首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Radioimmunoassay and bioassay techniques have been used to investigate the ability of leukotriene (LT)F4 to release products of arachidonic acid metabolism from guinea pig isolated lungs perfused via the pulmonary artery. Also, the abilities of LTC4, LTD4, LTE4 and LTF4 to contract guinea pig ileal smooth muscle (GPISM) was studied. Each of the LT's contracted GPISM. The rank order of potency was LTD4 greater than LTC4 greater than LTE4 much greater than LTF4 in a ratio of 1:7:170:280 respectively. Bioassay of pulmonary effluents indicated the passage of LTF4 through the lungs caused a contraction of rabbit aorta as well as an FPL-55712 sensitive contraction of GPISM. The contractions of rabbit aorta were inhibited by pretreatment of the lungs with Indomethacin but not with the thromboxane synthetase inhibitor Dazoxiben. Radioimmunoassay of the lung effluents indicated LTF4 to cause a 70-fold increase in thromboxane B2 (TXB2), 4-fold increase in prostaglandin (PG)E2 and a 16-fold increase in 6-keto PGF1 alpha levels. The LTF4-induced increments of these immunoreactive metabolites was inhibited by pretreatment of the lungs with Indomethacin. Pretreatment of lungs with Dazoxiben inhibited the LTF4-induced increment in TXB2 and enhanced the effluent levels of PGE2 24-fold (compared with untreated lungs). There were no detectable differences in either immunoreactive LTC4 or immunoreactive LTB4 levels. It is concluded LTF4 is a relatively weak agonist on GPISM and can induce the release of cyclooxygenase products of arachidonic acid metabolism from guinea pig perfused lung.  相似文献   

2.
The biological actions of pure slow-reacting substance of anaphylaxis (SRS-A) from guinea-pig lung, pure slow-reacting substance (SRS) from rat basophilic leukaemia cells (RBL-1) and synthetic leukotrienes C4 (LTC4) and D4 (LTD4) have been investigated on lung tissue from guinea pig, rabbit and rat. In the guinea pig, the leukotrienes released cyclo-oxygenase products from the perfused lung and contracted strips of parenchyma. The effects of SRS-A, SRS and LTD4 were indistinguishable. LTC4 and LTD4 had similar actions although LTD4 was more potent than LTC4. Indomethacin (1 microgram/ml) inhibited the release of cyclo-oxygenase products from perfused guinea-pig lung and caused a marked reduction in contractions of guinea-pig parenchymal strips (GPP) due to LTC4 and LTD4. The residual contraction of the GPP was abolished by FPL 55712 (0.5 - 1.0 microgram/ml). It appears, therefore, that a major part of the constrictor actions of LTC4 and LTD4 in guinea-pig lung are mediated by myotropic cyclo-oxygenase products, i.e. thromboxane A2 (TxA2) and prostaglandins (PGs). In rabbit and rat lung, however, SRS-A, SRS and the leukotrienes were much less potent in contracting parenchymal strips and there was little evidence of the release of cyclo-oxygenase products. FPL 55712 at a concentration of 1 microgram/ml failed to antagonise leukotriene-induced contractions.  相似文献   

3.
The effect of four neuropeptides and acetylcholine on the release of leukotrienes LTC4, LTD4 and LTE4 from platelet activating factor-stimulated rat lung and ionophore A23187-stimulated guinea pig lung, as detected by the combined use of HPLC and radioimmunoassay, was studied. Both vasoactive intestinal peptide and calcitonin gene-related peptide were found to inhibit the release of leukotrienes in both preparations. This effect was most marked in platelet activating factor-stimulated rat lung, where inhibition of LTC4 release was more pronounced than either inhibition of LTD4 or LTE4 production. The effect of vasoactive intestinal peptide on LTC4 biosynthesis was dose-related in rat lung. Neither substance P nor beta-endorphin were found to inhibit leukotriene release in rat lung. Vasoactive intestinal peptide inhibition of leukotriene release is independent from its actions on the muscarinic receptor, since acetylcholine was found to have no effect in the same preparation.  相似文献   

4.
The metabolites of arachidonic acid known as the leukotrienes are a class of lipid mediators which have potent and diverse biological effects in pulmonary tissue. Leukotrienes C, D, and E (LTC4, LTD4, and LTE4) are known to be principal mediators of immunoglobulin E (IgE)-mediated hypersensitivity reactions in lung tissue. It is therefore important to develop reliable and quantitative isolation techniques for estimating levels of these mediators in tissue. In this study, LTC4, LTD4, and LTE4 were separated from other arachidonate metabolites by organic extraction procedures. 5-Hydroxyeicosatetraeonic acid and leukotriene B4 extract efficiently into the organic layer of aqueous:ether or aqueous:chloroform extractions, whereas arachidonate metabolites containing conjugated peptides (e.g., LTC4, LTD4, and LTE4) failed to extract into these organic solvents. An extraction step was therefore developed that affords quantitative extraction of LTC4, LTD4, and LTE4 into the organic phase of an isopropanol:ether:H2O mixture. This step is the key for a two-step extraction method that isolates histamine, LTC4, LTD4, and LTE4 with a recovery of 100, 85, 75, and 57%, respectively. One advantage of this separation procedure for obtaining these mediators by organic extraction is an ability to expediently process many samples. Furthermore, the leukotriene content of extracted samples can be analyzed using the guinea pig ileum bioassay without interference from vasoamines or platelet-activating factor. These later substances are eliminated from leukotriene-enriched fractions by this extraction process. When histamine and LTC4 were added to supernatant fluids recovered from isolated lung tissue, they were quantitatively recovered using this extraction method.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
L-660,711 (3-(3-(2-(7-chloro-2-quinolinyl)ethenyl)phenyl) ((3-dimethyl amino-3-oxo propyl)thio)methyl)thio)propanoic acid is a potent and selective competitive inhibitor of [3H]leukotriene D4 binding in guinea pig (Ki value, 0.22 nM) and human (Ki value, 2.1 nM) lung membranes but is essentially inactive versus [3H]leukotriene C4 binding (IC50 value in guinea pig lung, 23 microM). Functionally it competitively antagonized contractions of guinea pig trachea and ileum induced by leukotriene (LT) D4 (respective pA2 values, 9.4 and 10.5) and LTE4 (respective pA2 values, 9.1 and 10.4) and contractions of human trachea induced by LTD4 (pA2 value, 8.5). L-660,711 (5.8 x 10(-8)M) antagonized contractions of guinea pig trachea induced by LTC4 in the absence (dose ratio = 28) but not in the presence of 45 mM L-serine borate (dose ratio less than 2). L-660,711 (1.9 x 10(-5)M) did not block contractions of guinea pig trachea induced by histamine, acetylcholine, 5-hydroxytryptamine, PGF2 alpha, U-44069, or PGD2. In the presence of atropine, mepyramine, and indomethacin, L-660,711 (1.9 x 10(-5)M) inhibited a small component of the response to antigen on guinea pig trachea but completely blocked anti-IgE-induced contractions of human trachea. L-660,711 (i.v.) antagonized bronchoconstriction induced in anesthetized guinea pigs by i.v. LTC4, LTD4, and LTE4 but did not block bronchoconstriction to arachidonic acid, U-44069, 5-hydroxytryptamine, histamine, or acetylcholine. Intraduodenal L-660,711 antagonized LTD4 (0.2-12.8 micrograms/kg)-induced bronchoconstriction in guinea pigs, and p.o. L-660,711 blocked LTD4- and Ascaris-induced bronchoconstriction in conscious squirrel monkeys and ovalbumin-induced bronchoconstriction in conscious sensitized rats treated with methysergide (3 micrograms/kg). The pharmacological profile of L-660,711 indicates that it is a potent, selective, orally active leukotriene receptor antagonist which is well suited to determine the role played by LTD4 and LTE4 in asthma and other pathophysiologic conditions.  相似文献   

6.
Metabolism of cysteinyl leukotrienes by the isolated perfused rat kidney.   总被引:1,自引:0,他引:1  
The metabolism of cysteinyl leukotrienes by the isolated perfused rat kidney was investigated. For this purpose LTC4, LTD4 or LTE4 were studied in separate experiments. The isolated perfused rat kidney metabolized all cysteinyl leukotrienes to the final metabolite N-acetyl-LTE4. In the presence of 5% albumin 50% of LTC4 was metabolized to LTD4 (22%), LTE4 (15%) and N-acetyl-LTE4 (13%) within 60 min. Excretion of radioactivity into urine was less than 1%. In contrast, in the absence of albumin, LTC4 was completely metabolized within 45 min to N-acetyl-LTE4, the sole and final metabolite of LTC4 found in the perfusion medium as well as in urine. After 60 min 19% and 42% of total radioactivity were found in the perfusion medium and in urine, respectively. Isolated glomeruli metabolized LTC4 to LTD4 and to LTE4 but not to N-acetyl-LTE4 at a rate comparable to the rate observed by the isolated perfused kidney in the absence of albumin. In contrast to isolated glomeruli isolated tubuli metabolized LTE4 to N-acetyl-LTE4 at a rate comparable to that observed by the isolated perfused kidney in the absence of albumin. The present study shows that the isolated perfused rat kidney metabolizes cysteinyl leukotrienes to the sole and final metabolite N-acetyl-LTE4. In the presence of albumin metabolism is slowed down and excretion of N-acetyl-LTE4 into urine is prevented.  相似文献   

7.
The effects of leukotrienes (LTs) have been widely studied in the isolated perfused mammalian heart; however, little is known about the effect or metabolism of LTs in the isolated bullfrog heart. Isolated perfused bullfrog hearts were administered randomized doses of LTC4, LTD4, or LTE4. The cardiac parameters of heart rate, developed tension, and its first derivative (dT/dt) were recorded. LTC4 was the most potent of the leukotrienes tested in eliciting positive inotropic effects. LTD4 and LTE4 were equally effective but about one order of magnitude less potent than LTC4. None of the LTs showed any chronotropic effects in this preparation. A series of [3H]LTC4 metabolism experiments were carried out using whole perfused hearts and minced bullfrog heart tissue. Isolated perfused bullfrog hearts administered [3H]LTC4 converted significant amounts to [3H]LTD4, and to a lesser degree, [3H]LTE4, during the 6-min course of collection. Both minced atrial and ventricular tissue converted [3H]LTC4 to radioactive metabolites that co-migrated with authentic LTD4 and LTE4 standards. In both tissues, the major product was [3H]LTD4, with smaller amounts of [3H]LTE4 produced. The atrium converted significantly more [3H]LTC4 to its metabolites than did the ventricle. The metabolism of [3H]LTC4 to [3H]LTD4 by both tissues was virtually abolished in the presence of serine borate. Cysteine had no effect on [3H]LTE4 production. The data in this study demonstrate that leukotrienes have the opposite inotropic effect on the heart when compared with mammals. Also in contrast to mammals, frogs metabolize LTC4 to a less potent compound and may use the LTC4 to LTD4 conversion as a mechanism of LTC4 inactivation.  相似文献   

8.
Leukotrienes A4 and D4 displayed equivalent myotropic activity on guinea pig lung parenchyma strips. However, on the trachea, the activity of LTD4 was much higher than that of LTA4. The potencies of these two leukotrienes were also different on strips of longitudinal muscles of the ileum where LTD4 was very active whereas LTA4 was inactive. Since the activities of both leukotrienes were blocked by FPL-55712, our results suggested that the transformation of LTA4 by the smooth muscle preparations was a prerequisite to its biological activity. LTA4 was then incubated for 10 min with homogenates of guinea pig lung parenchyma, trachea and longitudinal muscles of ileum, and the metabolites were analysed by bioassay using strips of guinea pig ileum and lung parenchyma in a cascade superfusion system and also by reversed phase high performance liquid chromatography (RP-HPLC). Homogenates of lung parenchyma rapidly transformed LTA4 to LTB4, LTC4, LTD4 and LTE4. Incubation of LTA4 with homogenates of trachea or of the longitudinal muscles of ileum showed the formation of LTB4 and its isomers but no significant amount of peptido-leukotrienes were detected. These findings reveal that LTA4 undergoes distinctly different metabolic transformations in these tissues which correspond to the biological activities of the products recovered. These results strongly suggest that the myotropic activity and potency of LTA4 is related to the tissue levels of enzymes which catalyse its biotransformation.  相似文献   

9.
A structural analog of LTD4, 4R-hydroxy-5S-cysteinylglycyl-6Z-nonadecenoic acid (4R, 5S, 6Z-2-nor-LTD1) has been synthesized and pharmacologically characterized. It significantly antagonized the contractile action of LTD4, LTC4 and LTE4 in guinea pig airways. In addition, this compound antagonized the in vitro vasoconstrictive effects of LTD4 in the guinea pig pulmonary artery. The study of a series of structural analogs of 4R, 5S, 6Z-2-nor-LTD1 suggests that the spatial separation of the C-1 (eicosanoid) carboxyl relative to the hydroxyl is a critical determinant in LTD4 agonist/antagonist activity.  相似文献   

10.
Platelet-activating factor (PAF) and leukotrienes (LTs) are potent pulmonary hypertensive and inflammatory mediators produced by the lung. Previously we showed that a rapid injection of PAF into the pulmonary artery of an isolated rat lung produced an extended elevation in mean pulmonary arterial pressure (PAP). The objective of the present study was to determine whether the extended pressor response induced by PAF was caused by prolonged activation of the 5-lipoxygenase pathway or slow clearance of LTs from the lung parenchyma. Rat lungs were perfused with a nonrecirculating physiological salt solution that contained indomethacin and albumin. Five minutes after a rapid injection of PAF into the pulmonary artery catheter, the following elevations (mean % above baseline) were observed: PAP (83%), LTB4 (3,260%), LTC4 (1,490%), LTD4 (970%), and LTE4 (1,500%). At 20 min these levels declined but were still significantly elevated above baseline. The 5-lipoxygenase inhibitor diethylcarbamazine (DEC), administered before the PAF injection, inhibited the elevations of PAP and all LTs. DEC administration that began 5 min after PAF reduced PAP and only LTC4 levels at 20 min in comparison to lungs with no DEC. The 5-lipoxygenase-activating protein inhibitor MK886, administered orally 2-6 h before perfusion, also inhibited the pressor response to PAF as well as LT production, as did DEC. We conclude that 1) the extended pulmonary hypertension induced by PAF was caused mainly by prolonged activation of 5-lipoxygenase with LTC4 production, 2) the relative overall lung clearance of LTB4, LTD4, and LTE4 was slower than that of LTC4, and 3) LTB4, LTD4, and LTE4 had no appreciable pressor effect.  相似文献   

11.
Rat livers were perfused in a non-recirculating mode at constant pressure via the portal vein with media containing 5 mM glucose, 2 mM lactate, and 0.2 mM pyruvate. [3H]LTC4 was infused for a period of 5 min to a final concentration of 20 nM; it increased glucose and lactate output and reduced perfusion flow. 1) Leukotriene radioactivity was recovered 10 min after the onset of [3H]LTC4 infusion to about 40% in the effluent, to 20% in the bile, and to 40% in the liver. 2) Radioactivity in the effluent increased to a maximum 4-5 min after the onset and decreased again to essentially zero 3 min after completion of [3H]LTC4 infusion. [3H]LTC4 and [3H]LTD4 were the major labeled components in the effluent accounting for 45% and 38%, respectively, of the effluent radioactivity. 3) [3H]LTC4 and [3H]LTD4 were also the major components in bile; they accounted for 50% and 30%, respectively, of the radioactivity excreted, while more polar [3H]leukotriene metabolites accounted for the remainder. 4) In the liver, [3H]LTC4 and [3H]LTD4 were the major and [3H]LTE4, N-acetyl-[3H]LTE4 as well as omega-hydroxy-N-acetyl-[3H]LTE4 and omega-carboxy-N-acetyl-[3H]LTE4 were minor components detected 5 min after completion of [3H]LTC4 infusion. It is concluded from the present findings that during a 5 min infusion period about one third each of the infused LTC4 remained unchanged, was converted to LTD4, and was further degraded to LTE4 and polar metabolites including omega-oxidation products of N-acetyl-LTE4.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
P Sirois  S Roy  P Borgeat 《Prostaglandins》1983,26(1):91-101
The novel metabolites of arachidonic acid, leukotriene (LT) A4, B4, C4, D4 and E4 have potent myotropic activity on guinea-pig lung parenchymal strip in vitro. The receptors responsible for their action were characterized using desensitization experiments and the selective SRS-A antagonist, FPL-55712. During the continuous infusion of LTB4, the tissues became desensitized to LTB4 but were still responsive to histamine, LTA4, LTC4, LTD4 and LTE4. When LTD4 was infused continuously, the lung strips contracted to LTB4 and histamine but were no longer responsive to LTA4, LTC4, LTD4 and LTE4. Furthermore, FPL-55712 (10 ng ml-1 - 10 ug ml-1) produced dose-dependent inhibitions of LTA4, LTC4, LTD4 and LTE4 without inhibiting the contraction to LTB4 and histamine. On the basis of these results, it appears that the guinea-pig lung parenchyma may have one type of receptor for LTB4 and another for LTD4; LTA4, LTC4 and LTE4 probably act on the LTD4 receptor.  相似文献   

13.
T Jones  D Denis  R Hall  D Ethier 《Prostaglandins》1983,26(5):833-843
Leukotrienes D4 greater than C4 greater than E4 greater than F4 produced qualitatively similar contractions of guinea-pig trachealis, which were antagonized by the SRS-antagonist FPL-55712. Schild analyses indicated that FPL-55712 when tested in a low concentration range (0.57 - 5.7 X 10(-6) M) was a competitive antagonist of LTC4, LTE4 and LTF4 (slope not significantly different from one). The interaction of FPL-55712 with LTD4 may be noncompetitive (slope less than 1). Comparison of the calculated dissociation constants (-log KB) indicated that FPL-55712 was more effective at blocking LTE4 and LTF4 compared to LTC4 and LTD4. In the presence of higher concentrations of FPL-55712 (1.9 X 10(-5) M) the antagonism of LTC4 became noncompetitive. These findings indicate that important differences exist in the interaction of FPL-55712 with the various peptido leukotrienes in guinea pig trachealis. Discovery of more selective antagonists will be needed to determine if multiple receptor subtypes are present in this tissue.  相似文献   

14.
Leukotrienes (LTs) C4 and D4 are vasoconstrictors and are thought to increase both systemic and pulmonary vascular permeability. However, we and others have observed that LTC4 and LTD4 cause pulmonary vasoconstriction but do not increase the fluid filtration coefficient of excised guinea pig lungs perfused with a cell-depleted perfusate. To determine what vascular segments were exposed to an LT-induced increase in intravascular hydrostatic pressure we measured pulmonary arterial (Ppa), pulmonary arterial occlusion (Po,a), venous (Po,v) and double occlusion (Pdo) pressures in isolated guinea pig lungs perfused with a cell-depleted buffered salt solution before and after injecting 4 micrograms of LTB4, LTC4, or LTD4 into the pulmonary artery. All three LTs increased airway pressures and also increased Ppa, Po,a, and Pdo. Histamine (15 micrograms) as well as serotonin (20 or 200 micrograms) had the same effect. In excised rabbit lungs, histamine and serotonin increased only Ppa, and Po,a. LTC4 had no vasoactivity. There are marked species variations with regard to the activity and site of action of histamine, serotonin, and LTC4 on the pulmonary circulation.  相似文献   

15.
Biological activity of leukotriene sulfones on respiratory tissues   总被引:4,自引:0,他引:4  
The biological activity of synthetic leukotriene C4, D4 and E4 sulfone has been determined in respiratory smooth muscle in vitro and in vivo. The sulfones of LTC4, LTD4 and LTE4 were potent contractile agonists on indomethacin-treated guinea pig tracheal chains with respective pD2-values of 8.2, 8.0 and 7.9. Contractions were submaximal (75-85% of the cholinergic maximum), slow in onset, prolonged in duration, slowly reversed by washing (compared to acetylcholine or histamine) and were partially reversed by 2 muM FPL-55712. The sulfones of LTC4, LTD4 and LTE4 also contracted indomethacin-treated guinea pig parenchyma (respective pD2's of 7.9 8.2 and 7.8) and rat parenchyma (respective pD2's of 7.1, 7.2 and 7.2) but were inactive on rat trachea (0.01-2.0 muM). When administered intravenously to anaesthetized guinea pigs, the sulfones of LTD4, LTE4 and to a lesser degree LTC4 (respective ED50's - 0.5; 2.0 and 4.6 microgram/kg) elicited dose-dependent increases in inflation pressure which were antagonized by FPL-55712 and indomethacin. Leukotriene C4, D4 and E4 sulfones display a qualitatively similar profile of biological activity to that of their corresponding sulfides.  相似文献   

16.
Following cisternal injection of [3H8]LTC4 into guinea pigs, leukotriene metabolites were identified in the brain, cerebellum, perilymph, blood, liver and kidneys. LTC4 was metabolized into LTD4 and LTE4 in the cerebrospinal fluid and LTE4 was transported into the blood for general circulation and uptake into the liver and kidneys. The excretion of LTE4 from CNS to blood seemed to be the rate-limiting step in the elimination of leukotrienes from the body. Leukotrienes were also transported into the perilymph. The conversion of LTC4 into LTD4 and LTE4 was lower in perilymph as compared to the cerebrospinal fluid, suggesting a rate limiting function of the cochlear aqueduct that can be defined as a cerebrospinal fluid-labyrinth barrier.  相似文献   

17.
A radioimmunoassay for leukotriene D4 (LTD4) has been developed which exhibits sufficiently high sensitivity to be useful in conjunction with RP-HPLC in the detection of LTC4, LTD4 and LTE4 in physiological samples. The detection limit of the assay was approximately 240 amoles, using antiserum TG1 at a dilution of 6 X 10(3), with 50% displacement at 70 fmoles. Antiserum NW1, also at a dilution of 6 X 10(3), displayed a detection limit of 9 fmoles with 50% displacement at 100 fmoles. The two antisera have similiar crossreactivities, both manifesting useful affinities for LTE4 and LTC4, and low or negligible affinities for other arachidonic acid metabolites, or their derivatives. The radioimmunoassay was used to detect 1) LTC4, LTD4 and LTE4 released from perfused rat lung in response to platelet-activating factor (PAF) stimulation, 2) conversion of exogenous LTD4 to LTE4 in human blood, and 3) endogenous leukotrienes in human blood samples.  相似文献   

18.
Leukotriene F4 (LTF4) and LTF4 sulfone have been synthesized and their biological activities determined in the guinea pig. In vitro LTF4 displayed comparable activity to LTD4 on guinea pig trachea and parenchyma but was less active on the ileum. When injected intravenously into the guinea pig, LTF4 induced a bronchoconstriction (ED50 16 micrograms Kg-1) which was blocked by indomethacin and FPL-55712 and was 50-100 X less potent than LTD4 in this assay. LTF4 sulfone was approximately 2-5 times less active than LTF4 in vitro and in vivo. When injected into guinea pig skin with PGE2 (100 ng); LTF4 and LTF4 sulfone (10-1000 ng) induced changes in vascular permeability. The order of potency in this assay was LTE4 sulfone = LTD4 = LTD4 sulfone greater than LTE4 greater than LTF4 = LTF4 sulfone.  相似文献   

19.
Leukotrienes constrict smooth muscle and could be important for the regulation of the pulmonary circulation. We examined the production and action of lipoxygenase metabolites in isolated lungs, where we controlled the perfusing fluid used. Arachidonate injected into isolated rat lungs perfused with cell- and protein-free physiological salt solution caused a transient pressor response. Following indomethacin, arachidonate caused a delayed slow pressure rise followed by edema. The lung effluent contracted the guinea pig ileum. High-pressure liquid chromatography (HPLC) analysis of the perfusate demonstrated the presence of leukotrienes (LTC4 and LTD4). Diethylcarbamazine, a leukotriene synthesis inhibitor, prevented the slow pressure rise and edema seen after indomethacin plus arachidonate. In lungs perfused with cell- and protein-free physiological salt solution, LTC4, but not LTD4, caused a transient pressure rise followed by a sustained pressure rise. The sustained rise was abolished by a leukotriene-receptor blocker (FPL 55712) but not by indomethacin. In blood-perfused lungs, LTC4 caused only the transient pressure rise that was not blocked by FPL 55712. In lungs perfused with physiological salt solution containing albumin, LTC4 had no effect. We concluded that 1) perfused nonsensitized rat lungs produced LTC4 and LTD4; 2) LTC4 may be a major pulmonary vasoconstrictor; and 3) albumin binding limits the pressor effect of LTC4.  相似文献   

20.
Specific binding of leukotriene B4 to guinea pig lung membranes   总被引:2,自引:0,他引:2  
We have demonstrated binding sites for LTB4 in guinea pig lung membranes. Binding of [3H]-LTB4 was of high affinity (Kd = 0.76 nM), saturable and linear with protein concentration (0.2-1.2 mg/ml). Scatchard and Hill's plot analysis indicated a single class of binding site with a Hill's coefficient of 0.99 +/- 0.08 (n = 4). [3H]-LTB4 was unmetabolized during incubation with membrane preparations, as indicated by high performance liquid chromatography. Divalent cations such as Mg2+ and Ca2+ enhanced binding capacity without changing the Kd. Na+ ions decreased binding in a concentration-dependent manner. Guanine nucleotides, GTP, GTP gamma S and Gpp(NH)p also decreased the number of binding sites. Finally, competition experiments demonstrated the following order of potency for displacement of [3H]-LTB4 from its receptor site: LTB4 greater than 20-OH-LTB4 much greater than 20-COOH-LTB4 = 6-trans-12-epi-LTB4 greater than LTC4 = LTD4 = 5-HETE. These data indicate that a specific LTB4 receptor, in addition to the previously documented LTC4 and LTD4 receptors, exists in guinea pig lung.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号