首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
As part of a major study to evaluate the mutagenicity of chemicals produced during the cooking of foods, we examined the responses of bacteria and cultured Chinese hamster cells to the compounds Trp-P-2 (3-amino-1-methyl-5H-pyrido[4,3-b]indole) and IQ (2-amino-3-methylimidazo[4,5-f]quinoline), constituents identified in cooked beef and fish. In the Ames/Salmonella tester strain TA1538, both compounds were confirmed to be extremely potent mutagens that were active at levels below 1 ng/plate in the presence of hamster-liver S9 microsomal fraction. 50-fold higher doses of both compounds were required for mutagenicity in the uvr+ tester strain TA1978. Trp-P-2 also behaved as a strong mutagen in CHO cells using the standard exogenous activation with hamster-liver S9 fraction. At concentrations below 1 microgram/ml it produced dose-dependent increases in cell killing, mutations at the hprt and aprt loci, sister-chromatid exchanges, and chromosomal aberrations. An excision-repair-deficient strain was about 2-fold more sensitive than the normal CHO cells with respect to these genotoxic effects of Trp-P-2. IQ had unexpectedly weak activity for all genetic endpoints in the CHO cells, and it produced clear-cut responses only in the repair-deficient cells and only above a concentration of 10 micrograms/ml. The toxicity that was observed with IQ was not affected by the repair capacity of the cells and was not associated with chromosomal aberrations, indicating that damage to cellular structures other than nuclear DNA was likely the predominant pathway for cell killing. Because the culture conditions normally used for CHO cell exposure were shown to be competent in producing bacterial mutagenicity with IQ, it was concluded that the active metabolite of IQ was present in the medium but was somehow ineffective in reaching the DNA of CHO cells and/or reacting with it. These results suggest that the relative mutagenic potency of compounds in Salmonella may bear no direct relationship to relative mutagenicity in CHO cells, emphasizing precaution in attempting to extrapolate microbial data to mammalian somatic cells. This study illustrates the use and merits of a multi-endpoint assay for genetic damage in CHO cells, the utility of using CHO cells that are defective in excision repair of DNA, and the importance of comparative testing between bacterial and mammalian systems.  相似文献   

2.
In order to estimate the exposure levels of mutagenic and carcinogenic heterocyclic amines in humans, we developed a high-performance liquid chromatography method to detect 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1) and 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2) in dialysis fluid of patients with uremia. Using this methods, dialysis fluid of 12 patients who had received hemodialysis treatment or continuous ambulatory peritoneal dialysis was examined. Trp-P-1 was detected in dialysate of all uremic patients (727 +/- 282 pmoles, n = 12). In patients who had been treated with continuous ambulatory peritoneal dialysis, the average amount of Trp-P-1 found in whole dialysate (6 l) per day was 710 +/- 203 pmoles (mean +/- S.D., n = 8). Moreover, Trp-P-2 could be detected in 5 out of 12 patients (206 +/- 85 pmoles, n = 5). These results indicate that patients with uremia are actually exposed to carcinogenic tryptophan pyrolysis products. The average exposure level of Trp-P-1 in uremic patients apparently exceeded 710 pmoles (150 ng) per day.  相似文献   

3.
The mutagenic activation of tryptophan pyrolysis products, Trp-P-1 and Trp-P-2, was studied in a Salmonella TA98/hepatocyte mutagenesis assay. Adult rat hepatocytes in primary culture were either untreated or induced by the addition of Aroclor 1254 (2 micrograms/ml) 18-20 h before the mutagenesis test which was performed at day 1 and at day 2 after the isolation of hepatocytes. The mutagenic activation of Trp-P-1 and Trp-P-2 was studied as a function of the time of incubation and of the concentration of chemical. Trp-P-1 and Trp-P-2 incubated for 20 min in the presence of untreated hepatocytes and bacteria gave rise to a weak number of revertants which doubled the level of spontaneous mutants. Aroclor-induced hepatocytes became highly competent in mutagenic activation of tryptophan pyrolysis products and the induction ratio reached 4.9 and 7.1 for Trp-P-1 and Trp-P-2, respectively, after 60 min of incubation, on day 2 of the experiment. It should be noted that the induction ratio was higher on day 2 than on day 1. When conditions were standardized, i.e. Aroclor-induced hepatocytes on day 2, final concentration of cellular protein about 1 mg/ml, 20 min of incubation, the Salmonella/hepatocyte assay produced a linear concentration-dependent mutagenic response for Trp-P-1 and Trp-P-2. By comparing the results obtained with Aroclor-induced hepatocytes and Aroclor-induced liver S9 fraction in the Salmonella test, it could be estimated that hepatocytes were 3 times less active than the S9 fraction with regard to mutagenic activation of both Trp-P-1 and Trp-P-2.  相似文献   

4.
The antimutagenic effect of cinnamaldehyde on mutagenesis was investigated using ten kinds of chemical mutagen in Escherichia coli WP2s (uvr A-). In addition, the frequency of mutation induction by each mutagen in an SOS repair deficient (umuC-) strain was compared with that in a wild-type (umuC+) strain. Cinnamaldehyde greatly suppressed the umuC-dependent mutagenesis induced by 4-nitroquinoline 1-oxide (4-NQO), furylfuramide or captan. However, cinnamaldehyde was less effective against the umuC-independent mutagenesis by alkylating agents such as N-methyl-N'-nitro-N-nitrosoguanidine and ethylmethanesulfonate. On the other hand, no inhibitory effect of cinnamaldehyde was observed on prophage induction or tif-mediated filamentous growth. These results suggest that a cinnamaldehyde does not prevent the induction of the SOS functions. Despite the decrease in the number of revertants, a remarkable increase was observed in the survival of 4-NQO-treated WP2s cells after exposure to cinnamaldehyde. The reactivation of survival suggests the promotion of some DNA repair system by cinnamaldehyde. This enhancement of survival was also observed in uvr B, polA, recF or umuC mutants and less in lexA or recB, C mutants. However, it was not observed in recA mutants. Therefore, we assume that cinnamaldehyde may enhance an error-free recombinational repair system by acting on recA-enzyme activity.  相似文献   

5.
17 monofunctional methanesulphonates of widely varying structures were investigated in the SOS chromotest using the E. coli strain PQ37. All compounds tested were positive in this assay. The monofunctional methanesulphonates in general possess low SOSiP values. Five of the compounds tested i.e. iBMS, NpMS, 2 PhPMS, PkMS and 1,3-DC12PMS (for abbreviations see Table 1) did not show increasing beta-galactosidase activity and both the positive induction factors and the positive SOSiP values resulted from the toxicity correction as performed according to Quillardet and Hofnung (1985). In general methanesulphonates with a higher SN1 reactivity, in particular the secondary compounds, showed clear genotoxic activities whereas those possessing low SN1 reactivities (primary compounds) induced a low SOS repair indicating that the alkylation of O-atoms in the DNA bases contributes more to the induction of SOS repair in strain PQ37 than N-alkylations. The only exception was methyl methanesulphonate (MMS) which possessed a very high SN2 reactivity but a rather low SN1 reactivity. It had the highest SOSiP value of all tested methanesulphonates. No dependence of the genotoxicity on the SN2 reactivity could be found in this series. In general the phenyl-substituted methanesulphonates showed higher SOSiP values, which is presumably due to their relatively high SN1 reactivities and their relatively long life times in aqueous systems. There is a clear relationship between SN1 reactivities and the SOSiP values: the SOSiP values increase with rising SN1 reactivities reaching a maximum at iPMS after which the genotoxicities decrease due to the decreasing life times. The compounds with very high SN1 reactivities also possess very high hydrolysis rates. A good correlation could be established between the mutagenicities in S. typhimurium TA100 and the SOS chromotest (strain PQ37). Only 4 small deviations from this correlation could be found. The reasons for these deviations are discussed.  相似文献   

6.
The influence of the nucleotide excision repair system on the induction by UV irradiation of the SOS function sfiA has been investigated. The level of sfiA expression was monitored by means of a sfiA::lacZ operon fusion in both the wild-type strain and a uvrA mutant. We found that the initial steady rate of sfiA expression was proportional to the UV dose and was identical in uvr+ and uvrA backgrounds. This suggests that the initial steady rate of sfiA expression is determined by the initial number of lesions and before any effect of excision repair. We confirmed that after 2 h of expression the net synthesis of sfiA product is, for the same UV dose, about five times lower in uvr+ than in uvrA strains. We show that this is due to earlier repression of the SOS system in uvr+ than in uvrA strains and not to different initial rates.  相似文献   

7.
8.
M Sato  T Sato  Y Ose  H Nagase  H Kito  Y Sakai 《Mutation research》1992,265(2):149-154
The modulating effects of the Chinese medicinal plant 'Tan-shen', the radix of Salvia miltiorrhiza Bunge, on the mutagenic activities of Trp-P-1 (3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole) and B(a)P (benzo[a]pyrene) were investigated using Salmonella typhimurium TA98. Ether- and hot water-extracted 'Tan-shen' enhanced both mutagens at low concentrations, but suppressed them at high concentrations. Extracts by ether treatment were more effective than those extracted by hot water. Dihydrotanshinone I, cryptotanshinone, tanshinone I, and tanshinone IIA were isolated from the ether extract by high performance liquid chromatography (HPLC) and were recognized to be the mutagenic modulators. 4 tanshinones enhanced the mutagenicity of Trp-P-1 by 8-24-fold at 20 micrograms/plate and the enhancement was reduced at the higher concentration. Dihydrotanshinone I suppressed Trp-P-1 activity completely at 100 micrograms/plate.  相似文献   

9.
L Nylund  E Hakala  M Sorsa 《Mutation research》1992,276(1-2):125-132
Soxhlet-extracted samples of standard reference materials (SRMs) 1649 (PAR1: urban dust/organics) and 1650 (PAR2: diesel particulate matter) from the U.S. Institute of Standards and Technology were tested for induction of SOS functions using a semi-automated version of the SOS chromotest with Escherichia coli PQ37. Concentrations of 10 polycyclic aromatic hydrocarbons in the extracts were determined using reversed-phase HPLC. Only the diesel particulate matter (PAR2) extracts expressed SOS induction activity, which decreased when metabolic activation was used. Mutagenic PAH compounds (e.g., chrysene) were found in higher concentrations in the PAR2 extracts than in the PAR1 extracts but this could not explain the genotoxicity while it was mainly exhibited without metabolic activation. The direct genotoxic activity of the diesel particulate matter sample PAR2 is probably caused by nitroaromatic compounds; this was also supported by parallel studies with the Ames/Salmonella assay.  相似文献   

10.
Three mutagenic heterocyclic amines, 2-amino-3-methylimidazo-[4, 5-f]quinoline (IQ), 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1) and 2-amino-9H-pyrido[2,3-b]indole (AalphaC), were isolated and identified in water from the Danube River in Vienna. Heterocyclic amines were extracted from river water by the blue rayon hanging method, and analyzed by gas chromatography with a nitrogen-phosphorous detector (GC-NPD) and GC-mass spectrometry (GC-MS) after conversion into their N-dimethylaminomethylene derivatives. Identity of IQ, Trp-P-1 and AalphaC in the river water was confirmed by GC-MS. The contents of IQ, Trp-P-1 and AalphaC were estimated by GC-NPD at 1.78+/-0.17, 0.14+/-0.02 and 0.44+/-0.02 ng/g blue rayon equivalent (n=3), respectively. The total amounts of these amines accounted for 26% of the mutagenicity of blue rayon extracts evaluated by the Ames test using TA98 with metabolic activation.  相似文献   

11.
The induction of the SOS response by H2O2 was measured in Escherichia coli by means of a sfiA::lacZ operon fusion. The effects of mutations in genes involved in DNA repair or DNA metabolism on the SOS response were investigated. We found that in an uvrA mutant, H2O2 induced the SOS response at lower concentrations than in the uvr+ parent strain, indicating that some lesions induced by H2O2 may be repaired by the uvrABC-dependent excision repair system. A nth mutation, yielding deficiency in thymine glycol DNA glycosylase, had no detectable effect on SOS induction, indicating that thymine glycol, a DNA lesion expected to be induced by H2O2, does not participate detectably in the induction of the SOS response by this chemical under our conditions. H2O2 still induced the SOS response in a dnaC(Ts) uvrA double mutant under conditions in which no DNA replication proceeds, suggesting that this chemical induces DNA strand breaks. Induction of the SOS response by H2O2 was also assayed in various mutants affected in genes suspected to be important for protection against oxidative stress. Mutations in the catalase genes, katE and katG, had only minor effects. However, in an oxyR deletion mutant, in which the adaptative response to H2O2 does not occur, SOS induction occurred at much lower H2O2 concentrations than in the oxyR+ parent strain. These results indicate that some enzymes regulated by the oxyR gene are, under our conditions, more important than catalase for protection against the H2O2-induced DNA damages which trigger the SOS response.  相似文献   

12.
DNA base analogs, 2,4,5,6-substituted pyrimidines and 2,6-substituted purines were tested as potential inhibitors of E. coli Fpg protein (formamidopyrimidine -DNA glycosylase). Three of the seventeen compounds tested revealed inhibitory properties. 2-Thioxanthine was the most efficient, inhibiting 50% of 2,6-diamino-4-hydroxy-5N-methyl-formamidopyrimidine (Fapy-7MeG) excision activity at 17.1 microM concentration. The measured K(i) was 4.44 +/- 0.15 microM. Inhibition was observed only when the Fpg protein was first challenged to its substrate followed by the addition of the base analog, suggesting uncompetitive (catalytic) inhibition. For two other compounds, 2-thio- or 2-oxo-4,5,6-substituted pyrimidines, IC(50) was only 343.3 +/- 58.6 and 350 +/- 24.4 microM, respectively. No change of the Fpg glycosylase activity was detected in the presence of Fapy-7MeG, up to 5 microM. We also investigated the effect of DNA structure modified by tryptophan pyrolysate (Trp-P-1) on the activity of base excision repair enzymes: Escherichia coli and human DNA glycosylases of oxidized (Fpg, Nth) and alkylated bases (TagA, AlkA, and ANPG), and for bacterial AP endonuclease (Xth protein). Trp-P-1, which changes the secondary DNA structure into non-B, non-Z most efficiently inhibited excision of alkylated bases by the AlkA glycosylase (IC(50) = 1 microM). The ANPG, TagA, and Fpg proteins were also inhibited although to a lesser extent (IC(50) = 76.5 microM, 96 microM, and 187.5 microM, respectively). Trp-P-1 also inhibited incision of DNA at abasic sites by the beta-lyase activity of the Fpg and Nth proteins, and to a lesser extent by the Xth AP endonuclease. Thus, DNA conformation is critical for excision of damaged bases and incision of abasic sites by DNA repair enzymes.  相似文献   

13.
The effect of 8-oxo-2'-deoxyguanosine (8-oxo-dG) (8-hydroxydeoxyguanosine)--a DNA base damage product induced by oxygen radicals and irradiation on survival and mutagenesis in Escherichia coli strains C-600 and P-687 was investigated. Survival and mutagenesis curves, in dependence of 8-oxo-dG concentrations in the medium, ranging from 0.2 through 10 mM, were obtained. Bacterial survival at all 8-oxo-dG concentrations tested was shown to be no lesser than in the control. The mutagenic effect of 8-oxo-dG was tested by frequency of reversions in the absence of leucine and threonine. A non-linear dependence of mutagenesis on the concentration was observed. Linear increase in the amount of revertants took place at concentrations of 8-oxo-dG lower than 1 mM, and being kept constant at higher concentrations. Induction of SOS repair under the action of 8-oxo-dG in E. coli PQ37 strain was estimated according to alteration of activity of beta-galactosidase in the SOS chromotest. Weak induction of the SOS response was observed within the wide range of 8-oxo-dG concentration values, which points to a lack of genotoxicity and independence of mutagenesis on SOS repair.  相似文献   

14.
Sublethal concentrations of formic acid (10 mmol/l) and propionic acid (5 mmol/l) at pH 5.0 preferentially inhibit DNA synthesis and stop cell multiplication in the absence of a corresponding cessation in the increase of culture turbidity. The possibility that the acids induce the SOS response by starving cells of thymine or by causing physical damage to the DNA molecule has now been investigated. Accumulation of thymine into the cytoplasm of whole cells was not inhibited by either acid. Mutants defective in excision repair (uvr A6), recombination repair (rec A56) and polymerase activity (pol A1) were not more sensitive to the acids than their isogenic parent. No significant increase in cell length was observed from measurements of transmission electron microscope images of acid-treated cells. It is concluded, therefore, that sublethal concentrations of formic and propionic acid inhibit DNA synthesis without physically damaging DNA molecule, or starving the cell of essential thymine or otherwise inducing an SOS response.  相似文献   

15.
A methanolic extract of Oroxylum indicum strongly inhibited the mutagenicity of Trp-P-1 in an Ames test. The major antimutagenic constituent was identified as baicalein with an IC50 value of 2.78±0.15 μM. The potent antimutagenicity of the extract was correlated with the high content (3.95±0.43%, dry weight) of baicalein. Baicalein acted as a desmutagen since it inhibited the N-hydroxylation of Trp-P-2.  相似文献   

16.
17.
In the Ames test, after the addition of glutathione (GSH) or uridine-5'-diphosphoglucuronic acid (UD-PGA), we observed for Trp-P-1 an unchanged or a reduced mutagenicity by both the liver and intestine S9 fraction. For Trp-P-2, the same was true when we used the intestine S9 fraction. In the presence of liver S9 fraction, Trp-P-2 mutagenicity was also decreased by the addition of UDPGA but was increased by the addition of GSH. These results show that cofactors for glucuronide and GSH conjugation may alter the metabolic activation of Trp-P-1 and Trp-P-2 and consequently their mutagenicity.  相似文献   

18.
A germanium compound, germanium oxide (GeO2) behaved as a potent antimutagen on frameshift-type reverse mutations induced by 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2) in strains of Salmonella typhimurium TA98 and TA1538 with and without a plasmid pKM101, respectively. This metal antimutagen seems to work independently of the plasmid, a promotive factor in chemically induced mutagenesis through error-prone DNA repair.  相似文献   

19.
The SOS-function-inducing activity of chemical mutagens in Escherichia coli   总被引:4,自引:0,他引:4  
The SOS-function-inducing activities of 42 chemical mutagens were investigated in Escherichia coli K12. The induction of the SOS function was assayed by monitoring the beta-galactosidase activity in the sulA::lacZ fusion strain PQ37 . To correct for the inhibitory effects of test chemicals on mRNA or protein synthesis, the level of the constitutive alkaline phosphatase was assayed in parallel. Most of the mutagens reported to be mutagenic to the Ames' Salmonella tester strains showed the SOS-function-inducing activity. The inducible SOS repair may be responsible for not only base-change mutations but also frameshift mutations. However, 9-aminoacridine, ethidium bromide and 4-nitro-o-phenylenediamine did not induce the SOS function, suggesting that the mutagenesis induced by these mutagens may occur independently of SOS repair. Present results support the SOS mutagenesis model that error-prone SOS repair plays an important role in mutagenesis induced by most chemical mutagens.  相似文献   

20.
The Ames test and the SOS-chromotest are widely used bacterial mutagenicity/genotoxicity assays to test potential carcinogens. Though the molecular mechanisms leading to backmutations and to the induction of SOS-repair are in principle known the role of alkylation mechanisms, of different DNA-lesions and of DNA-repair is in parts still unknown. In this study we investigated 14 monofunctional methanesulfonates of widely varying structures for mutagenicity in Salmonella typhimurium strain TA 1535 sensitive for O(6)-guanine alkylation for comparison with strain TA 100 in order to obtain additional information on the role of alkylation mechanisms, formation of the procarcinogenic DNA-lesion O(6)-alkylguanine and the role of DNA-repair in induction of backmutation. The substances were also tested in the SOS-chromotest with Escherichia coli strain PQ 37 and strain PQ 243 lacking alkyl base glycosylases important for base excision repair in order to examine the role of alkylation mechanisms, of base excision repair and the role of O-alkyl and N-alkyl DNA-lesions on the induction of SOS-repair. The secondary methanesulfonates with very high S(N)1-reactivity isopropyl methanesulfonate and 2-butyl methanesulfonate showed highest mutagenicities in both strains. The higher substituted methanesulfonates with very high S(N)1-reactivity had lower mutagenic activities because of reduced half lives due to their high hydrolysis rates. A clear increase in mutagenicities in strain TA 100 was observed for the primary compounds methyl methanesulfonate and allyl methanesulfonate with very high S(N)2-reactivity. The primary compound phenylethyl methanesulfonate has a relatively high mutagenicity in both Salmonella strains which can be explained by an increased S(N)1-reactivity and by low repair of the O(6)-phenylethylguanine. Highest SOSIPs (SOS inducing potency) in strains PQ 37 and PQ 243 were found for methyl methanesulfonate and for the secondary compounds with high S(N)1-reactivity. The ratios in the SOSIPs between strain PQ 243 and PQ 37, indirectly indicative for the role of O- and N-alkylation in the induction of SOS-repair, was high for the primary methanesulfonates and lower for the secondary, indicating that the SOS-repair is, to a certain extent, also induced by other lesions than O(6)-alkylation. The results indicate that O(6)-alkylation is also a predominant lesion for backmutation in strain TA 100 and that in the case of monofunctional alkylating agents high S(N)2-reactivities are required to induce error prone repair mediated backmutations. The O(6)-alkylguanine lesion is also important for induction of SOS-repair in the SOS-chromotest, however, other sites of alkylation which are repaired by the base pair excision repair system can also efficiently contribute to the induction of SOS-repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号