首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Skeletal elements of the gill arches of adult cypriniform fishes vary widely in number, size, and shape and are important characters in morphologically based phylogenetic studies. Understanding the developmental basis for this variation is thus phylogenetically significant but also important in relation to the many developmental genetic and molecularly based studies of the early developing and hence experimentally tractable gill arches in the zebrafish, a cyprinid cypriniform. We describe the sequence of the chondrification and ossification of the pharyngeal arches and associated dermal bones from Catostomus commersonii (Catostomidae, Cypriniformes) and make selected comparisons to other similarly described pharyngeal arches. We noted shared spatial trends in arch development including the formation of ventral cartilages before dorsal and anterior cartilages before posterior. Qualitatively variable gill arch elements in Cypriniformes including pharyngobranchial 1, pharyngobranchial 4, and the sublingual are the last such elements to chondrify in C. commersonii. We show that the sublingual bone in C. commersonii has two cartilaginous precursors that fuse and ossify to form the single bone in adults. This indicates homology of the sublingual in catostomids to the two sublingual bones in the adults of cobitids and balitorids. Intriguing patterns of fusion and segmentation of the cartilages in the pharyngeal arches were discovered. These include the individuation of the basihyal and anterior copula through segmentation of a single cartilage rod, fusion of cartilaginous basibranchials 4 and 5, and fusion of hypobranchial 4 with ceratobranchial 4. Such “fluidity” in cartilage patterning may be widespread in fishes and requires further comparative developmental studies. J. Morphol., 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

2.
The pharyngeal arches are one of the defining features of the vertebrates, with the first arch forming the mandibles of the jaw and the second forming jaw support structures. The cartilaginous elements of each arch are formed from separate migratory neural crest cell streams, which derive from the dorsal aspect of the neural tube. The second and more posterior crest streams are characterized by specific Hox gene expression. The zebrafish has a larger overall number of Hox genes than the tetrapod vertebrates, as the result of a duplication event in its lineage. However, in both zebrafish and mouse, there are just two members of Hox paralogue group 2 (PG2): Hoxa2 and Hoxb2. Here, we show that morpholino-mediated "knock-down" of both zebrafish Hox PG2 genes results in major defects in second pharyngeal arch cartilages, involving replacement of ventral elements with a mirror-image duplication of first arch structures, and accompanying changes to pharyngeal musculature. In the mouse, null mutants of Hoxa2 have revealed that this single Hox gene is required for normal second arch patterning. By contrast, loss-of-function of either zebrafish Hox PG2 gene individually has no phenotypic consequence, showing that these two genes function redundantly to confer proper pattern to the second pharyngeal arch. We have also used hoxb1a mis-expression to induce localized ectopic expression of zebrafish Hox PG2 genes in the first arch; using this strategy, we find that ectopic expression of either Hox PG2 gene can confer second arch identity onto first arch structures, suggesting that the zebrafish Hox PG2 genes act as "selector genes."  相似文献   

3.
4.
5.
Barx1 modulates cellular adhesion molecule expression and participates in specification of tooth-types, but little is understood of its role in patterning the pharyngeal arches. We examined barx1 expression during zebrafish craniofacial development and performed a functional analysis using antisense morpholino oligonucleotides. Barx1 is expressed in the rhombencephalic neural crest, the pharyngeal arches, the pectoral fin buds and the gut in contrast to its paralogue barx2, which is most prominently expressed in the arch epithelium. Additionally, barx1 transient expression was observed in the posterior lateral line ganglia and developing trunk/tail. We show that Barx1 is necessary for proliferation of the arch osteochondrogenic progenitors, and that morphants exhibit diminished and dysmorphic arch cartilage elements due to reductions in chondrocyte differentiation and condensation. Attenuation of Barx1 results in lost arch expression of osteochondrogenic markers col2a1, runx2a and chondromodulin, as well as odontogenic marker dlx2b. Further, loss of barx1 positively influenced gdf5 and chordin, markers of jaw joint patterning. FGF signaling is required for maintaining barx1 expression, and that ectopic BMP4 induces expression of barx1 in the intermediate region of the second pharyngeal arch. Together, these results indicate an essential role for barx1 at early stages of chondrogenesis within the developing zebrafish viscerocranium.  相似文献   

6.
Leucine-rich repeat (LRR)-containing G protein-coupled receptors (LGRs) belong to the superfamily of G protein-coupled receptors, and are characterized by the presence of seven transmembrane domains and an extracellular domain that contains a series of LRR motifs. Three Lgr proteins – Lgr4, Lgr5, and Lgr6 – were identified as members of the LGR subfamily. Mouse Lgr4 has been implicated in the formation of various organs through regulation of cell proliferation during development, and Lgr5 and Lgr6 are stem cell markers in the intestine or skin. Although the expression of these three genes has already been characterized in adult mice, their expression profiles during the embryonic and larval development of the organism have not yet been defined. We cloned two zebrafish lgr genes using the zebrafish genomic database. Phylogenetic analyses showed that these two genes are orthologs of mammalian Lgr4 and Lgr6. Zebrafish lgr4 is expressed in the neural plate border, Kupffer’s vesicle, neural tube, otic vesicles, midbrain, eyes, forebrain, and brain ventricular zone by 24 h post-fertilization (hpf). From 36 to 96 hpf, lgr4 expression is detected in the midbrain–hindbrain boundary, otic vesicles, pharyngeal arches, cranial cartilages such as Meckel’s cartilages, palatoquadrates, and ceratohyals, cranial cavity, pectoral fin buds, brain ventricular zone, ciliary marginal zone, and digestive organs such as the intestine, liver, and pancreas. In contrast, zebrafish lgr6 is expressed in the notochord, Kupffer’s vesicle, the most anterior region of diencephalon, otic vesicles, and the anterior and posterior lateral line primordia by 24 hpf. From 48 to 72 hpf, lgr6 expression is confined to the anterior and posterior neuromasts, otic vesicles, pharyngeal arches, pectoral fin buds, and cranial cartilages such as Meckel’s cartilages, ceratohyals, and trabeculae. Our results provide a basis for future studies aimed at analyzing the functions of zebrafish Lgr4 and Lgr6 in cell differentiation and proliferation during organ development.  相似文献   

7.
8.
9.
Hox genes are expressed in domains with clear anterior borders exhibiting 3'-->5' hierarchy in hindbrain and in the pharyngeal area commonly in vertebrate embryos. Teleost embryos form seven pharyngeal arches, the mandibular arch, hyoid arch and the gill arches 1-5. We previously reported that, in Japanese flounder (Paralichthys olivaceus) embryos, Hoxd-4 is expressed from rhombomere 7 to the spinal cord in the central nervous system and at gill arches 2-5. At present, the hierarchy of Hox genes at gill arches 3-5 of teleost fish is unclear. Here, we investigated the expression domains of Hoxb-5 in the flounder embryo by whole-mount in situ hybridization to gain insight into the Hox code at gill arches. The initial signal indicating Hoxb-5 expression was identified in the spinal cord at hatching, corresponding with the prim-5 stage of zebrafish. Then, intense signals were detected from the anterior part of the spinal cord and from the posterior part of the pharyngeal area at 36 h after hatching. By serially sectioning the hybridized embryos, it was found that signal in the pharyngeal area came from the most posterior gill arch 5. Therefore, it is speculated that Hoxb-5 functions in regional identification of gill arch 5 in this teleost.  相似文献   

10.
The development and homologies of the median elements of the ventral hyoid and branchial arches of Cypriniformes have been unclear. We compared the developmental morphology of this region across five species (Cycleptus elongatus, Luxilus zonatus, Danio rerio, Devario auropurpureus, and Cobitis striata), representing three of five major clades of cypriniforms. The development of basibranchial 1 is similar in catostomids and cyprinids, where a single, elongate, basihyal + anterior copula divides into separate elements. A gap develops between the posterior end of the basihyal cartilage and the anterior copula in catostomids but in cyprinids (Luxiluszonatus, Danio rerio, and Devarioauropurpureus) there is little separation and the basihyal and basibranchial 1 may grow close together or retain a cartilaginous connection (Danio rerio, several outgroups). In loaches and Gyrinocheilus, the gap posterior to the basihyal has been alternately interpreted as either the absence or posterior displacement of basibranchial 1. Uniquely among examined species, in Cobitis striata, the basihyal cartilage and anterior copula form as separate cartilages and remain distinct throughout development with a prominent gap between the basihyal and most anterior basibranchial, which we interpret as loss of basibranchial 1. In the posterior region associated with branchial arches 4 and 5, all examined species except Danio rerio, which has only a basibranchial 4 cartilage, have separate basibranchial 4 and 5 cartilages in early ontogeny. Basibranchials 4 and 5 remain separate in Cycleptus elongatus, Devario auropurpurea, and Cobitis striata, but fuse in Luxilus zonatus to form a posterior copula. The orientation of basibranchial 4 and 5 cartilages in Cobitis striata is similar to catostomids and cyprinids. The most posterior median element in the branchial arches, the post‐ceratobranchial cartilage, generally forms as a separate cartilage in catostomids but in Cobitis striata is connected with basibranchial 5 cartilage from earliest appearance. J. Morphol., 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

11.
Zebrafish tgfβ3 is strongly expressed in a subpopulation of the migrating neural crest cells, developing pharyngeal arches and neurocranial cartilages. To study the regulatory role of tgfβ3 in head skeletal formation, we knocked down tgfβ3 in zebrafish and found impaired craniofacial chondrogenesis, evident by malformations in selected neurocranial and pharyngeal arch cartilages. Over-expressing tgfβ3 in embryos resulted in smaller craniofacial cartilages without any gross malformations. These defects suggest that tgfβ3 is required for normal chondrogenesis. To address the cellular mechanisms that lead to the observed malformations, we analyzed cranial neural crest development in morphant and tgfβ3 over-expressing fish. We observed reduced pre-migratory and migratory cranial neural crest, the precursors of the neurocranial cartilage and pharyngeal arches, in tgfβ3 knockdown embryos. In contrast, only the migratory neural crest was reduced in embryos over-expressing tgfβ3. This raised the possibility that the reduced number of cranial neural crest cells is a result of increased apoptosis. Consistent with this, markedly elevated TUNEL staining in the midbrain and hindbrain, and developing pharyngeal arch region was observed in morphants, while tgfβ3 over-expressing embryos showed marginally increased apoptosis in the developing pharyngeal arch region. We propose that both Tgfβ3 suppression and over-expression result in reduced chondrocyte and osteocyte formation, but to different degrees and through different mechanisms. In Tgfβ3 suppressed embryos, this is due to impaired formation and survival of a subpopulation of cranial neural crest cells through markedly increased apoptosis in regions containing the cranial neural crest cells, while in Tgfβ3 over-expressing embryos, the milder phenotype is also due to a slightly elevated apoptosis in these regions. Therefore, proper cranial neural crest formation and survival, and ultimately craniofacial chondrogenesis and osteogenesis, are dependent on tight regulation of Tgfβ3 protein levels in zebrafish.  相似文献   

12.
13.
Expression of five frizzleds during zebrafish craniofacial development   总被引:1,自引:0,他引:1  
Wnt/Planar Cell Polarity (PCP) signaling is critical for proper animal development. While initially identified in Drosophila, this pathway is also essential for the proper development of vertebrates. Zebrafish mutants, defective in the Wnt/PCP pathway, frequently display defects in convergence and extension gastrulation movements and additional later abnormalities including problems with craniofacial cartilage morphogenesis. Although multiple Frizzled (Fzd) homologues, Wnt receptors, were identified in zebrafish, it is unknown which Fzd plays a role in shaping the early larvae head skeleton. In an effort to determine which Frizzleds are involved in this process, we analyzed the expression of five zebrafish frizzled homologues fzd2, 6, 7a, 7b, and 8a from 2–4 days post-fertilization (dpf). During the analyzed developmental time points fzd2 and fzd6 are broadly expressed throughout the head, while the expression of fzd7a, 7b and 8a is much more restricted. Closer examination revealed that fzd7b is expressed in the neural crest and the mesodermal core of the pharyngeal arches and in the chondrocytes of newly stacked craniofacial cartilage elements. However, fzd7a is only expressed in the neural crest of the pharyngeal arches and fzd8a is expressed in the pharyngeal endoderm.  相似文献   

14.
Requirement for endoderm and FGF3 in ventral head skeleton formation   总被引:6,自引:0,他引:6  
The vertebrate head skeleton is derived in part from neural crest cells, which physically interact with head ectoderm, mesoderm and endoderm to shape the pharyngeal arches. The cellular and molecular nature of these interactions is poorly understood, and we explore here the function of endoderm in this process. By genetic ablation and reintroduction of endoderm in zebrafish, we show that it is required for the development of chondrogenic neural crest cells, including their identity, survival and differentiation into arch cartilages. Using a genetic interference approach, we further identify Fgf3 as a critical component of endodermal function that allows the development of posterior arch cartilages. Together, our results reveal for the first time that the endoderm provides differential cues along the anteroposterior axis to control ventral head skeleton development and demonstrate that this function is mediated in part by Fgf3.  相似文献   

15.
The PR domain containing 1a, with ZNF domain factor, gene (prdm1a) plays an integral role in the development of a number of different cell types during vertebrate embryogenesis, including neural crest cells, Rohon‐Beard (RB) sensory neurons and the cranial neural crest‐derived craniofacial skeletal elements. To better understand how Prdm1a regulates the development of various cell types in zebrafish, we performed a microarray analysis comparing wild type and prdm1a mutant embryos and identified a number of genes with altered expression in the absence of prdm1a. Rescue analysis determined that two of these, sox10 and islet1, lie downstream of Prdm1a in the development of neural crest cells and RB neurons, respectively. In addition, we identified a number of other novel downstream targets of Prdm1a that may be important for the development of diverse tissues during zebrafish embryogenesis. genesis 48:656–666, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
The van gogh (vgo) mutant in zebrafish is characterized by defects in the ear, pharyngeal arches and associated structures such as the thymus. We show that vgo is caused by a mutation in tbx1, a member of the large family of T-box genes. tbx1 has been recently suggested to be a major contributor to the cardiovascular defects in DiGeorge deletion syndrome (DGS) in humans, a syndrome in which several neural crest derivatives are affected in the pharyngeal arches. Using cell transplantation studies, we demonstrate that vgo/tbx1 acts cell autonomously in the pharyngeal mesendoderm and influences the development of neural crest-derived cartilages secondarily. Furthermore, we provide evidence for regulatory interactions between vgo/tbx1 and edn1 and hand2, genes that are implicated in the control of pharyngeal arch development and in the etiology of DGS.  相似文献   

17.
Endothelin 1 (Edn1), a secreted peptide expressed ventrally in the primordia of the zebrafish pharyngeal arches, is required for correct patterning of pharyngeal cartilage development. We have studied mutants and morpholino-injected larvae to examine the role of the Edn1 signal in patterning anterior pharyngeal arch bone development during the first week after fertilization. We observe a remarkable variety of phenotypic changes in dermal bones of the anterior arches after Edn1 reduction, including loss, size reduction and expansion, fusion and shape change. Notably, the changes that occur appear to relate to the level of residual Edn1. Mandibular arch dermal bone fusions occur with severe Edn1 loss. In the dorsal hyoid arch, the dermal opercle bone is usually absent when Edn1 is severely reduced and is usually enlarged when Edn1 is only mildly reduced, suggesting that the same signal can act both positively and negatively in controlling development of a single bone. Position also appears to influence the changes: a branchiostegal ray, a dermal hyoid bone normally ventral to the opercle, can be missing in the same arch where the opercle is enlarged. We propose that Edn1 acts as a morphogen; different levels pattern specific positions, shapes and sizes of bones along the dorso-ventral axis. Changes involving Edn1 may have occurred during actinopterygian evolution to produce the efficient gill-pumping opercular apparatus of teleosts.  相似文献   

18.
19.
20.
Craniofacial development requires signals from epithelia to pattern skeletogenic neural crest (NC) cells, such as the subdivision of each pharyngeal arch into distinct dorsal (D) and ventral (V) elements. Wnt signaling has been implicated in many aspects of NC and craniofacial development, but its roles in D-V arch patterning remain unclear. To address this we blocked Wnt signaling in zebrafish embryos in a temporally-controlled manner, using transgenics to overexpress a dominant negative Tcf3, (dntcf3), (Tg(hsp70I:tcf3-GFP), or the canonical Wnt inhibitor dickkopf1 (dkk1), (Tg(hsp70i:dkk1-GFP) after NC migration. In dntcf3 transgenics, NC cells in the ventral arches of heat-shocked embryos show reduced proliferation, expression of ventral patterning genes (hand2, dlx3b, dlx5a, msxe), and ventral cartilage differentiation (e.g. lower jaws). These D-V patterning defects resemble the phenotypes of zebrafish embryos lacking Bmp or Edn1 signaling, and overexpression of dntcf3 dramatically reduces expression of a subset of Bmp receptors in the arches. Addition of ectopic BMP (or EDN1) protein partially rescues ventral development and expression of dlx3b, dlx5a, and msxe in Wnt signaling-deficient embryos, but surprisingly does not rescue hand2 expression. Thus Wnt signaling provides ventralizing patterning cues to arch NC cells, in part through regulation of Bmp and Edn1 signaling, but independently regulates hand2. Similarly, heat-shocked dkk1+ embryos exhibit ventral arch reductions, but also have mandibular clefts at the ventral midline not seen in dntcf3+ embryos. Dkk1 is expressed in pharyngeal endoderm, and cell transplantation experiments reveal that dntcf3 must be overexpressed in pharyngeal endoderm to disrupt D-V arch patterning, suggesting that distinct endodermal roles for Wnts and Wnt antagonists pattern the developing skeleton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号