首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Neuronal plasticity and its development were investigated at pyramidal neurons in the cortical slices of rats. The threshold and probability of firing spikes were measured by using whole‐cell recording to assess neuronal excitability. Postsynaptic high frequency activity (HFA) at the pyramidal neurons, evoked by 20 trains (250‐ms interval) of five depolarization‐pulses (1 ms) at 100 Hz, persistently lowered the threshold and increased the probability of firing spikes. After long‐term enhancement of neuronal excitability by HFA was stable, another HFA induced further enhancement. Infusing 1 mM 1,2‐bis(2‐aminophenoxy)‐ethane‐N, N,N′,N′‐tetraacetic acid or 100 μM CaMKII(281–301) into the recording neurons prevented HFA‐induced long‐term enhancement of neuronal excitability. The infusion of 40 μM calcineurin autoinhibitory peptide enhanced neuronal excitability, which occluded HFA effect. HFA‐induced long‐term enhancement of intrinsic excitability expressed at most pyramidal neurons after postnatal day (PND) 14, but not at those before PND 9. Our results show a new type of neuronal plasticity induced by physiological activity at cortical neurons, which requires calcium‐dependent protein phosphorylation and develops during postnatal period. An upregulation of intrinsic excitability at cortical neurons facilitates their activity and broadens signal codes; consequently, their computational ability is upgraded. © 2004 Wiley Periodicals, Inc. J Neurobiol, 2004  相似文献   

2.
3.
4.
5.
6.
Phenotypes such as motivation to consume alcohol, goal‐directed alcohol seeking and habit formation take part in mechanisms underlying heavy alcohol use. Learning and memory processes greatly contribute to the establishment and maintenance of these behavioral phenotypes. The N‐methyl‐d ‐aspartate receptor (NMDAR) is a driving force of synaptic plasticity, a key cellular hallmark of learning and memory. Here, we describe data in rodents and humans linking signaling molecules that center around the NMDARs, and behaviors associated with the development and/or maintenance of alcohol use disorder (AUD). Specifically, we show that enzymes that participate in the regulation of NMDAR function including Fyn kinase as well as signaling cascades downstream of NMDAR including calcium/calmodulin‐dependent protein kinase II (CamKII), the α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid receptor (AMPAR) and the mammalian target of rapamycin complex 1 (mTORC1) play a major role in mechanisms underlying alcohol drinking behaviors. Finally, we emphasize the brain region specificity of alcohol's actions on the above‐mentioned signaling pathways and attempt to bridge the gap between the molecular signaling that drive learning and memory processes and alcohol‐dependent behavioral phenotypes. Finally, we present data to suggest that genes related to NMDAR signaling may be AUD risk factors.  相似文献   

7.
N‐methyl‐D ‐aspartate (NMDA) receptors belong to the family of ionotropic glutamate receptors (iGluRs) that mediate the majority of fast excitatory synaptic transmission in the mammalian brain. One of the hallmarks for the function of NMDA receptors is that their ion channel activity is allosterically regulated by binding of modulator compounds to the extracellular amino‐terminal domain (ATD) distinct from the L ‐glutamate‐binding domain. The molecular basis for the ATD‐mediated allosteric regulation has been enigmatic because of a complete lack of structural information on NMDA receptor ATDs. Here, we report the crystal structures of ATD from the NR2B NMDA receptor subunit in the zinc‐free and zinc‐bound states. The structures reveal the overall clamshell‐like architecture distinct from the non‐NMDA receptor ATDs and molecular determinants for the zinc‐binding site, ion‐binding sites, and the architecture of the putative phenylethanolamine‐binding site.  相似文献   

8.
Orexin is one of the orexigenic neuropeptides in the hypothalamus. Orexin neurons in the lateral hypothalamus (LH) project into the cerebral cortex and hippocampus in which the receptors are distributed in high concentrations. Therefore, to elucidate the actions of orexin in the cerebral cortex, we examined its effects on the mRNA expressions of N-methyl-d-aspartate (NMDA) receptor subunits (NR1, NR2A, NR2B) and α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor subunits (GluR1, GluR2) following 6-day application of orexin-A or orexin-B to rat primary cortical neuron cultures. The mRNAs of NR1 and NR2A subunits were significantly decreased by orexin-A and orexin-B at concentrations over 0.1 μM and 0.01 μM, respectively. The mRNA expression of NR2B subunit was also significantly decreased by orexin-A and orexin-B only at the concentration of 1 μM. Moreover, orexin-A and orexin-B at concentrations over 0.01 μM significantly decreased the mRNA expressions of AMPA receptor subunits, GluR1 and GluR2. The present study demonstrated that orexins significantly suppressed RNA expressions of NMDA and AMPA receptor subunits in cortical neuron cultures, suggesting that orexin may regulate the higher functions of the cerebral cortex as well as be involved in energy regulation in the hypothalamus.  相似文献   

9.
It is assumed that the activity of osteoblasts and osteoclasts is decreased in bone tissue of aged individuals. However, detailed investigation of the molecular signature of human bone from young compared to aged individuals confirming this assumption is lacking. In this study, quantitative expression analysis of genes related to osteogenesis and osteoclastogenesis of human cancellous bone derived from the distal radius of young and aged individuals was performed. Furthermore, we additionally performed immunohistochemical stainings. The young group included 24 individuals with an average age of 23.2 years, which was compared to cancellous bone derived from 11 body donators with an average age of 81.0 years. In cancellous bone of young individuals, the osteogenesis‐related genes RUNX‐2, OSTERIX, OSTEOPONTIN and OSTEOCALCIN were significantly up‐regulated compared to aged individuals. In addition, RANKL and NFATc1, both markers for osteoclastogenesis, were significantly induced in cancellous bone of young individuals, as well as the WNT gene family member WNT5a and the matrix metalloproteinases MMP‐9. However, quantitative RT‐PCR analysis of BMP‐2, ALP, FGF‐2, CYCLIN‐D1, MMP‐13, RANK, OSTEOPROTEGERIN and TGFb1 revealed no significant difference. Furthermore, Tartrate‐resistant acid phosphatase (TRAP) staining was performed which indicated an increased osteoclast activity in cancellous bone of young individuals. In addition, pentachrome stainings revealed significantly less mineralized bone matrix, more osteoid and an increased bone density in young individuals. In summary, markers related to osteogenesis as well as osteoclastogenesis were significantly decreased in the aged individuals. Thus, the present data extends the knowledge about reduced bone regeneration and healing capacity observed in aged individuals.  相似文献   

10.
11.
12.
13.
Previous studies in animal models and humans have shown that exposure to nutritional deficiencies in the perinatal period increases the risk of psychiatric disease. Less well understood is how such effects are modulated by the combination of genetic background and parent‐of‐origin (PO). To explore this, we exposed female mice from 20 Collaborative Cross (CC) strains to protein deficient, vitamin D deficient, methyl donor enriched or standard diet during the perinatal period. These CC females were then crossed to a male from a different CC strain to produce reciprocal F1 hybrid females comprising 10 distinct genetic backgrounds. The adult F1 females were then tested in the open field, light/dark, stress‐induced hyperthermia, forced swim and restraint stress assays. Our experimental design allowed us to estimate effects of genetic background, perinatal diet, PO and their interactions on behavior. Genetic background significantly affected all assessed phenotypes. Perinatal diet exposure interacted with genetic background to affect body weight, basal body temperature, anxiety‐like behavior and stress response. In 8 of 9 genetic backgrounds, PO effects were observed on multiple phenotypes. Additionally, we identified a small number of diet‐by‐PO effects on body weight, stress response, anxiety‐ and depressive‐like behavior. Our data show that rodent behaviors that model psychiatric disorders are affected by genetic background, PO and perinatal diet, as well as interactions among these factors.  相似文献   

14.
15.
Adult mammals have experience‐dependent plasticity in visual system, but it is unclear whether adult insects also have this plasticity after the critical period of visual development. Here, we have established a modified Y‐maze apparatus for investigating experience‐dependent plasticity in Drosophila. Using this setup we demonstrate that flies after the critical period have bidirectional modifications of the phototaxis preference behavior (PPB) induced by visual deprivation and experience: Visual deprivation decreases the preference of flies for visible light, while visual experience exerts the opposite effect. We also found an age‐dependent PPB plasticity induced by visual deprivation. Molecular and cellular studies suggest that the N‐methyl‐ d ‐aspartate receptors (NMDARs) mediate ocular dominance plasticity in visual cortex in mammals, but direct behavioral evidence is lacking. Here, we used the genetic approaches to demonstrate that NMDAR1, which is NMDARs subunit in Drosophila, can mediate PPB plasticity in young and adult flies. These findings provide direct behavioral evidence that NMDAR1 mediates PPB plasticity in Drosophila. Our results suggest that mammals and insects have analogous mechanisms for experience‐dependent plasticity and its regulation by NMDAR signaling.  相似文献   

16.
Dispersal is increasingly recognized as a process of fundamental importance in population dynamics and other aspects of biology. Concurrently, interest in age‐dependent effects on survival, including actuarial senescence, has increased, especially in studies of long‐lived seabirds. Nevertheless, datasets necessary for studying dispersal and age‐dependent effects are few, as these require simultaneous data collection at two or more sites over many years. We conducted a 22‐year capture‐mark‐recapture study of Common Terns Sterna hirundo at three breeding colonies 10–26 km apart in Buzzards Bay, Massachusetts, USA. All birds in the study were of known age (range 2–28 years, median 7 years, = 3290) and 77% were of known sex. Estimates of adult recapture, survival and breeding dispersal rates were obtained for all age‐classes from 2 to 20 years. The model that acquired 100% of the QAICc (Akaike's Information Criterion adjusted for small sample size and overdispersion) weight in our analysis included age‐specificity in all parameters but no relationship with sex. Our study may be the first to demonstrate age‐specificity in recapture, survival and breeding dispersal rates simultaneously, using a single model. Annual rates of breeding dispersal ranged from <0.01 to 0.27, with a population‐weighted mean of 0.065; they decreased with increasing distance between colony sites and, unexpectedly, increased with age. Breeding dispersal did not increase consistently after years with predation on adults or after an attempt to displace birds from an oiled site. Survival rates did not vary among sites or years. Annual adult survival increased from 0.80 in 2‐year‐old birds to a maximum of approximately 0.88 around age 8 years and then declined to 0.76 at age 20 years, yielding strong evidence for actuarial senescence. The peak annual survival rate of 0.88 is at the low end of other estimates for Common Tern and in the lower part of the range recorded for other terns, but total numbers in the three colonies increased seven‐fold during the study. This was part of a slower increase in the regional population, with net immigration into the study colonies. Our results demonstrate the biological significance of breeding dispersal in local population dynamics and age‐related effects on survival and dispersal from a metapopulation of a long‐lived seabird.  相似文献   

17.
Neurodegeneration induced by the NMDA receptor antagonist, phencyclidine (PCP), has been used to model the pathogenesis of schizophrenia in the developing rat. Acute and sub-chronic administration of PCP in perinatal rats results in different patterns of neurodegeneration. The potential role of an alteration in the membrane expression of NMDA receptors in PCP-induced degeneration is unknown. Acute PCP treatment on postnatal day 7 increased membrane levels of both NMDA receptor subunit 1 (NR1) and NMDA receptor subunit 2B (NR2B) proteins in the frontal cortex; conversely, NR1 and NR2B protein levels in the endoplasmic reticulum fraction were decreased. Acute PCP administration also resulted in increased membrane cortical protein levels of post-synaptic density-95, as well as the activation of calpain, which paralleled the observed increase in membrane expression of NR1 and NR2B. Further, administration of the calpain inhibitor, MDL28170, prevented PCP-induced up-regulation of NR1 and NR2B. On the other hand, sub-chronic PCP treatment on postnatal days 7, 9 and 11 caused an increase in NR1 and NR2A expression, which was accompanied by an increase in both NR1 and NR2A in the endoplasmic reticulum fraction. Sub-chronic PCP administration did not alter levels of post-synaptic density-95 and had no effect on activation of calpain. These data suggest that increased trafficking accounts for up-regulation of cortical NR1/NR2B subunits following acute PCP administration, while increased protein synthesis likely accounts for the increased expression of NR1/NR2A following sub-chronic PCP treatment of the developing rat. These results are discussed in the context of the differential neurodegeneration caused by acute and subchronic PCP administration in the developing rat brain.  相似文献   

18.
As an endogenous gaseous molecule, hydrogen sulfide (H2S) has attracted extensive attention because of its multiple biological effects. However, the effect of H2S on amygdala‐mediated emotional memory has not been elucidated. Here, by employing Pavlovian fear conditioning, an animal model widely used to explore the neural substrates of emotion, we determined whether H2S could regulate emotional memory. It was shown that the H2S levels in the amygdala of rats were significantly elevated after cued fear conditioning. Both intraamygdala and systemic administrations of H2S markedly enhanced amygdala‐dependent cued fear memory in rats. Moreover, it was found that H2S selectively increased the surface expression and currents of NMDA‐type glutamate receptor subunit 2B (GluN2B)‐containing NMDA receptors (NMDARs) in lateral amygdala of rats, whereas blockade of GluN2B‐containing NMDARs in lateral amygdala eliminated the effects of H2S to enhance amygdalar long‐term potentiation and cued fear memory. These results demonstrate that H2S can regulate amygdala‐dependent emotional memory by promoting the function of GluN2B‐containing NMDARs in amygdala, suggesting that H2S‐associated signaling may hold potential as a new target for the treatment of emotional disorders.

  相似文献   


19.
In the mammalian brain, new neurons are continuously generated throughout life in the dentate gyrus (DG) of the hippocampus. Previous studies have established that newborn neurons migrate a short distance to be integrated into a pre-existing neuronal circuit in the hippocampus. How the migration of newborn neurons is governed by extracellular signals, however, has not been fully understood. Here, we report that NMDA receptor (NMDA-R)-mediated signaling is essential for the proper migration and positioning of newborn neurons in the DG. An intraperitoneal injection of the NMDA-R antagonists, memantine, or 3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP) into adult male mice caused the aberrant positioning of newborn neurons, resulting in the overextension of their migration in the DG. Interestingly, we revealed that the administration of NMDA-R antagonists leads to a decrease in the expression of Disrupted-In-Schizophrenia 1 (DISC1), a candidate susceptibility gene for major psychiatric disorders such as schizophrenia, which is also known as a critical regulator of neuronal migration in the DG. Furthermore, the overextended migration of newborn neurons induced by the NMDA-R antagonists was significantly rescued by exogenous expression of DISC1. Collectively, these results suggest that the NMDA-R signaling pathway governs the migration of newborn neurons via the regulation of DISC1 expression in the DG.  相似文献   

20.
Spontaneous, synchronized electrical activity (SSA) plays important roles in nervous system development, but it is not clear what causes it to start and stop at the appropriate times. In previous work, we showed that when SSA in neonatal mouse cortex is blocked by TTX in cultured slices during its normal time of occurrence (E17-P3), it fails to stop at P3 as it does in control cultured slices, but instead persists through at least P10. This indicates that SSA is self-extinguishing. Here we use whole-cell recordings and [Ca2+]i imaging to compare control and TTX-treated slices to isolate the factors that normally extinguish SSA on schedule. In TTX-treated slices, SSA bursts average 4 s in duration, and have two components. The first, lasting about 1 s, is mediated by AMPA receptors; the second, which extends the burst to 4 s and is responsible for most of the action potential generation during the burst, is mediated by NMDA receptors. In later stage (P5-P9) control slices, after SSA has declined to about 4% of its peak frequency, bursts lack this long NMDA component. Blocking this NMDA component in P5-P9 TTX-treated slices reduces SSA frequency, but not to the low values found in control slices, implying that additional factors help extinguish SSA. GABA(A) inhibitors restore SSA in control slices, indicating that the emergence of GABA(A)-mediated inhibition is another major factor that helps terminate SSA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号