首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Summary During fictive swimming in the isolated spinal cord of the lamprey (Ichthyomyzon unicuspis andPetromyzon marinus) the membrane potentials of motoneurons (MNs), lateral interneurons (L INs), and CC interneurons (CC INs) oscillate between a depolarised and a relatively hyperpolarised phase. After intracellular Cl injections (usually combined with a DC hyperpolarisation) IPSP's became depolarising, and in cells which were phasically inhibited, phases of relative hyperpolarisation became phases of relative depolarisation. The peak depolarisation and/or spike burst mid point in MNs after Cl injection occurred at a phase of 0.65 ± 0.12 (mean ±S.D.) in the cycle, with zero being the start of the ipsilateral ventral root burst. In CC INs the peak depolarisation and/or spike burst mid point after Cl occurred significantly earlier, at a phase of 0.40 ± 0.18. L INs were also phasically inhibited with peak depolarisation and/or spike burst mid point after Cl injection at an intermediate phase of 0.52 ± 0.21. It is concluded that the central pattern generator for fictive swimming has at least three synaptic outputs: an early excitation, and inhibition at a range of phases, which could be combinations of an early and a late inhibition.Abbreviations CC IN interneuron with contralateral caudal axon - MN motoneuron - L IN lateral interneuron - VR ventral root  相似文献   

2.
The distribution in the spinal cord of the trigeminal primary projections in the frog Rana ridibunda was studied by means of the anterograde transport of horseradish peroxidase (HRP). Upon entering the medulla via the single trigeminal root, a conspicuous descending tract that reaches the cervical spinal cord segments is established. This projection arises in the ophthalmic (V1), maxillary (V2), and mandibular (V3) trigeminal nerve subdivisions. In the spinal cord, only a minor somatotopic arrangement of the trigeminal fibers was observed, with the fibers arising in V3 terminating somewhat more medially than those from V1 and V2. A dense projection to the medial aspect of the spinal cord, above the central canal, primarily involves V3. Each trigeminal branch sends projections at cervical levels to the contralateral dorsal field, and those from V2 are most abundant. Bilateral experiments with HRP application show convergence of primary trigeminal and spinal afferents within the dorsal field of the spinal cord. The pattern of arrangement of the trigeminal primary afferent fibers in the spinal cord of this frog largely resembles that of amniotes. However, the organization seems simpler and the slight somatotopic distribution of V1, V2, and V3 fibers is similar to the condition in other anamniotes. © 1993 Wiley-Liss, Inc.  相似文献   

3.
The three vertebrate Gli proteins play a central role in mediating Hedgehog (Hh)-dependent cell fate specification in the developing spinal cord; however, their individual contributions to this process have not been fully characterized. In this paper, we have addressed this issue by examining patterning in the spinal cord of Gli2;Gli3 double mutant embryos, and in chick embryos transfected with dominant activator forms of Gli2 and Gli3. In double homozygotes, Gli1 is also not expressed; thus, all Gli protein activities are absent in these mice. We show that Gli3 contributes activator functions to ventral neuronal patterning, and plays a redundant role with Gli2 in the generation of V3 interneurons. We also show that motoneurons and three classes of ventral neurons are generated in the ventral spinal cord in double mutants, but develop as intermingled rather than discrete populations. Finally, we provide evidence that Gli2 and Gli3 activators control ventral neuronal patterning by regulating progenitor segregation. Thus, multiple ventral neuronal types can develop in the absence of Gli function, but require balanced Gli protein activities for their correct patterning and differentiation.  相似文献   

4.
During the development of the nervous system, the migration of many cells and axons is guided by extracellular molecules. These molecules bind to receptors at the tips of the growth cones of migrating axons and trigger intracellular signaling to steer the axons along the correct trajectories. We have identified a novel mutant, enu-3 (enhancer of Unc), that enhances the motor neuron axon outgrowth defects observed in strains of Caenorhabditis elegans that lack either the UNC-5 receptor or its ligand UNC-6/Netrin. Specifically, the double-mutant strains have enhanced axonal outgrowth defects mainly in DB4, DB5 and DB6 motor neurons. enu-3 single mutants have weak motor neuron axon migration defects. Both outgrowth defects of double mutants and axon migration defects of enu-3 mutants were rescued by expression of the H04D03.1 gene product. ENU-3/H04D03.1 encodes a novel predicted putative trans-membrane protein of 204 amino acids. It is a member of a family of highly homologous proteins of previously unknown function in the C. elegans genome. ENU-3 is expressed in the PVT interneuron and is weakly expressed in many cell bodies along the ventral cord, including those of the DA and DB motor neurons. We conclude that ENU-3 is a novel C. elegans protein that affects both motor axon outgrowth and guidance.  相似文献   

5.
Neuronal migration and lamina-specific primary afferent projections are crucial for establishing spinal cord circuits, but the underlying mechanisms are poorly understood. Here, we report that in mice lacking Dcc (deleted in colorectal cancer), some early-born neurons could not migrate ventrally in the spinal cord. Conversely, forced expression of Dcc caused ventral migration and prevented dorsolateral migration of late-born spinal neurons. In the superficial layer of the spinal cord of Dcc-/- mutants, mislocalized neurons are followed by proprioceptive afferents, while their presence repels nociceptive afferents through Sema3a. Thus, our study has shown that Dcc is a key molecule required for ventral migration of early-born neurons, and that appropriate neuronal migration is a prerequisite for, and coupled to, normal projections of primary afferents in the developing spinal cord.  相似文献   

6.
7.
Slit-Robo signaling guides commissural axons away from the floor-plate of the spinal cord and into the longitudinal axis after crossing the midline. In this study we have evaluated the role of the Slit-Robo GTPase activating protein 3 (srGAP3) in commissural axon guidance using a knockout (KO) mouse model. Co-immunoprecipitation experiments confirmed that srGAP3 interacts with the Slit receptors Robo1 and Robo2 and immunohistochemistry studies showed that srGAP3 co-localises with Robo1 in the ventral and lateral funiculus and with Robo2 in the lateral funiculus. Stalling axons have been reported in the floor-plate of Slit and Robo mutant spinal cords but our axon tracing experiments revealed no dorsal commissural axon stalling in the floor plate of the srGAP3 KO mouse. Interestingly we observed a significant thickening of the ventral funiculus and a thinning of the lateral funiculus in the srGAP3 KO spinal cord, which has also recently been reported in the Robo2 KO. However, axons in the enlarged ventral funiculus of the srGAP3 KO are Robo1 positive but do not express Robo2, indicating that the thickening of the ventral funiculus in the srGAP3 KO is not a Robo2 mediated effect. We suggest a role for srGAP3 in the lateral positioning of post crossing axons within the ventrolateral funiculus.  相似文献   

8.
9.
10.
Wnt-1 and Wnt-3a proto-on-cogenes have been implicated in the development of midbrain and hindbrain structures. Evidence for such a role has been derived from in situ hybridization studies showing Wnt-1 and -3a expression in developing cranial and spinal cord regions and from studies of mutant mice whose Wnt-1 genes have undergone targeted disruption by homologous recombination. Wnt-1 null mutants exhibit cranial defects but no spinal cord abnormalities, despite expression of the gene in these regions. The absence of spinal cord abnormalities is thought to be due to a functional compensation of the Wnt-1 deficiency by related genes, a problem that has complicated the analysis of null mutants of other developmental genes as well. Herein, we describe the attenuation of Wnt-1 expression using antisense oligonucleotide inhibition in mouse embryos grown in culture. We induce similar mid- and hindbrain abnormalities as those seen in the Wnt-1 null mutant mice. Attentuation of Wnt-1 expression was also associated with cardiomegaly resulting in hemostasis. These findings are consistent with the possibility that a subset of Wnt-1 expressing cells include neural crest cells known to contribute to septation of the truncus arteriosus and to formation of the visceral arches. Antisense knockout of Wnt-3a, a gene structurely related to Wnt-1, targeted the forebrain and midbrain region, which were hy-poplastic and failed to expand, and the spinal cord, which exhibited lateral outpocketings at the level of the forelimb buds. Dual antisense knockouts of Wnt-1 and Wnt-3a targeted all brain regions leading to incomplete closure of the cranial neural folds, and an increase in the number and severity of outpocketings along the spinal cord, suggesting that these genes complement one another to produce normal patterning of the spinal cord. The short time required to assess the mutant phenotype (2 days) and the need for limited sequence information of the target gene (20-25 nu-cleotides) make this antisense oligonucleotide/ whole embryo culture system ideal for testing the importance of specific genes and their interactions in murine embryonic development. © 1993 Wiley-Liss, Inc.  相似文献   

11.
Zebrafish exhibit robust regeneration following spinal cord injury, promoted by macrophages that control post-injury inflammation. However, the mechanistic basis of how macrophages regulate regeneration is poorly understood. To address this gap in understanding, we conducted a rapid in vivo phenotypic screen for macrophage-related genes that promote regeneration after spinal injury. We used acute injection of synthetic RNA Oligo CRISPR guide RNAs (sCrRNAs) that were pre-screened for high activity in vivo. Pre-screening of over 350 sCrRNAs allowed us to rapidly identify highly active sCrRNAs (up to half, abbreviated as haCRs) and to effectively target 30 potentially macrophage-related genes. Disruption of 10 of these genes impaired axonal regeneration following spinal cord injury. We selected 5 genes for further analysis and generated stable mutants using haCRs. Four of these mutants (tgfb1a, tgfb3, tnfa, sparc) retained the acute haCR phenotype, validating the approach. Mechanistically, tgfb1a haCR-injected and stable mutant zebrafish fail to resolve post-injury inflammation, indicated by prolonged presence of neutrophils and increased levels of il1b expression. Inhibition of Il-1β rescues the impaired axon regeneration in the tgfb1a mutant. Hence, our rapid and scalable screening approach has identified functional regulators of spinal cord regeneration, but can be applied to any biological function of interest.  相似文献   

12.
13.
Over recent years the secreted guidance cue, netrin-1, and its receptor, DCC, have been shown to be an essential guidance system driving axon pathfinding within the developing vertebrate central nervous system (CNS). Mice lacking DCC exhibit severe defects in commissural axon extension towards the floor plate demonstrating that the DCC-netrin guidance system is largely responsible for directing axonal projections toward the ventral midline in the developing spinal cord (Fazeli et al., Nature 386 (1997) 796). In addition, these mutants lack several major commissures within the forebrain, including the corpus callosum and the hippocampal commissure. In contrast to the CNS, the role of the DCC guidance receptor in the development of the mammalian peripheral and enteric nervous systems (PNS and ENS) has not been investigated. Here we demonstrate using immunohistochemical analysis that the DCC receptor is present in the developing mouse PNS where it is found on spinal, segmental, and sciatic nerves, and in developing sensory ganglia and their associated axonal projections. In addition, DCC is present in the ENS throughout the early developmental phase.  相似文献   

14.
In Drosophila, Slit at the midline activates Robo receptors on commissural axons, thereby repelling them out of the midline into distinct longitudinal tracts on the contralateral side of the central nervous system. In the vertebrate spinal cord, Robo1 and Robo2 are expressed by commissural neurons, whereas all three Slit homologs are expressed at the ventral midline. Previous analysis of Slit1;Slit2 double mutant spinal cords failed to reveal a defect in commissural axon guidance. We report here that when all six Slit alleles are removed, many commissural axons fail to leave the midline, while others recross it. In addition, Robo1 and Robo2 single mutants show guidance defects that reveal a role for these two receptors in guiding commissural axons to different positions within the ventral and lateral funiculi. These results demonstrate a key role for Slit/Robo signaling in midline commissural axon guidance in vertebrates.  相似文献   

15.
16.
In the developing spinal cord, axons project in both the transverse plane, perpendicular to the floor plate, and in the longitudinal plane, parallel to the floor plate. For many axons, the floor plate is a source of long- and short-range guidance cues that govern growth along both dimensions. We show here that B-class transmembrane ephrins and their receptors are reciprocally expressed on floor plate cells and longitudinally projecting axons in the mouse spinal cord. During the period of commissural axon pathfinding, B-class ephrin protein is expressed at the lateral floor plate boundaries, at the interface between the floor plate and the ventral funiculus. In contrast, B-class Eph receptors are expressed on decussated commissural axon segments projecting within the ventral funiculus, and on ipsilaterally projecting axons constituting the lateral funiculus. Soluble forms of all three B-class ephrins bind to, and induce the collapse of, commissural growth cones in vitro. The collapse-inducing activity associated with B-class ephrins is likely to be mediated by EphB1. Taken together, these data support a possible role for repulsive B-class Eph receptor/ligand interactions in constraining the orientation of longitudinal axon projections at the ventral midline.  相似文献   

17.
18.
Dorsal root ganglion (DRG) neurons extend axons to specific targets in the gray matter of the spinal cord. During development, DRG axons grow into the dorsolateral margin of the spinal cord and projection into the dorsal mantle layer occurs after a ;waiting period' of a few days. Netrin 1 is a long-range diffusible factor expressed in the ventral midline of the developing neural tube, and has chemoattractive and chemorepulsive effects on growing axons. Netrin 1 is also expressed in the dorsal spinal cord. However, the roles of dorsally derived netrin 1 remain totally unknown. Here, we show that dorsal netrin 1 controls the correct guidance of primary sensory axons. During the waiting period, netrin 1 is transiently expressed or upregulated in the dorsal spinal cord, and the absence of netrin 1 results in the aberrant projection of sensory axons, including both cutaneous and proprioceptive afferents, into the dorsal mantle layer. Netrin 1 derived from the dorsal spinal cord, but not the floor plate, is involved in the correct projection of DRG axons. Furthermore, netrin 1 suppresses axon outgrowth from DRG in vitro. Unc5c(rcm) mutant shows abnormal invasion of DRG axons as observed in netrin 1 mutants. These results are the first direct evidence that netrin 1 in the dorsal spinal cord acts as an inhibitory cue for primary sensory axons and is a crucial signal for the formation of sensory afferent neural networks.  相似文献   

19.
Summary In the lamprey,Ichthyomyzon unicuspis, the wave of activity required for normal swimming movements can be generated by a central pattern generator (CPG) residing in the spinal cord. A constant phase coupling between spinal segments can be organized by intersegmental coordinating neurons intrinsic to the cord. The rostral and caudal segmental oscillators of the CPG have different preferred frequencies when separated from each other. Therefore the system must maintain the segmental oscillators of the locomotor CPG at a single common frequency and with the proper relative timing. Using selective lesions and a split-bath, it is demonstrated that the coordinating system is comprised of at least 3 subsystems, short-axon systems in the lateral and medial tracts and a long axon system in the lateral tracts. Each alone can sustain relatively stable coordinated activity.Abbreviations CPG central pattern generator - NMDA N-methyl-D-aspartate - VR ventral root  相似文献   

20.
The ventral cord in C. elegans is the major longitudinal axon tract containing essential components of the motor circuit. In genetic screens using transgenic animals expressing neuron specific GFP reporters, we identified twelve genes required for the correct outgrowth of interneuron axons of the motor circuit. In mutant animals, axons fail to navigate correctly towards the ventral cord or fail to fasciculate correctly within the ventral cord. Several of those mutants define previously uncharacterized genes. Two of the genes, ast-4 and ast-7, are involved in the generation of left-right asymmetry of the two ventral cord axon tracts. Three other genes specifically affect pioneer-follower relationships between early and late outgrowing axons, controlling either differentiation of a pioneer neuron (lin-11) or the ability of axons to follow a pioneer (ast-2, unc-130). Navigation of the ventral cord pioneer neuron AVG itself is defective in ast-4, ast-6 and unc-130 mutants. Correlation of these defects with navigation defects in different classes of follower axons revealed a true pioneer role for AVG in the guidance of interneurons in the ventral cord. Taken together, these genes provide a basis to address different aspects of axon navigation within the ventral cord of C. elegans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号