首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study was to determine whether decreased oxidative stress would increase the resistance to cardiac contracture induced by H2O2 in hypothyroid rats. Male Wistar rats were divided into two groups: control and hypothyroid. Hypothyroidism was induced via thyroidectomy. Four weeks post surgery, blood samples were collected to perform thyroid hormone assessments, and excised hearts were perfused at a constant flow with or without H2O2 (1 mmol/L), being divided into two sub‐groups: control, hypothyroid, control + H2O2, hypothyroid + H2O2. Lipid peroxidation (LPO) was evaluated by chemiluminescence (CL) and thiobarbituric acid reactive substances (TBARS) methods, and protein oxidation by carbonyls assay in heart homogenates. Cardiac tissue was also screened for superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) activities, and for total radical‐trapping antioxidant potential (TRAP). Analyses of SOD and glutathione‐S‐transferase (GST) protein expression were also performed in heart homogenates. Hypothyroid hearts were found to be more resistant to H2O2‐induced contracture (60% elevation in LVEDP) as compared to control. CL, TBARS, carbonyl, as well as SOD, CAT, GPx activities and TRAP levels were reduced (35, 30, 40, 30, 16, 25, and 33%, respectively) in the cardiac homogenates of the hypothyroid group as compared to controls. A decrease in SOD and GST protein levels by 20 and 16%, respectively, was also observed in the hypothyroid group. These results suggest that a hypometabolic state caused by thyroid hormone deficiency can lead to an improved response to H2O2 challenge and is associated with decreased oxidative myocardial damage. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
At therapeutic dose, loperamide is a safe over‐the‐counter antidiarrheal drug but could induce cardiotoxic effect at a supratherapeutic dose. In this study, we use cardiac and oxidative biomarkers to evaluate loperamide‐induced cardiotoxicity in rats. Rats were orally gavaged with 1.5, 3, or 6 mg/kg body weight (BW) of loperamide hydrochloride for 7 days. The results after 7 days administration of loperamide, revealed dose‐dependent increase (P < 0.05) in aspartate aminotransferase, lactate dehydrogenase, creatine kinase‐MB, and serum concentration of cardiac troponin I, total homocysteine, and nitric oxide. A 50% decrease in antioxidant enzymes activity was observed at 6 mg/kg BW. Furthermore, malondialdehyde and fragmented DNA also increased significantly in the heart of the treatment groups. Loperamide provoked cardiotoxicity through oxidative stress, lipid peroxidation, and DNA fragmentation in rats. This study has provided a possible biochemical explanation for the reported cardiotoxicity induced by loperamide overdose.  相似文献   

3.
ABSTRACT

Maternal deprivation at an early age is a powerful stressor that causes permanent alterations in cognitive and behavioral functions during the later stages of life. We investigated the effects of oxytocin on cognitive defects and anxiety disorders caused by acute infantile maternal deprivation in adult rats. We used 18-day-old Wistar albino rats of both sexes. The experimental groups included control (C), maternally deprived (MD), maternally deprived and treated with 0.02 μg/kg oxytocin (MD-0.02 µg/kg oxy), maternally deprived and treated with 2 μg/kg oxytocin (MD-2 µg/kg oxy). When the rats were 60 days old, the open field (OF) and elevated plus maze (EPM) behavioral tests, and the Morris water maze (MWM) test for spatial learning and memory were performed. In addition, the number of neurons in the hippocampus, prefrontal cortex (PFC) and amygdala were determined using quantitative histology. We also measured vascular endothelial growth factor (VEGF) and brain-derived neurotrophic factor (BDNF) levels in the PFC. In both sexes, the MD group failed the learning test and the MD-2 μg/kg oxy group failed in the memory test. The MD-0.02 μg/kg oxy group spent more time in the open arm of the EPM device and their locomotor activities were greater in the OF test. The VEGF and BDNF levels in the PFC were higher in the MD-0.02 μg/kg oxy groups than the other maternally deprived groups (oxytocin ±). The number of PFC neurons was low in all male maternally deprived (oxytocin ±) groups, while the number of amygdala neurons was low in both female and male maternally deprived (oxytocin ±) groups. Male rats were more affected by maternal deprivation; administration of oxytocin had dose-dependent biphasic effects on learning, memory and anxiety.  相似文献   

4.
The objective of this study was to elucidate the impact of physical activity during the growth period as well as on oxidative stress and antioxidative potential in adulthood. The experimental animals used were four-week old male Wistar rats, which were randomly divided into three groups. The exercise loads were as follows: control (CON), treadmill exercise (TE), and jumping exercise (JE). The exercise was performed at the same time of day, at a frequency of five days per week, for eight weeks. Derivatives of reactive oxygen metabolites (d-ROSs) and biological antioxidant potential (BAP) were measured during periods of rest prior to commencement of the experiment and after the experiment. Analysis was conducted using a Wilcoxon signed-rank test and Schaffer’s multiple comparison procedure and the significance level was set at p?相似文献   

5.
Cyclophosphamide (CP) is an antineoplastic agent that is used for the treatment of many neoplastic diseases. Hemorrhagic cystitis (HC) is a major dose limiting side effect of CP. Recent studies show that aminogaunidine, an inhibitor of inducible nitric oxide synthase is a potent antioxidant and prevents changes caused by oxidative stress such as depletion of antioxidant activity and tissue injury. The purpose of the study is to investigate the effect of aminoguanidine on parameters of oxidative stress, antioxidant enzymes and bladder injury caused by CP. Adult male rats were randomly divided into four groups. Control rats were administered saline; the AG control group received 200 mg/kg body wt of aminoguanidine; The CP group received a single injection of CP at the dose of 150 mg/kg body wt intraperitoneally. The CP + AG group received aminoguanidine (200 mg/kg body wt) intraperitoneally 1 h before the administration of CP. The rats were sacrificed 16 h after CP/saline administration. The bladder was used for light microscopic studies and biochemical studies. The markers of oxidative damage including protein carbonyl content, protein thiol, malondialdehyde and conjugated dienes were assayed in the homogenates along with the activities of the antioxidant enzymes, superoxide dismutase, glutathione peroxidase, catalase, and glutathione reductase and glutathione S transferase. In the bladders of CP treated rats edema of lamina propria with epithelial and sub‐epithelial hemorrhage was seen. All the parameters of oxidative stress that were studied were significantly elevated in the bladders of CP treated rats. The activities of the antioxidant enzymes were significantly lowered in the bladders of CP treated rats. Aminoguanidine pretreatment prevented CP‐induced oxidative stress, decrease in the activities of anti‐oxidant enzymes and reduced bladder damage. The results of the present study suggest the antioxidant role for aminoguanidine in CP‐induced bladder damage. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
The aim of this study was to assess the influence of cisplatin and an extremely low frequency electromagnetic field (ELF‐EMF) on antioxidant enzyme activity and the lipid peroxidation ratio, as well as the level of DNA damage and reactive oxygen species (ROS) production in AT478 carcinoma cells. Cells were cultured for 24 and 72 h in culture medium with cisplatin. Additionally, the cells were irradiated with 50 Hz/1 mT ELF‐EMF for 16 min using a solenoid as a source of the ELF‐EMF. The amount of ROS, superoxide dismutase (SOD) isoenzyme activity, glutathione peroxidase (GSH‐Px) activity, DNA damage, and malondialdehyde (MDA) levels were assessed. Cells that were exposed to cisplatin exhibited a significant increase in ROS and antioxidant enzyme activity. The addition of ELF‐EMF exposure to cisplatin treatment resulted in decreased ROS levels and antioxidant enzyme activity. A significant reduction in MDA concentrations was observed in all of the study groups, with the greatest decrease associated with treatment by both cisplatin and ELF‐EMF. Cisplatin induced the most severe DNA damage; however, when cells were also irradiated with ELF‐EMF, less DNA damage occurred. Exposure to ELF‐EMF alone resulted in an increase in DNA damage compared to control cells. ELF‐EMF lessened the effects of oxidative stress and DNA damage that were induced by cisplatin; however, ELF‐EMF alone was a mild oxidative stressor and DNA damage inducer. We speculate that ELF‐EMF exerts differential effects depending on the exogenous conditions. This information may be of value for appraising the pathophysiologic consequences of exposure to ELF‐EMF. Bioelectromagnetics 33:641–651, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
Oxidative stress has been identified as a possible element in the neuropathological processes of schizophrenia(SCZ).Alteration of oxidative stress markers has been reported in SCZ studies,but with inconsistent results.To evaluate the risk of oxidative stress to schizophrenia,a meta-analysis was conducted,including five markers of oxidative stress [thiobarbituric reactive substances(TBARS),nitric oxide(NO),catalase(CAT),glutathione peroxidase(GP) and superoxide dismutase(SOD)] in SCZ patients versus healthy ...  相似文献   

8.
Liver microsomal functions related to xenobiotic biotransformation and free radical production were studied in control rats and in animals subjected to L-3,3′,5-triiodothyronine (T3) and/or lindane administration as possible mechanisms contributing to oxidative stress, in relation to the activity of enzymes (superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), and glucose-6-phosphate dehydrogenase (G-6PDH)) and content of lipid-soluble vitamins (α-tocopherol, β-carotene, and lycopene) affording antioxidant protection. Lindane treatment in euthyroid rats at a dosage of 20 mg/kg did not modify the content of liver microsomal cytochromes P450 and b5, the activity of NADPH-cytochrome P450 reductase and NADH-cytochrome b5 reductase, and the production of superoxide radical (O·-2), as well as antioxidant systems, except for the reduction in lycopene levels. Hyperthyroidism elicited a calorigenic response and increased specific and molecular activities of NADPH-cytochrome P450 reductase, O·-2 generation, and G-6PDH activity, concomitantly with diminution in liver SOD and catalase activities and in α-tocopherol, β-carotene, and lycopene levels. The administration of lindane to hyperthyroid animals led to a further increase in the molecular activity of NADPH-cytochrome P450 reductase and in the O·-2 production/SOD activity ratio, and decrease of hepatic α-tocopherol content, in a magnitude exceeding the sum of effects elicited by the separate treatments, as previously reported for reduced glutathione depletion. Collectively, these data support the contention that the increased susceptibility of the liver to the toxic effects of acute lindane treatment in hyperthyroid state is conditioned by potentiation of the hepatic oxidative stress status.  相似文献   

9.
BACKGROUNDChromium hexavalent (CrVI) is known as a toxic contaminant that induced oxidative stress and nephrotoxicity in humans and animals. Rosmarinus officinalis is a perennial herb rich in biologically active constituents that have powerful antioxidant properties. So, the current work evaluated the effectiveness of Rosmarinus officinalis essential oil (REO) against alterations induced by potassium dichromate in the kidney of male rats.METHODSGC-MS analysis, in vitro total phenol contents, and DPPH scavenging activity of REO were estimated. Thirty-five Wistar male rats were categorized into 5 groups. The first group was the control, the second one was orally administered rosemary essential oil (REO; 0.5 mL/kg BW), the third group was injected intraperitoneally with hexavalent chromium (CrVI; 2 mg/kg BW) for 14 days, the fourth group used as the protective group (REO was administrated 30 min before i.p. injection of CrVI) and the fifth group applied as the therapeutic group (rats injected with CrVI 30 min followed by oral administration of REO), respectively.RESULTSTwenty-nine components were detected with high total phenolic contents and high DPPH scavenging activity. Results revealed that CrVI- intoxicated rats showed a valuable increase in oxidative stress profile (TBARS and H2O2) and a notable decline in glutathione (GSH), total protein content, and enzymatic antioxidants (SOD, CAT, GPx, and GST). Furthermore, serum kidney functions biomarkers (urea, creatinine, and uric acid) were increased significantly. Also, the administration of CrVI showed histological and immunohistochemical (PCNA-ir) changes in rat kidney tissue. Otherwise, administration of REO pre or post-treatment with CrVI significantly restored most of the biochemical parameters in addition to improvement in kidney tissue architecture. Moreover, individual intake with REO exhibited an amendment in oxidative stress markers.CONCLUSIONConclusively, REO had a potential antioxidant capacity in ameliorating K2Cr2O7-induced nephrotoxicity, especially in the protection group.  相似文献   

10.
Major depressive disorder takes at least 3 weeks for clinical anti‐depressants, such as serotonin selective reuptake inhibitors, to take effect, and only one‐third of patients remit. Ketamine, a kind of anaesthetic, can alleviate symptoms of major depressive disorder patients in a short time and is reported to be effective to treatment‐resistant depression patients. The rapid and strong anti‐depressant‐like effects of ketamine cause wide concern. In addition to ketamine, caloric restriction and sleep deprivation also elicit similar rapid anti‐depressant‐like effects. However, mechanisms about the rapid anti‐depressant‐like effects remain unclear. Elucidating the mechanisms of rapid anti‐depressant effects is the key to finding new therapeutic targets and developing therapeutic patterns. Therefore, in this review we summarize potential molecular and cellular mechanisms of rapid anti‐depressant‐like effects based on the pre‐clinical and clinical evidence, trying to provide new insight into future therapy.  相似文献   

11.
Maternal thyroid hormones (THs) have been proven crucial for embryonic development in humans, but their influence within the natural variation on wild animals remains unknown. So far the only two studies that experimentally investigated the potential fitness consequences of maternal THs in birds found inconsistent results. More studies are thus required to assess the general effects of maternal THs and their influences on more behavioral and physiological parameters. In this study, we experimentally elevated yolk TH content in a wild migratory passerine species, the collared flycatcher Ficedula albicollis, to investigate the effects on hatching success, nestling growth and oxidative stress. We found that TH‐injected eggs had a higher hatching success, and the nestlings hatched from TH‐injected eggs were heavier and larger than control nestlings, but only during the early postnatal period. These differences vanished by fledging. Nestlings from TH‐injected eggs exhibited lower activity of the glutathione‐s‐transferase, a major antioxidant enzyme, than control nestlings at day 12, a few days before fledging, but they did not differ in oxidative damage and overall intracellular oxidative state. These results suggest that the early growth‐enhancing effects incurred no observable oxidative stress. We hypothesize that such a transient growth‐enhancing effect might be adaptive in advancing the development and maturation of the offspring so they are well‐prepared in time for the upcoming migration. Further studies investigating whether such advancing effects can influence long‐term fitness, will be more than valuable.  相似文献   

12.
BACKGROUND AND AIMS: Determining the mode of action of allelochemicals is one of the challenging aspects in allelopathic studies. Recently, allelochemicals have been proposed to cause oxidative stress in target tissue and induce an antioxidant mechanism. alpha-Pinene, one of the common monoterpenoids emitted from several aromatic plants including forest trees, is known for its growth-inhibitory activity. However, its mechanism of action remains unexplored. The aim of the present study was to determine the inhibitory effect of alpha-pinene on root growth and generation of reactive oxygen species, as indicators of oxidative stress and changes in activities of antioxidant enzymes. METHODS: Effects of alpha-pinene on early root growth were studied in five test species, Cassia occidentalis, Amaranthus viridis, Triticum aestivum, Pisum sativum and Cicer arietinum. Electrolyte leakage, lipid peroxidation, hydrogen peroxide generation, proline accumulation, and activities of the enzymes superoxide dismutase (SOD), ascorbate peroxidase (APX), guaiacol peroxidase (GPX), catalase (CAT) and glutathione reductase (GR) were studied in roots of C. occidentalis. KEY RESULTS: alpha-Pinene inhibited the radicle growth of all the test species. Exposure of C. occidentalis roots to alpha-pinene enhanced solute leakage, and increased levels of malondialdehyde, proline and hydrogen peroxide, indicating lipid peroxidation and induction of oxidative stress. Activities of the antioxidant enzymes SOD, CAT, GPX, APX and GR were significantly elevated, thereby indicating the enhanced generation of reactive oxygen species (ROS) upon alpha-pinene exposure. Increased levels of scavenging enzymes indicates their induction as a secondary defence mechanism in response to alpha-pinene. CONCLUSIONS: It is concluded that alpha-pinene inhibits early root growth and causes oxidative damage in root tissue through enhanced generation of ROS, as indicated by increased lipid peroxidation, disruption of membrane integrity and elevated antioxidant enzyme levels.  相似文献   

13.
Maternal opioid use disorder is common, resulting in significant neonatal morbidity and cost. Currently, it is not possible to predict which opioid‐exposed newborns will require pharmacotherapy for neonatal abstinence syndrome. Further, little is known regarding the effects of maternal opioid use disorder on the developing human brain. We hypothesized that novel methodologies utilizing fetal central nervous system‐derived extracellular vesicles isolated from maternal blood can address these gaps in knowledge. Plasma from opioid users and controls between 9 and 21 weeks was precipitated and extracellular vesicles were isolated. Mu opioid and cannabinoid receptor levels were quantified. Label‐free proteomics studies and unbiased small RNA next generation sequencing was performed in paired fetal brain tissue. Maternal opioid use disorder increased mu opioid receptor protein levels in extracellular vesicles independent of opioid equivalent dose. Moreover, cannabinoid receptor levels in extracellular vesicles were upregulated with opioid exposure indicating cross talk with endocannabinoids. Maternal opioid use disorder was associated with significant changes in extracellular vesicle protein cargo and fetal brain micro RNA expression, especially in male fetuses. Many of the altered cargo molecules and micro RNAs identified are associated with adverse clinical neurodevelopmental outcomes. Our data suggest that assays relying on extracellular vesicles isolated from maternal blood extracellular vesicles may provide information regarding fetal response to opioids in the setting of maternal opioid use disorder. Prospective clinical studies are needed to evaluate the association between extracellular vesicle biomarkers, risk of neonatal abstinence syndrome and neurodevelopmental outcomes.  相似文献   

14.
Adult animals submitted to a single prolonged episode of maternal deprivation (MD) [24 h, postnatal days (PND) 9-10] show behavioral alterations that resemble specific symptoms of schizophrenia. These behavioral impairments may be related to neuronal loss in the hippocampus triggered by elevated glucocorticoids. Furthermore, our previous data suggested functional relationships between MD stress and the endocannabinoid system. In this study, we addressed the effects of MD on hippocampal glial cells and the possible relationship with changes in plasma corticosterone (CORT) levels. In addition, we investigated the putative involvement of the endocannabinoid system by evaluating (a) the effects of MD on hippocampal levels of endocannabinoids (b) The modulation of MD effects by two inhibitors of endocannabinoids inactivation, the fatty acid amide hydrolase inhibitor N-arachidonoyl-serotonin (AA-5-HT), and the endocannabinoid reuptake inhibitor, OMDM-2. Drug treatments were administered once daily from PND 7 to PND 12 at a dose of 5 mg/kg, and the animals were sacrificed at PND 13. MD induced increased CORT levels in both genders. MD males also showed an increased number of astrocytes in CA1 and CA3 areas and a significant increase in hippocampal 2-arachidonoylglycerol. The cannabinoid compounds reversed the endocrine and cellular effects of maternal deprivation. We provide direct evidence for gender-dependent cellular and biochemical effects of MD on developmental hippocampus, including changes in the endocannabinoid system.  相似文献   

15.
In this study, we evaluated the hypothesis that long term dietary restriction would have beneficial effects on the oxidative stress and antioxidant enzyme systems in liver, heart and kidney in adult male rats undergoing different intensities of swimming exercise. Sixty male, Sprague-Dawley rats were assigned as either dietary restricted on every other week day (DR) or fed ad libitum (AL) groups, and each group was further subdivided into sedentary, endurance swimming exercise training (submaximal exercise) and exhaustive swimming exercise (maximal exercise) groups. Animals in the submaximal exercise group swam 5 days/week for 8 weeks, while maximal exercise was performed as an acute bout of exercise. In parallel with the increase in the intensity of the exercise, the degree of lipid peroxidation and protein oxidation were increased in both the DR and AL groups; however the rate of increase was lower in the DR group. Reduced glutathione (GSH), glutathione peroxidase (GSH-Px) and glutathione reductase (GR) enzyme activities were lower in the DR group than in the AL group. In parallel with the increase in exercise intensity, GSH and GR enzyme activities decreased, whereas an increase was observed in GSH-Px enzyme activity. In conclusion, the comparison between the DR and AL groups with the three swimming exercise conditions shows that the DR group is greatly protected against different swimming exercise-induced oxidative stress compared with the AL group.  相似文献   

16.
Toxicological studies have demonstrated the relation between use of agrochemicals and fertility issues within males. Thus, the present study aimed to elucidate the propensity of cypermethrin (CYP) in bringing testicular germ cell apoptosis and effective attenuation by vitamins C and E in caprines. Reproductive toxicity of CYP was evaluated using histomorphological, cytological, and biochemical changes in the testicular germ cells in dose‐dependent (1, 5, 10 μg/mL) and time‐dependent (4, 6, 8 h) manner. Histological and ethidium bromide/acridine orange fluorescence staining exhibited that vitamins C and E (0.5 and 1.0 mM) successfully diminished the CYP‐induced testicular germ cells apoptosis. CYP exposure along with vitamins C and E supplementation also resulted in significantly increased ferric reducing antioxidant power activity along with the antioxidant enzymes, namely catalase, superoxide dismutase, and glutathione‐s‐transferase, and decreased lipid peroxidation in testicular germ cells. Thus, vitamins C and E ameliorated CYP‐induced testicular germ cell apoptosis, thereby preventing spermatogonial cells degeneration and male infertility.  相似文献   

17.
18.
Brain damage is a major complication of fulminant hepatic failure. d ‐Galactosamine (d ‐GalN)‐induced liver toxicity causes damage to brain. The effects of vitamins and selenium mixture against d ‐GalN stimulated brain injury were investigated in this study. Sprague‐Dawley female rats aged 2.0‐2.5 months were used for the study. The rats were divided into four categories. A 0.9% NaCl solution was intraperitoneally given to the experimental rats in the first group. Using gavage technique, the second group of animals were subjected to a formulation consisting of 100 mg·kg?1·day?1 vitamin C, 15 mg·kg?1·day?1 of β‐carotene, 100 mg·kg?1·day?1 of α‐tocopherol in addition to 0.2 mg·kg?1·day?1 of sodium selenate for 3 days. The third group was given a single dose of d ‐GalN hydrochloride at the concentration of 500 mg·kg?1 through a saline injection. The final group was given similar concentrations of both the antioxidant combination and d ‐GalN. Tissue samples were collected under ether anesthesia. The rats treated with d ‐GalN showed brain damage; increased myeloperoxidase, catalase, glutathione peroxidase, glutathione‐S‐transferase, lactate dehydrogenase, and superoxide dismutase activities; and decreased glutathione levels. Treatment with vitamins and selenium combination resulted in alleviation of these alterations in the rats. These findings suggest that administration of the vitamins and selenium combination suppresses oxidative stress and protects brain cells from injury induced by d ‐GalN.  相似文献   

19.
This study examined the effects of Y-27632, a selective Rho-kinase inhibitor, on organophosphate-induced acute toxicity in rats. Rats were randomly divided into four groups as control (corn oil), dichlorvos (30 mg kg(-1) i.p.), 1 and 10 mg kg(-1) Y-27632 + dichlorvos groups. Cholinergic signs (fatigue, tremor, cyanosis, hyper-secretion, fasciculations) were observed in all the rats in the dichlorvos group and the mortality rate was 50%. No cholinergic findings and deaths were observed in the control and Y-27632 groups. Plasma cholinesterase activities were suppressed with dichlorvos and these reductions were attenuated with Y-27632 pretreatment. There was a marked increase in plasma malondialdehyde level in the dichlorvos group, but Y-27632 pretreatment abolished this elevation. Dichlorvos markedly depressed cardiac paraoxonase activity, but these changes were not markedly modified with Y-27632. Total antioxidant capacities, total oxidant status, oxidative stress index, total free sulfhydryl groups and catalase activities in plasma and cardiac tissues were not markedly different between the groups. No significant changes were observed with cardiac myeloperoxidase activities or plasma arylesterase and ceruloplasmin activities. In conclusion, our results suggest that Rho-kinase pathway is involved in organophosphate intoxication, and a decrease in cardiac paraoxonase activities may play a role in the pathogenesis of acute organophosphate poisoning in rats.  相似文献   

20.
From a pharmacological point of view, organoseleniums are compounds with important and interesting antioxidant and biological activities. The aim of this study was to evaluate the hepatoprotective effect of bis(4‐methylbenzoyl) diselenide (BMD) against carbon tetrachloride (CCl4)–induced oxidative damage in mice. The animals received BMD (25 mg/kg p.o., for 3 days), and after 1 day, CCl4 (1 mg/kg body weight) was administered by intraperitoneal route. One day after the CCl4 exposure, the animals were euthanized for biochemical and histological analysis. Treatment with BMD (25 mg/kg p.o.) protected against aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, gamma‐glutamyl transferase and lactate dehydrogenase activity increases induced by CCl4 plasma exposure. Treatment with BMD (25 mg/kg) protected against increases in thiobarbituric reactive species and decreasing non‐protein thiols and ascorbic acid levels in liver of mice. Catalase and superoxide dismutase activity inhibition in the liver caused by CCl4 were protected by treatment with BMD (25 mg/kg). Glutathione S‐transferase activity was inhibited by CCl4 and remained unaltered even after treatment with BMD. Sections of liver from CCl4‐exposed mice presented an intense infiltration of inflammatory cells and loss of the cellular architecture. BMD (25 mg/kg) attenuated CCl4‐induced hepatic histological alterations. The results demonstrated the hepatoprotective effects of BMD in the mouse liver, possibly by modulating the antioxidant status. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号