrane potential difference (Vmem). In contrast, differentiating, nucleated lens fiber cells had little ATP1A1 and ATP1B1 and a depolarized Vmem. Mimicking the natural equatorial ES with an applied electrical field (EF) induced a striking reorientation of lens epithelial cells to lie perpendicular to the direction of the EF. An EF also promoted the expression of β‐crystallin, aquaporin‐0 (AQP0) and the Beaded Filament Structural Protein 2 (BFSP2) in lens epithelial cells (LECs), all of which are hallmarks of differentiation. In addition, applied EF activated the AKT and CDC2 and inhibition of AKT reduced the activation of CDC2. Our results indicate that the endogenous bioelectrical signal at the lens equator promotes differentiation of LECs into denucleated lens fiber cells via depolarization of Vmem. Development of methods and devices of EF application or amplification in vivo may supply a novel treatment for lens diseases and even promote regeneration of a complete new lens following cataract surgery.  相似文献   

20.
Diplostomoid metacercariae parasitize freshwater fishes worldwide and cannot be identified to species based on morphology. In this study, sequences of the barcode region of cytochrome c oxidase subunit 1 (CO1) were used to discriminate species in 1088 diplostomoids, most of which were metacercariae from fish collected in the St. Lawrence River, Canada. Forty‐seven diplostomoid species were detected, representing a large increase in known diversity. Most species suggested by CO1 sequences were supported by sequences of internal transcribed spacer (ITS) of rDNA and host and tissue specificity. Three lines of evidence indicate that physiological incompatibility between host and parasite is a more important determinant of host specificity than ecological separation of hosts and parasites in this important group of freshwater fish pathogens. First, nearly all diplostomoid species residing outside the lens of the eyes of fish are highly host specific, while all species that occur inside the lens are generalists. This can be plausibly explained by a physiological mechanism, namely the lack of an effective immune response in the lens. Second, the distribution of diplostomoid species among fish taxa reflected the phylogenetic relationships of host species rather than their ecological similarities. Third, the same patterns of host specificity were observed in separate, ecologically distinctive fish communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号