首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Congenital human cytomegalovirus (CMV) infection is the leading nongenetic etiology of sensorineural hearing loss (SNHL) at birth and prelingual SNHL not expressed at birth. The paucity of temporal bone autopsy specimens from infants with congenital CMV infection has hindered the critical correlation of histopathology with pathogenesis. Here, we present an in vitro embryonic mouse model of CMV‐infected cochleas that mimics the human sites of viral infection and associated pathology. There is a striking dysplasia/hyperplasia in mouse CMV‐infected cochlear epithelium and mesenchyme, including organ of Corti hair and supporting cells and stria vascularis. This is concomitant with significant dysregulation of p19, p21, p27, and Pcna gene expression, as well as proliferating cell nuclear antigen (PCNA) protein expression. Other pathologies similar to those arising from known deafness gene mutations include downregulation of KCNQ1 protein expression in the stria vascularis, as well as hypoplastic and dysmorphic melanocytes. Thus, this model provides a relevant and reliable platform within which the detailed cell and molecular biology of CMV‐induced deafness may be studied. Birth Defects Research (Part A), 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
DFN3, the most prevalent X-linked hearing loss, is caused by mutations in the POU3F4 gene. Previous studies in Pou3f4 knockout mice suggest that defective otic fibrocytes in the spiral ligament of the cochlear lateral wall may underlie the hearing loss in DFN3. To better understand the pathological mechanisms of the DFN3 hearing loss, we analyzed inner ears of Pou3f4-deficient mice during development. Our results indicate that compartmentalization of the spiral ligament mesenchyme setting up boundaries for specific otic fibrocytes occurs normally in Pou3f4-deficient cochlea. However, differentiation of the compartmentalized mesenchyme into specific otic fibrocytes was blocked in the absence of Pou3f4 function. In addition, we found that stria vascularis in the cochlear lateral wall was also affected in Pou3f4-deficient cochlea. Unlike the otic fibrocytes, differentiation of stria vascularis was completed in the absence of Pou3f4 function, yet expression of Kir4.1 channels in the strial intermediate cells, essential for the sound transduction, was lost afterwards. These results suggest that Pou3f4 deficiency causes defects in both otic fibrocytes and stria vascularis at different developmental stages and by different pathological mechanisms, which may account for the progressive nature of DFN3 hearing loss.  相似文献   

3.
Auditory function and cochlear morphology have previously been described in the postnatal German waltzing guinea pig, a strain with recessive deafness. In the present study, cochlear histopathology was further investigated in the inner ear of the developing German waltzing guinea pig (gw/gw). The lumen of the cochlear duct diminished progressively from embryonic day (E) 35 to E45 and was absent at E50 because of the complete collapse of Reissner's membrane onto the hearing organ. The embryonic stria vascularis, consisting of a simple epithelium, failed to transform into the complex trilaminar tissue seen in normal animals and displayed signs of degeneration. Subsequent degeneration of the sensory epithelium was observed from E50 and onwards. Defective and insufficient numbers of melanocytes were observed in the developing gw/gw stria vascularis. A gene involved in cochlear melanocyte development, Pax3, was markedly reduced in lateral wall tissue of the cochlea of both E40 and adult gw/gw individuals, whereas its expression was normal in the skin and diaphragm muscle of adult gw/gw animals. The Pax3 gene may thus be involved in the pathological process but is unlikely to be the primary mutated gene in the German waltzing guinea pig. TUNEL assay showed no signs of apoptotic cell death in the developing stria vascularis of this type of guinea pig. Thus, malformation of the stria vascularis appears to be the primary defect in the inner ear of the German waltzing guinea pig. Defective and insufficient numbers of melanocytes might migrate to the developing stria vascularis but fail to provide the proper support for the subsequent development of marginal and basal cells, thereby leading to stria vascularis malformation and dysfunction in the inner ear of the German waltzing guinea pig.  相似文献   

4.
Zhao  Hong-Bo 《BMC cell biology》2016,17(1):16-126
Pannexin (Panx) is a gene family encoding gap junction proteins in vertebrates. So far, three isoforms (Panx1, 2 and 3) have been identified. All of three Panx isoforms express in the cochlea with distinct expression patterns. Panx1 expresses in the cochlea extensively, including the spiral limbus, the organ of Corti, and the cochlear lateral wall, whereas Panx2 and Panx3 restrict to the basal cells of the stria vascularis in the lateral wall and the cochlear bony structure, respectively. However, there is no pannexin expression in auditory sensory hair cells. Recent studies demonstrated that like connexin gap junction gene, Panx1 deficiency causes hearing loss. Panx1 channels dominate ATP release in the cochlea. Deletion of Panx1 abolishes ATP release in the cochlea and reduces endocochlear potential (EP), auditory receptor current/potential, and active cochlear amplification. Panx1 deficiency in the cochlea also activates caspase-3 cell apoptotic pathway leading to cell degeneration. These new findings suggest that pannexins have a critical role in the cochlea in regard to hearing. However, detailed information about pannexin function in the cochlea and Panx mutation induced hearing loss still remain largely undetermined. Further studies are required.  相似文献   

5.
The distribution of protein gene product (PGP) 9.5 was analyzed in the human fetal cochlea using the indirect immunofluorescence method. In the 12- and 14-week-old human fetuses, the cells of the greater epithelial ridge and the lesser epithelial ridge were overall labelled with PGP 9.5, while the stria vascularis and the Reissner's membrane did not exhibit any staining. Spiral ganglion cells and cochlear nerve fibers were labelled with PGP 9.5 and PGP 9.5-positive nerve fibers made contact with the basement membrane of the Corti primordium in the 12-week-old human fetus. These results suggest that PGP 9.5 might be used as a histological marker of maturation and innervation in the human cochlea.  相似文献   

6.
7.
8.
9.
The human deafness‐pigmentation syndromes, Waardenburg syndrome (WS) type 2a, and Tietz syndrome are characterized by profound deafness but only partial cutaneous pigmentary abnormalities. Both syndromes are caused by mutations in MITF. To illuminate differences between cutaneous and otic melanocytes in these syndromes, their development and survival in heterozygous Microphthalmia‐White (MitfMi‐wh/+) mice were studied and hearing function of these mice characterized. MitfMi‐wh/+ mice have a profound hearing deficit, characterized by elevated auditory brainstem response thresholds, reduced distortion product otoacoustic emissions, absent endocochlear potential, loss of outer hair cells, and stria vascularis abnormalities. MitfMi‐wh/+ embryos have fewer melanoblasts during embryonic development than their wild‐type littermates. Although cochlear melanocytes are present at birth, they disappear from the MitfMi‐wh/+ cochlea between P1 and P7. These findings may provide insight into the mechanism of melanocyte and hearing loss in human deafness‐pigmentation syndromes such as WS and Tietz syndrome and illustrate differences between otic and follicular melanocytes.  相似文献   

10.
In the cochlea, the mammalian auditory organ, fibrocytes of the mesenchymal nonsensory regions play important roles in cochlear physiology, including the maintenance of ionic and hydric components in the endolymph. Occurrence of human deafness in fibrocyte alterations underlines their critical roles in auditory function. We recently described a novel gene, Otos, which encodes otospiralin, a small protein of unknown function that is produced by the fibrocytes of the cochlea and vestibule. We now have generated mice with deletion of Otos and found that they show moderate deafness, with no frequency predominance. Histopathology revealed a degeneration of type II and IV fibrocytes, while hair cells and stria vascularis appeared normal. Together, these findings suggest that impairment of fibrocytes caused by the loss in otospiralin leads to abnormal cochlear physiology and auditory function. This moderate dysfunction may predispose to age-related hearing loss.  相似文献   

11.
目的: 原代培养豚鼠耳蜗血管纹毛细血管内皮细胞(ECs),探讨跨膜蛋白16A(TMEM16A)在耳蜗血管纹毛细血管ECs衰老过程中的变化及对耳蜗血管纹毛细血管ECs凋亡及衰老的影响。方法: 原代培养耳蜗血管纹毛细血管ECs,细胞传代构建衰老模型并根据CCK-8及β-半乳糖苷酶(SA-β-gal)染色评估细胞衰老程度,衰老细胞被随机分为衰老组(P12)、溶剂组(P12+DMSO)、T16Ainh-A01组(P12+T16Ainh-A01),免疫荧光及Western blot检测TMEM16A在ECs上的表达及分布,流式细胞术检测各组细胞凋亡率,Western blot检测各组Bax、Bcl-2、cleaved casepase-3蛋白表达水平。结果: 原代培养的耳蜗血管纹毛细血管ECs阳性率在95%以上,并确定第12代耳蜗血管纹毛细血管ECs为衰老组,与年轻组ECs相比,衰老组ECs上TMEM16A荧光及蛋白表达显著增强(P<0.05),细胞凋亡率升高,衰老组给予T16Ainh-A01干预24 h后,Bax、cleaved casepase-3的蛋白表达下调(P<0.01),Bcl-2的蛋白表达上调(P<0.05),凋亡率下降且SA-β-gal阳性细胞率明显下降(P<0.01)。结论: 衰老耳蜗血管纹毛细血管ECs凋亡增多且TMEM16A表达增加,TMEM16A特异性阻断剂T16Ainh-A01可以降低耳蜗血管纹毛细血管ECs的凋亡和衰老程度,提示TMEM16A可能参与耳蜗血管纹毛细血管ECs的凋亡和衰老过程。  相似文献   

12.
13.
Fine structure of the intracochlear potential field. I. The silent current.   总被引:2,自引:0,他引:2  
Field potentials were recorded along radial tracks in scala tympani and scala vestibuli of the guinea-pig cochlea. A current density analysis revealed standing current density profiles that were qualitatively similar between animals and between the second and third cochlear turns. Radial standing current densities were greatest at or near the spiral ligament. All the scala vestibuli current density profiles were scaled versions of one another while the scala tympani current density profiles showed more variability. Acoustic stimuli modulated the standing current and there was a cochlear microphonic current density peak in scala tympani near the organ of Corti. The results are summarized with a current-density field line model, the key element of which is a constant current pumped into scale media by the stria vascularis. The standing potential gradients drive current from each perilymphatic chamber into the spiral ligament en route to the lateral surface of the stria vascularis. The strial current is divided between the receptor cell pathway and leakage pathways. The standing current through the leakage pathways is indirectly modulated by acoustic stimulation through the modulation of the endocochlear potential. The reciprocal modulation of current between hair cell and leakage pathways suggests that the stria vascularis maintains a constant current during acoustic stimulation. The cochlear standing current is similar to the retinal dark current in its importance for sensory transduction but the fact that the silent current is generated by the stria vascularis and not the receptor cells provides significant benefits for the detection of mechanical stimuli.  相似文献   

14.
Large-scale deletions of mitochondrial DNA (mtDNA) have been associated with aging and disease in post-mitotic tissues. These post-mitotic tissues, including skeletal muscle, heart and brain, are heavily dependent on intact functional mitochondria. The cochlear tissues are known to contain an abundance of mitochondria. This observation stimulated a search for mtDNA deletions in the cochlea and its elements using a sensitive nested PCR methodology and long range PCR to explain the functional deficits observed in age-related hearing loss. The presence of the so-called “common” deletion (CD) was detected in cochlear tissue from two individuals with age-related hearing loss, 73 and 78 years of age. Three additional deletions, that to our knowledge have not been previously reported, were also identified in these two individuals, including a 5354 bp deletion flanked with a 3 bp repeat, a 9682 bp deletion flanked by a 10 bp repeat and a 5142 bp deletion without a flanking repeat. The 9682 and 5142 bp deletions were also detected in an individual 39 years of age with normal hearing, however, these two deletions were not detected in a normal hearing individual 9 years of age. In contrast, the 5354 bp deletion was detected in all four of the individuals studied. To localize the deletions within the cochlea, the cochlear elements were removed by laser capture microdissection (LCM) and the mtDNA from these tissues was studied. The 5142 and 5354 bp deletions were detected in the organ of corti, spiral ligament, and ganglion cells, but not in the stria vascularis. These findings correlate with the reduction in the number of spiral ganglion cells and outer hair cells, and the normal stria vascularis volume observed in this individual. All four of these deletions involve the cytochrome c oxidase (COX) subunit III gene, encoded by mtDNA. These observations suggest that multiple mtDNA deletions may contribute to a deficit in mitochondrial function in the cochlea and result in hearing loss if a level of physiological significance is reached.  相似文献   

15.
Physiological processes in the cochlea associated with sound transduction and maintenance of the unique electrochemical environment are metabolically demanding. Creatine maintains ATP homeostasis by providing high-energy phosphates for ATP regeneration which is catalyzed by creatine kinase (CK). Cellular uptake of creatine requires a specific high affinity sodium- and chloride-dependent creatine transporter (CRT). This study postulates that this CRT is developmentally regulated in the rat cochlea. CRT expression was measured by quantitative real-time RT-PCR and immunohistochemistry in the postnatal (P0–P14) and adult (P22–P56) rat cochlea. The maximum CRT expression was reached at the onset of hearing (P12), and this level was maintained through to adulthood. CRT immunoreactivity was strongest in the sensory inner hair cells, supporting cells and the spiral ganglion neurons. Cochlear distribution of the CK brain isoform (CKB) was also assessed by immunohistochemistry and compared with the distribution of CRT in the developing and adult cochlea. CKB was immunolocalized in the organ of Corti supporting cells, and the lateral wall tissues involved in K+ cycling, including stria vascularis and spiral ligament fibrocytes. Similar to CRT, CKB reached peak expression after the onset of hearing. Differential spatial and temporal expression of CRT and CK in cochlear tissues during development may reflect differential requirements for creatine–phosphocreatine buffering to replenish ATP consumed during energy-dependent metabolic processes, especially around the period when the cochlea becomes responsive to airborne sound.  相似文献   

16.
本文对74只豚鼠,通过颈静脉注入大剂量的速尿,建立了豚鼠急性耳蜗微循环障碍动物模型。利用动态观测手段中的激光多普勒测试技术及静态观察方法的螺旋韧带血管纹红细胞计数技术,探讨了微波对成年豚鼠耳蜗微循环的保护作用。为保护和改善动物的听力水平提供更多的资料。  相似文献   

17.
18.
19.
In the cochlea, sensory transduction depends on the endocochlear potential (EP) and the unique composition of the endolymph, both of which are maintained by a highly specialized epithelium at the cochlear lateral wall, the stria vascularis. The generation of the EP by the stria vascularis, in turn, relies on the insulation of an intrastrial extracellular compartment by epithelial basal cells. Despite the physiological importance of basal cells, their cellular origin and the molecular pathways that lead to their differentiation are unclear. Here, we show by genetic lineage tracing in the mouse that basal cells exclusively derive from the otic mesenchyme. Conditional deletion of E-cadherin in the otic mesenchyme and its descendants does not abrogate the transition from mesenchymal precursors to epithelial basal cells. Rather, dedifferentiation of intermediate cells, altered morphology of basal and marginal cells and hearing impairment due to decreased EP in E-cadherin mutant mice demonstrate an essential role of E-cadherin in terminal basal cell differentiation and their interaction with other strial cell types to establish and maintain the functional architecture of the stria vascularis.  相似文献   

20.
Summary The distribution of protein gene product (PGP) 9.5 was analyzed in the human fetal cochlea using the indirect immunofluorescence method. In the 12- and 14-week-old human fetuses, the cells of the greater epithelial ridge and the lesser epithelial ridge were overall labelled with PGP 9.5, while the stria vascularis and the Reissner's membrane did not exhibit any staining. Spiral ganglion cells and cochlear nerve fibers were labelled with PGP 9.5 and PGP 9.5-positive nerve fibers made contact with the basement membrane of the Corti primordium in the 12-week-old human fetus. These results suggest that PGP 9.5 might be used as a histological marker of maturation and innervation in the human cochlea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号