首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Iodipamide, a cholecystographic agent, is known to be taken up by isolated hepatocytes by a mechanism similar or identical with the inward transport of bile salts (Petzinger, E., Joppen, C. and Frimmer, M. (1983) Naunyn-Schmiedeberg's Arch. Pharmacol. 322, 174-179). To elucidate its mode of transport, uptake of iodipamide was studied by rapid-filtration techniques on plasma membrane vesicles enriched in the sinusoidal fraction. Uptake was found to be dependent upon the temperature, the intravesicular volume, a gradient of monovalent cations (Na+, K+ or Li+) and the substrate concentration (saturation kinetics with respect to iodipamide: apparent Km = 70 microM, Vmax = 0.31 nmol per mg protein per min at 100 mM NaCl and 25 degrees C). Countertransport and transstimulation in tracer exchange experiments indicate that in vesicles, iodipamide uptake rather than binding occurs. Na+ could be replaced by K+ or Li+ in our system without any effect. However, in the presence of choline chloride a slight, but distinct reduction occurred. Iodipamide uptake was inhibited by cholate, phalloidin, 4,4'-diisothiocyanato-1,2-diphenylethane-2,2'-disulfonic acid and by bromosulfophthalein with inhibition being competitive in the case of cholate and non-competitive in the case of bromosulfophthalein. Alteration of the membrane potential by addition of NO3-, SCN- or SO4(2-) modified the uptake rate for iodipamide. The above results support our earlier hypothesis that the hepatocellular uptake of iodipamide is due to a carrier-mediated transport, probably similar to that of bile acids. However, translocation of iodipamide is assumed to be driven by the membrane potential only and not by Na+ contransport.  相似文献   

2.
The apparent target size of 14C-azidobenzamidotaurocholate binding proteins in basolateral rat liver plasma membranes (blPm) was determined by analysis of the radiation induced decrease of the binding of this photoreactive taurocholate analog to blPm. Radiation causes a dose-dependent mono-exponential reduction of binding of ABATC to the protein subunits with molecular masses of 48-50 and 52-54 kDa in SDS-PAGE. The minimal functional molecular mass of the 48-50 and 52-54 kDa ABATC binding proteins was determined to be 99 +/- 8.2 and 93.2 +/- 7 kDa, respectively.  相似文献   

3.
The apparent target size of the sodium-dependent taurocholate transporter in basolateral rat liver plasma membrane vesicles, showing overshooting taurocholate uptake in the presence of sodium was estimated by radiation inactivation. Radiation at -105 to -120 degrees C and 2.5 Mrad/min causes a dose-dependent monoexponential reduction of the overshoot of taurocholate uptake in the presence of sodium. In contrast, taurocholate transport in the absence of sodium and taurocholate permeation at 4 degrees C remained totally unaffected by the radiation dose, indicating that the passive permeability of the membrane towards taurocholate remained unaffected. Radiation inactivation by high-energy electrons provides information about the size of the functional unit of the transporter in situ. The target size determined represents the size of the radiation-sensitive mass which is compact enough for significant energy transfer to occur within all parts of the transport system. The minimal function molecular mass was determined to be 170 kDa for the sodium-dependent taurocholate transporter. To prove the validity of radiation inactivation data four internal standard enzymes were tested under identical conditions.  相似文献   

4.
Basolateral membrane vesicles made from rabbit kidney proximal tubules were frozen and irradiated with a high energy electron beam and the effects of irradiation on Na,K-ATPase activity, p-aminohippurate (PAH) transport, the membrane diffusion barrier and vesicle volume were measured. The vesicle volume and diffusion barrier were not significantly changed by radiation exposure. Na,K-ATPase activity was inactivated as a simple exponential function of radiation dose. Target size analysis of the data yielded a molecular size of 267 +/- 17 kDa, consistent with its existence as a (alpha beta)2 dimer. The carrier-mediated PAH uptake by basolateral membrane vesicles was also inactivated as a function of radiation dose. A target molecular size of 74 +/- 16 kDa was calculated for the PAH transport system. This study is the first measurement of the functional size of the organic acid transport system based directly on flux measurements.  相似文献   

5.
1. Basolateral membranes of rat small intestine were first solubilized in a 0.6% cholate buffer and then the insoluble fraction was reextracted with a 1.2 or 1.6% cholate buffer. 2. Proteoliposomes reconstituted from the 1.2 or 1.6% cholate-extracted membrane fraction demonstrated characteristic Na+-independent D-glucose transport of the native basolateral membrane vesicles: inhibitable by mercuric chloride and D-galactose. 3. To further purify this D-glucose transport system, the 1.6% cholate-extracted membrane fraction was chromatographed on either hydroxylapatite, concanavalin A, wheat-germ lectin or castor bean lectin-120 affinity gels. 4. Proteoliposomes reconstituted from the membrane proteins adsorbed on hydroxylapatite and subsequently passed through agarose-castor bean lectin-120 showed a 12-fold enrichment of Na+-independent D-glucose transport activity over that of the native membrane vesicles. 5. SDS-electrophoretic analysis showed that the protein composition of the hydroxylapatite-castor bean lectin-120 treated fraction was much simpler than that of both 1.6% cholate-extracted fraction and the native membrane vesicles.  相似文献   

6.
We have used pulse-chase metabolic radiolabeling with L-[35S]methionine in conjunction with subcellular fractionation and specific protein immunoprecipitation techniques to compare the posttranslational transport pathways taken by endogenous domain-specific integral proteins of the rat hepatocyte plasma membrane in vivo. Our results suggest that both apical (HA 4, dipeptidylpeptidase IV, and aminopeptidase N) and basolateral (CE 9 and the asialoglycoprotein receptor [ASGP-R]) proteins reach the hepatocyte plasma membrane with similar kinetics. The mature molecular mass form of each of these proteins reaches its maximum specific radioactivity in a purified hepatocyte plasma membrane fraction after only 45 min of chase. However, at this time, the mature radiolabeled apical proteins are not associated with vesicles derived from the apical domain of the hepatocyte plasma membrane, but instead are associated with vesicles which, by several criteria, appear to be basolateral plasma membrane. These vesicles: (a) fractionate like basolateral plasma membrane in sucrose density gradients and in free-flow electrophoresis; (b) can be separated from the bulk of the likely organellar contaminants, including membranes derived from the late Golgi cisternae, transtubular network, and endosomes; (c) contain the proven basolateral constituents CE 9 and the ASGP-R, as judged by vesicle immunoadsorption using fixed Staphylococcus aureus cells and anti-ASGP-R antibodies; and (d) are oriented with their ectoplasmic surfaces facing outward, based on the results of vesicle immunoadsorption experiments using antibodies specific for the ectoplasmic domain of the ASGP-R. Only at times of chase greater than 45 min do significant amounts of the mature radiolabeled apical proteins arrive at the apical domain, and they do so at different rates. Approximate half-times for arrival are in the range of 90-120 min for aminopeptidase N and dipeptidylpeptidase IV whereas only 15-20% of the mature radiolabeled HA 4 associated with the hepatocyte plasma membrane fraction has become apical even after 150 min of chase. Our results suggest a mechanism for hepatocyte plasma membrane biogenesis in vivo in which all integral plasma membrane proteins are shipped first to the basolateral domain, followed by the specific retrieval and transport of apical proteins to the apical domain at distinct rates.  相似文献   

7.
Previous work from our laboratory supports an important role for aquaporins (AQPs), a family of water channel proteins, in bile secretion by hepatocytes. To further define the pathways and molecular mechanisms for water movement across hepatocytes, we directly assessed osmotic water permeability (Pf) and activation energy (Ea) in highly purified, rat hepatocytes basolateral membrane vesicles (BLMV) and canalicular membrane (CMV) vesicles by measuring scattered light intensity using stopped-flow spectrophotometry. The time course of scattered light for BLMV and CMV fit well to a single-exponential function. In BLMV, Pf was 108 +/- 4 mum.s-1 (25 degrees C) with an Ea of 7.7 kcal/mol; in CMV, Pf was 86 +/- 5 mum.s-1 (25 degrees C) with an Ea of 8.0 kcal/mol. The AQP blocker, dimethyl sulfoxide, significantly inhibited the Pf of both basolateral (81 +/- 4 mum.s-1; -25%) and canalicular (59 +/- 4 mum.s-1; -30%) membrane vesicles. When CMV were isolated from hepatocytes treated with dibutyryl cAMP, a double-exponential fit was needed, implying two functionally different vesicle populations; one population had Pf and Ea values similar to those of CMV from untreated hepatocytes, but the other population had a very high Pf (655 +/- 135 mum.s-1, 25 degrees C) and very low Ea (2.8 kcal/mol). Dimethyl sulfoxide completely inhibited the high Pf value in this second vesicle population. In contrast, Pf and Ea of BLMV were unaltered by cAMP treatment of hepatocytes. Our results are consistent with the presence of both lipid- and AQP-mediated pathways for basolateral and canalicular water movement across the hepatocyte plasma membrane barrier. Our data also suggest that the hepatocyte canalicular membrane domain is rate-limiting for transcellular water transport and that this domain becomes more permeable to water when hepatocytes are exposed to a choleretic agonist, presumably by insertion of AQP molecules. These data suggest a molecular mechanism for the efficient coupling of osmotically active solutes and water transport during canalicular bile formation.  相似文献   

8.
Binding of 3'-isothiocyanatobenzamido[3H]cholate ([3H]IBCA) to hepatocytes correlates to its efficacy in inhibiting cholate uptake in isolated hepatocytes. The correlation is linear up to 20 microM [3H]IBCA. Labeling of polypeptides is proportional to the degree of inhibition particularly for a protein of molecular weight 50 000. Transported substrates, competitive and non-competitive inhibitors of cholate transport protect against IBCA inhibition. Additionally binding of [3H]IBCA to isolated plasma membranes is prevented by the same substrates and inhibitors of the cholate transport system. The prevention is achieved by taurocholate, iopodate, iodipamide, furosemide, BSP, cyclosporin A, and somatostatin analogs. Protection is correlated to the degree of transport inhibition and depends on the hydrophobicity of the compounds. Other inhibitors known to destroy the driving forces such as valinomycin do not protect membrane proteins against coupling with IBCA. Silybin, which preferentially alters membrane fluidity, has little effect on the labeling. The above results give further evidence that IBCA, when applied in concentrations below 20 microM, is a suitable label for the hepatocellular bile salt transporter.  相似文献   

9.
The transport of uridine into rabbit renal outer-cortical brush-border and basolateral membrane vesicles was compared at 22 degrees C. Uridine was taken up into an osmotically active space in the absence of metabolism for both types of membrane vesicles. Uridine influx by brush-border membrane vesicles was stimulated by Na+, and in the presence of inwardly directed gradients of Na+ a transient overshoot phenomenon was observed, indicating active transport. Kinetic analysis of the saturable Na+-dependent component of uridine flux indicated that it was consistent with Michaelis-Menten kinetics (Km 12 +/- 3 microM, Vmax. 3.9 +/- 0.9 pmol/s per mg of protein). The sodium:uridine coupling stoichiometry was found to be consistent with 1:1 and involved the net transfer of positive charge. In contrast, uridine influx by basolateral membrane vesicles was not dependent on the cation present and was inhibited by nitrobenzylthioinosine (NBMPR). NBMPR-sensitive uridine transport was saturable (Km 137 +/- 20 microM, Vmax. 5.2 +/- 0.6 pmol/s per mg of protein). Inhibition of uridine flux by NBMPR was associated with high-affinity binding of NBMPR to the basolateral membrane (Kd 0.74 +/- 0.46 nM). Binding of NBMPR to these sites was competitively blocked by adenosine and uridine. These results indicate that uridine crosses the brush-border surface of rabbit proximal renal tubule cells by Na+-dependent pathways, but permeates the basolateral surface by NBMPR-sensitive facilitated-diffusion carriers.  相似文献   

10.
Basolateral plasma membranes were prepared from rat parotid gland after centrifugation in a self-orienting Percoll gradient. K+-dependent phosphatase [Na+ + K+)-ATPase), a marker enzyme for basolateral membranes, was enriched 10-fold from tissue homogenates. Using this preparation, the transport of alpha-aminoisobutyrate was studied. The uptake of alpha-aminoisobutyrate was Na+-dependent, osmotically sensitive, and temperature-dependent. In the presence of a Na+ gradient between the extra- and intravesicular solutions, vesicles showed an 'overshoot' accumulation of alpha-aminoisobutyrate. Sodium-dependent alpha-aminoisobutyrate uptake was saturable, exhibiting an apparent Km of 1.28 +/- 0.35 mM and Vmax of 780 +/- 170 pmol/min per mg protein. alpha-Aminoisobutyrate transport was inhibited considerably by monensin, but incubating with ouabain was without effect. These results suggest that basolateral membrane vesicles, which possess an active amino acid transport system (system A), can be prepared from the rat parotid gland.  相似文献   

11.
Neonatal hepatocytes are less active in uptake of bile acids than are mature hepatocytes. This phenomenon has been further investigated by transport studies with azidobenzamidotaurocholate (ABATC). Taurocholate, cholate and the photolabile ABATC were taken up by liver cells of adult rats by a sodium-dependent and by an additional sodium-independent mechanism. In the dark, ABATC inhibited the uptake of taurocholate and cholate. Taurocholate decreased the transport of ABATC in a competitive manner, both in the presence and absence of sodium. In neonatal hepatocytes the Vmax for taurocholate and for ABATC was similar but was lower than in mature liver cells. In contrast, the Km was similar for neonatal and mature hepatocytes. For identification of binding proteins in both kinds of cells ABATC was photolysed after preincubation with isolated hepatocytes. Under our experimental conditions (single ultraviolet flash) about 80% of the azido groups was converted to nitrene. The covalently binding nitrene derivative inhibited bile salt transport irreversibly. Photolabeling of intact hepatocytes or of isolated plasma membranes with ABATC resulted in radioindication of membrane proteins with 67, 60, 54, 50 and 43 kDa in mature plasma membranes but of proteins with masses of 67, 54, 43 and 37 kDa in neonatal basolateral membranes. The 50 kDa protein in largely lacking in membranes of 9-day-old rats. The process of photolabeling itself was sodium-independent when isolated cells were treated with ABATC. In contrast, the degree of labeling of intact hepatocytes was markedly reduced in the absence of sodium and chloride. 100-fold molar excess of taurocholate, benzamidotaurocholate (BATC), phalloidin or cyclosomatostatin protected isolated plasma membranes against coupling of ABATC. Photolabeling of hepatoma cells known to be deficient in bile salt transport did not result in radiomodification of membrane proteins.  相似文献   

12.
We compared several features of Na(+)-dependent phosphono[14C]formic acid (PFA) binding and Na(+)-dependent phosphate transport in rat renal brush border membrane vesicles. From kinetic analyses, we estimated an apparent Km for PFA binding of 0.86 mM, an order of magnitude greater than that for phosphate and the high-affinity phosphate transport system. A hyperbolic Na(+)-saturation curve for PFA binding and a sigmoidal Na(+)-saturation curve for phosphate transport were demonstrated; based on these data, we estimated stoichiometries of 1:1 for Na+/PFA and 2:1 for Na+/phosphate. By radiation inactivation analysis, target sizes for brush border membrane protein(s) mediating Na(+)-dependent PFA binding and Na(+)-dependent phosphate transport corresponded to molecular masses of 555 +/- 32 kDa and 205 +/- 36 kDa, respectively. Similar analysis of the phosphate-inhibitable component of Na(+)-dependent PFA binding gave a target size of 130 +/- 28 kDa. We also demonstrated that phosphate deprivation, which elicits a 2.6-fold increase in brush border membrane Na(+)-dependent phosphate transport, had no effect on either Na(+)-dependent PFA binding or on the target size for PFA binding. However, phosphate deprivation appeared to increase the target size for phosphate transport (from 255 +/- 32 to 335 +/- 75 kDa (P less than 0.01]. In summary, we present evidence for several differences between Na(+)-dependent PFA binding and Na(+)-dependent phosphate transport in rat renal brush border membrane vesicles and suggest that PFA may not interact exclusively with the proteins mediating Na(+)-phosphate co-transport.  相似文献   

13.
The transport characteristics of fluorescein methotrexate (F-MTX) were studied by using the rat intestinal crypt cell line IEC-6. Enhanced accumulation of F-MTX at 4 degrees C suggests the existence of an active efflux system. MK-571, an inhibitor of the multidrug resistance-associated protein/ATP binding cassette C (MRP/ABCC) family, also enhanced the accumulation of F-MTX. Transcellular transport of F-MTX from the apical to the basolateral compartment was 2.5 times higher than the opposite direction. This vectorial transport was also reduced by MK-571, indicating the presence of Mrp-type transporter(s) on the basolateral membrane. Mrp3 mRNA was readily detectable, and the protein was localized on the basolateral membrane. Uptake of FMTX into membrane vesicles from IEC-6 cells and Spodoptera frugiperda-9 cells expressing rat Mrp3 were both ATP dependent and saturable as a function of the F-MTX concentration. Similar Km values (11.0 +/- 1.8 and 4.5 +/- 1.1 microM) and inhibition profiles by MK-571, estradiol-17beta-d-glucuronide, and taurocholate for the ATP-dependent transport of F-MTX into these vesicles were obtained. These findings suggest that the efflux of F-MTX is mediated by Mrp3 on the basolateral membrane of IEC-6 cells.  相似文献   

14.
The basolateral membrane of the thick ascending loop of Henle (TALH) of the mammalian kidney is characterized by its high content of Na+/K(+)-ATPase and a Cl- conductance, which function in parallel in salt reabsorption. In order to reconstitute the Cl- channels, TALH membrane vesicles were solubilized in 1% sodium cholate in buffer containing 200 mM KCl, followed by dilution with soybean lipids (final ratio of protein/detergent/lipid of 1:3:15 in mg) and removal of the detergent by gel filtration on Sephadex G-50. Cl- channel activity in the liposomes was determined by a 36Cl- uptake assay where the accumulation of the radioactive tracer against its chemical gradient is driven by the membrane potential (positive inside) generated by an outward Cl- gradient. The 36Cl- uptake by the KCl-loaded liposomes was dependent on the inclusion of membrane protein and was abolished by valinomycin, indicating the involvement of a conductive pathway. It was also inhibited by 36% by 100 microM 4,4'-diisothiocyanostilbene-2,2'-disulfonate (DIDS) and 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB). Solubilization of the Cl- channels in cholate was optimal in the presence of 200 mm KCl, but was found to decrease markedly at low ionic strength. SDS-PAGE analysis of the proteins extracted by cholate at high and low salt concentrations showed that the Cl- channel-containing high KCl extract was enriched in the 96 and 55 kDa alpha- and beta-subunits of the Na+/K(+)-ATPase (the major proteins in the membrane preparation) and several minor protein bands. Treatment of the membrane vesicles with the radioactive analogue of DIDS, [3H]2DIDS, labeled primarily a 65 and a 31 kDa protein. The solubilization of the 31 kDa protein by cholate depended markedly on the ionic strength and thus paralleled the solubilization pattern of Cl- channel activity. Furthermore, the labeling of the 31 kDa protein was prevented by nonradioactive DIDS and by NPPB but not by other compounds, indicating that it may be a Cl- channel component.  相似文献   

15.
The GTP-binding proteins on luminal and basolateral membrane vesicles from outer cortex (pars convoluta) and outer medulla (pars recta) of rabbit proximal tubule have been examined. The membrane vesicles were highly purified, as ascertained by electron microscopy, by measurements of marker enzymes, and by investigating segmental-specific transport systems. The [35S]GTP gamma S binding to vesicles, and to sodium cholate-extracted proteins from vesicles, indicated that the total content of GTP-binding proteins were equally distributed on pars convoluta, pars recta luminal and basolateral membranes. The membranes were ADP-ribosylated with [32P]NAD+ in the presence of pertussis toxin and cholera toxin. Gel electrophoresis revealed, for all preparations, the presence of cholera toxin [32P]ADP-ribosylated 42 and 45 kDa G alpha s proteins, and pertussis toxin [32P]ADP-ribosylated 41 kDa G alpha i1, 40 kDa G alpha i2 and 41 kDa G alpha i3 proteins. The 2D electrophoresis indicated that Go's were not present in luminal nor in basolateral membranes of pars convoluta or pars recta of rabbit proximal tubule.  相似文献   

16.
The expression of the basolateral Na+/bile acid (taurocholate) cotransport system of rat hepatocytes has been studied in Xenopus laevis oocytes. Injection of rat liver poly(A)+ RNA into the oocytes resulted in the functional expression of Na+ gradient stimulated taurocholate uptake within 3-5 days. This Na(+)-dependent portion of taurocholate uptake exhibited saturation kinetics (apparent Km approximately 91 microM) and could be inhibited by 4,4'-diisothiocyano-2,2'-disulfonic acid stilbene. Furthermore, the expressed taurocholate transport activity demonstrated similar substrate inhibition and stimulation by low concentrations of bovine serum albumin as the basolateral Na+/bile acid cotransport system previously characterized in intact liver, isolated hepatocytes, and isolated plasma membrane vesicles. Finally, a 1.5- to 3.0-kilobase size-class of mRNA could be identified that was sufficient to express the basolateral Na+/taurocholate uptake system in oocytes. These results demonstrate that "expression cloning" represents a promising approach to ultimately clone the gene and to further characterize the molecular properties of this important hepatocellular membrane transport system.  相似文献   

17.
Structural analysis of native or recombinant membrane transport proteins has been hampered by the lack of effective methodologies to purify sufficient quantities of active protein. We addressed this problem by expressing a polyhistidine tagged construct of the cardiac sodium-calcium exchanger (NCX1) in Trichoplusia ni larvae (caterpillars) from which membrane vesicles were prepared. Larvae vesicles containing recombinant NCX1-his protein supported NCX1 transport activity that was mechanistically not different from activity in native cardiac sarcolemmal vesicles although the specific activity was reduced. SDS-PAGE and Western blot analysis demonstrated the presence of both the 120 and 70 kDa forms of the NCX1 protein. Larvae vesicle proteins were solubilized in sodium cholate detergent and fractionated on a chelated Ni(2+) affinity chromatography column. After extensive washing, eluted fractions were mixed with soybean phospholipids and reconstituted. The resulting proteoliposomes contained NCX1 activity suggesting the protein retained native conformation. SDS-PAGE revealed two major bands at 120 and 70 kDa. Purification of large amounts of active NCX1 via this methodology should facilitate biophysical analysis of the protein. The larva expression system has broad-based application for membrane proteins where expression and purification of quantities required for physical analyses is problematic.  相似文献   

18.
The Ca2+- or Mg2+-activated ATPase from rat liver plasma membrane was partly purified by treatments with sodium cholate and lysophosphatidylcholine, and by isopycnic centrifugation on sucrose gradients. The ATPase activity had high sensitivity to detergents, poor nucleotide specificity and broad tolerance for divalent cations. It was insensitive to mitochondrial ATPase inhibitors such as oligomycin and to transport ATPase inhibitors such as vanadate and ouabain. Using the cholate dialysis procedure, the partly purified enzyme was incorporated into asolectin vesicles. Upon addition of Mg2+-ATP, fluorescence quenching of 9-amino-6-chloro-2-methoxyacridine (ACMA) was observed. The quenching was abolished by a protonophore, carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP). Asolectin vesicles or purified ATPase alone failed to promote quenching. These data suggest that the Ca2+- or Mg2+-activated ATPase from rat liver plasma membrane is able of H+-translocation coupled to ATP hydrolysis.  相似文献   

19.
In order to characterize the driving forces for the concentrative uptake of unconjugated bile acids by the hepatocyte, the effects of pH gradients on the uptake of [3H]cholate by rat basolateral liver plasma membrane vesicles were studied. In the presence of an outwardly directed hydroxyl gradient (pH 6.0 outside and pH 7.5 inside the vesicle), cholate uptake was markedly stimulated and the bile acid was transiently accumulated at a concentration 1.5- to 2-fold higher than at equilibrium ("overshoot"). In the absence of a pH gradient (pH 6.0 or 7.5 both inside and outside the vesicle), uptake was relatively slower and no overshoot was seen. Reductions in the magnitude of the transmembrane pH gradient were associated with slower initial uptake rates and smaller overshoots. Cholate uptake under pH gradient conditions was inhibited by furosemide and bumetanide but not by 4, 4'-diisothiocyano-2,2'-disulfonic stilbene (SITS), 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid (DIDS), or probenecid. In the absence of a pH gradient, an inside-positive valinomycin-induced K+ diffusion potential caused a slight increase in cholate uptake which was insensitive to furosemide. Moreover, in the presence of an outwardly directed hydroxyl gradient, uphill cholate transport was observed even under voltage clamped conditions. These findings suggest that pH gradient-driven cholate uptake was not due to associated electrical potentials. Despite an identical pKa to that of cholate, an outwardly directed hydroxyl gradient did not drive uphill transport of three other unconjugated bile acids (deoxycholate, chenodeoxycholate, ursodeoxycholate), suggesting that a non-ionic diffusion mechanism cannot account for uphill cholate transport. In canalicular vesicles, although cholate uptake was relatively faster in the presence of a pH gradient than in the absence of a gradient, peak uptake was only slightly above that found at equilibrium under voltage clamped conditions. These findings suggest a specific carrier on the basolateral membrane of the hepatocyte which mediates hydroxyl/cholate exchange (or H+-cholate co-transport). A model for uphill cholate transport is discussed in which the Na+ pump would ultimately drive Na+/H+ exchange which in turn would drive hydroxyl/cholate exchange.  相似文献   

20.
S H Lee  N S Cohen  A J Jacobs  A F Brodie 《Biochemistry》1979,18(11):2232-2239
Membrane vesicles from Mycobacterium phlei contain carrier proteins for proline, glutamine, and glutamic acid. The transport of proline is Na+ dependent and required substrate oxidation. A proline carrier protein was solubilized from the membrane vesicles by treatment with cholate and Triton X-100. Electron microscopic observation of the detergent-treated membrane vesicles showed that they are closed structures. The detergent-extracted proteins were purified by means of sucrose density gradient centrifugation, followed by gel filtration and isoelectric focusing. A single protein with a molecular weight of 20,000 +/- 1000 was found on polyacrylamide gel electrophoresis. Reconstitution of proline transport was demonstrated when the purified protein was incubated with the detergent-extracted membrane vesicles. This reconstituted transport system was specific for proline and required substrate oxidation and Na+. The purified protein was also incorporated into liposomes, and proline uptake was demonstrated when energy was supplied as a membrane potential introduced by K+ diffusion via valinomycin. The uptake of proline was Na+ dependent and was inhibited by uncoupler or by sulfhydryl reagents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号