首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Certain lactic acid bacteria, especially heterofermentative strains, are capable to produce mannitol under adequate culture conditions. In this study, mannitol production by Lactobacillus reuteri CRL 1101 and Lactobacillus fermentum CRL 573 in modified MRS medium containing a mixture of fructose and glucose in a 6.5:1.0 ratio was investigated during batch fermentations with free pH and constant pH 6.0 and 5.0. Mannitol production and yields were higher under constant pH conditions compared with fermentations with free pH, the increase being more pronounced in the case of the L. fermentum strain. Maximum mannitol production and yields from fructose for L. reuteri CRL 1101 (122 mM and 75.7 mol%, respectively) and L. fermentum CRL 573 (312 mM and 93.5 mol%, respectively) were found at pH 5.0. Interestingly, depending on the pH conditions, fructose was used only as an alternative external electron acceptor or as both electron acceptor and energy source in the case of the L. reuteri strain. In contrast, L. fermentum CRL 573 used fructose both as electron acceptor and carbon source simultaneously, independently of the pH value, which strongly affected mannitol production by this strain. Studies on the metabolism of these relevant mannitol-producing lactobacilli provide important knowledge to either produce mannitol to be used as food additive or to produce it in situ during fermented food production.  相似文献   

2.
目的通过赤藓糖醇对变形链球菌、远缘链球菌及其耐氟菌株混合菌生长和产酸影响的体外研究,为赤藓糖醇防龋作用的机理提供制论依据。方法采用最小抑菌浓度递增法对变形链球菌(S.mutans ATCC 25175,S.m)、远缘链球菌(S.sobrinus 6715,S.s)进行氟化钠体外诱导耐氟菌株(S.m-FR、S.s-FR),利用液体稀释法配制赤藓糖醇TSB液8个浓度,分别加入含有变形链球菌、远缘链球菌及其耐氟菌株的细菌混悬液48 h,用比浊法观察其对混合菌生长的影响,并用pH计测定培养前后上清液的△pH值。结果吸光度A值和△pH值实验前后与对照组相比最低浓度为12%时差异均有统计学意义(P〈0.05),且随着浓度的升高A值和△pH值均下降。结论赤藓糖醇能抑制变形链球菌、远缘链球菌及耐氟菌株混合菌生长和产酸,并且随着浓度的升高抑制作用增强。  相似文献   

3.
Summary In a mineral salts medium containing yeast extract, NH4Cl and glucose (50g/L), the pH range producing the fastest growth ofZ. mobilis was 5.5–6.5 with an apparent optimum at 6.5. At constant growth rate of 0.15hr–1, the specific rates of glucose utilization (qs) and ethanol production (qp) were relatively unaffected by pH over the range 7.0–5.5 but increased sharply as the pH was further decreased below 5.5 to 4.0. Under these conditions the ethanol yield was unaffected by pH over the range 4.0–6.5 but decreased markedly at pH of 7.  相似文献   

4.
Actinomyces are predominant oral bacteria; however, their cariogenic potential in terms of acid production and fluoride sensitivity has not been elucidated in detail and compared with that of other caries‐associated oral bacteria, such as Streptococcus. Therefore, this study aimed to elucidate and compare the acid production and growth of Actinomyces and Streptococcus in the presence of bicarbonate and fluoride to mimic conditions in the oral cavity. Acid production from glucose was measured by pH‐stat at pH 5.5 and 7.0 under anaerobic conditions. Growth rate was assessed by optical density in anaerobic culture. Although Actinomyces produced acid at a lower rate than did Streptococcus, their acid production was more tolerant of fluoride (IDacid production 50 = 110–170 ppm at pH 7.0 and 10–13 ppm at pH 5.5) than that of Streptococcus (IDacid production 50 = 36–53 ppm at pH 7.0 and 6.3–6.5 ppm at pH 5.5). Bicarbonate increased acid production by Actinomyces with prominent succinate production and enhanced their fluoride tolerance (IDacid production 50 = 220–320 ppm at pH 7.0 and 33–52 ppm at pH 5.5). Bicarbonate had no effect on these variables in Streptococcus. In addition, although the growth rate of Actinomyces was lower than that of Streptococcus, Actinomyces growth was more tolerant of fluoride (IDgrowth 50 = 130–160 ppm) than was that of Streptococcus (IDgrowth 50 = 27–36 ppm). These results indicate that oral Actinomyces are more tolerant of fluoride than oral Streptococcus, and bicarbonate enhances the fluoride tolerance of oral Actinomyces. Because of the limited number of species tested here, further study is needed to generalize these findings to the genus level.  相似文献   

5.
Mutants with reduced membrane-bound ATPase activities were isolated from Lactococcus lactis subsp. lactis C2 as spontaneous neomycin-resistant mutants. Characteristics of the representative mutant, No. 1016–51, were compared with the parental strain in cultures using a jar fermentor with the pH controlled at various values. At pH 6.5, the fermentation patterns, i.e., glucose consumption, growth, and lactic acid production, of both strains appeared identical. At pH 4.5, however, the levels of growth, lactic acid production, and the amounts of lactic acid produced per cell after the culture for 24 h decreased to 60, 36, and 60% of the parental strain, respectively. During the cultures at pH 6.5, no differences were found in viabilities between both strains even after 80 h. On the other hand, at pH 4.0, the viable count of the strain No. 1016–51 in a 72-h culture decreased to less than 1% of that of the zero time, while the parental strain maintained its original viability. Therefore, it was concluded that the membrane-bound ATPase is essential for this organism to survive at low pH, probably through its function of proton pumping for maintaining cytoplasmic pH levels.  相似文献   

6.
Aspergillus quercinus (IFO 4363) was selected as the most suitable strain to produce 5′-mononucleotides from RNA among several species of Aspergillus which produced enzymes capable of degrading RNA into 5′-mononucleotides.

Aspergillus quercinus produced two kinds of RNA-depolymerases (designated as RNA-deploymerase I and II), phosphodiesterase, phosphomonoesterase and adenylic deaminase in the culture medium. The optimum pH of each enzyme was found to be about 4.5, 7.0, 5.0, 6.0 and 5.5, respectively. Maximal production of these enzymes in the culture medium occurred at 96, 96, 216, 168 and 264 hour culture, respectively. The culture filtrate of Aspergillus quercinus degraded RNA into 3′-mononucleotides at the pH lower than 6.0, into 5′-mono-nucleotides at the pH higher than 8.5 and into both mononucleotides at the pH range between 6.0 and 8.5. 5′-Inosinic acid was prepared from RNA by using the extra- and intracellular enzymes of Aspergillus quercinus.  相似文献   

7.
Clostridium acetobutylicum mutants BA 101 (hyperamylolytic) and BA 105 (catabolite depressed) were isolated by using N-methyl-N'-nitro-N-nitrosoguanidine together with selective enrichment on the glucose analog 2-deoxyglucose. Amylolytic enzyme production by C. acetobutylicum BA 101 was 1.8- and 2.5-fold higher than that of the ATCC 824 strain grown in starch and glucose, respectively. C. acetobutylicum BA 105 produced 6.5-fold more amylolytic activity on glucose relative to that of the wild-type strain. The addition of glucose at time zero to starch-based P2 medium reduced the total amylolytic activities of C. acetobutylicum BA 101 and BA 105 by 82 and 25%, respectively, as compared with the activities of the same strains grown on starch alone. Localization studies demonstrated that the amylolytic activities of C. acetobutylicum BA 101 and BA 105 were primarily extracellular on all carbohydrates tested.  相似文献   

8.
The influence of pH on growth, and lactic acid and bacteriocin production byLactococcus lactis subsp.lactis 140 NWC was studied during batch fermentation in a lactose-based complex medium. Growth and lactic acid production were modelled using a simple logistic equation while substrate consumption was found to be a function growth and lactic acid production rate. The optimal pH for growth and lactic acid production was between 6.0 and 6.5. Bacteriocin production showed primary metabolite kinetics. pH had a dramatic effect on the production of the bacteriocin, lactococcin 140. A maximum activity of 15.4 × 106 AU (arbitrary units) 1–1 was obtained after 7 h at pH 5.5. Maximum bacteriocin activity was achieved before the end of growth and was followed by a decrease in activity, which was due to adsorption to the cells of the producing organism, possibly followed by degradation by specific proteases. Both bacteriocin production and degradation rates were higher at pH 5.0 and 5.5, resulting in sharper activity peaks than at pH 6.0 or 6.5. On the basis of the experimental results a qualitative model for bacteriocin production is proposed.  相似文献   

9.
Clostridium acetobutylicum mutants BA 101 (hyperamylolytic) and BA 105 (catabolite depressed) were isolated by using N-methyl-N'-nitro-N-nitrosoguanidine together with selective enrichment on the glucose analog 2-deoxyglucose. Amylolytic enzyme production by C. acetobutylicum BA 101 was 1.8- and 2.5-fold higher than that of the ATCC 824 strain grown in starch and glucose, respectively. C. acetobutylicum BA 105 produced 6.5-fold more amylolytic activity on glucose relative to that of the wild-type strain. The addition of glucose at time zero to starch-based P2 medium reduced the total amylolytic activities of C. acetobutylicum BA 101 and BA 105 by 82 and 25%, respectively, as compared with the activities of the same strains grown on starch alone. Localization studies demonstrated that the amylolytic activities of C. acetobutylicum BA 101 and BA 105 were primarily extracellular on all carbohydrates tested.  相似文献   

10.
The present study was designed to identify nutrient-dependent changes in extracellular pH and acid phosphatase secretion in the biA1 palC4 mutant strain of Aspergillus nidulans. The palC4 mutant was selected as lacking alkaline phosphatase, but having substantially increased acid phosphatase activity when grown on solid minimal medium under phosphate starvation, pH 6.5. Gene palC was identified as a putative member of a conserved signaling cascade involved in ambient alkaline sensing whose sole function is to promote the proteolytic activation of PacC at alkaline pH. We showed that both poor growth and conidiation of the palC4 mutant strain on solid medium, alkaline pH, were relative to its hypersensitivity to Tris (hydroxymethyl) aminomethane buffer. Also, the secretion of acid phosphatase was repressed when both the wild-type and palC4 mutant strains were grown in low-phosphate yeast extract liquid medium, pH 5.0, indicating that the secretion of this enzyme is not necessary to regenerate inorganic phosphate from the organic phosphate pool present in yeast extract.  相似文献   

11.
A strain improvement program was developed to increase extracellular phytase (E.C. 3.1.3.8.) production by Aspergillus niger (syn. A. ficuum) NRRL 3135. Ultraviolet (UV) radiation was used as the mutagen and resistance to 50 g/ml of hygromycin B as the selection method. Mutant 2DE, the product of two UV treatments, had phytase (PhytA) activity at pH 5.0 in the extracellular filtrate that was 3.3-fold higher than the wild-type activity. The activity of the non-specific acid phosphatase with a pH optimum of 6.0 (Pase) was one-fifth the activity of the wild type and the non-specific acid phosphatase with a pH optimum of 2.5 (PhytB) was not significantly different from the wild type. The mutant and wild-type PhytA, PhytB and Pase responsed similarly in inhibition studies. However, the wild-type enzymes were inhibited more by 1 mm sodium fluoride and 1 mm phosphomycin. PhytA production by the mutant was repressed 60% by inorganic phosphate concentrations of 0.006% (wt/vol) or above. The mutant had an extracellular protein concentration 3.2-fold higher than the wild type, which correlated with its higher phytase activity at pH 5.0, but not with phytase activity at pH 2.5 and acid phosphatase activities. The isolate may be a phytase catalytic mutant, as well as, on overproducer of phytase. In addition, a mutant with an apparent lack of activity of all three acid phosphatases was isolated.Correspondence to: R. J. Wodzinski  相似文献   

12.
By comparing kinetic parameters of plasma membrane proton pumps from two Aspergillus niger strains, significant differences in specific activities were observed. In low citric acid producing A158 strain the H+ -ATPase activity was about four-fold higher than in a high yielding A60 strain. Previously pH homeostasis was reported in A158 strain while in A60 strain spontaneous drop of intracellular pH was observed. During the growth in the medium with ammonium ions more rapid drop of extracellular pH was recorded with A158 strain and not so fast proton accumulation in the medium with A60 strain, indicating that proton pumps from later strain perhaps can not extrude all the protons that are released in the cytosol after the assimilation of ammonium ions. Vanadium ions were found to be potent inhibitors of both H+ -ATPases. By adding sodium vanadate in millimolar concentrations to the chemically defined medium that induces citric acid accumulation by A. niger, reduced pHi and increased rate of acid production was observed in A158 strain while in A60 strain intracellular pH decreased below 6.5 and concomitantly citric acid overflow was suppressed. The presented results suggest that one of the mechanisms stimulating citric acid accumulation by A. niger could be also a slight cytoplasmic acidification.  相似文献   

13.
An aroma-imparting mesophilic lactic starter (Lactococcus lactis ssp. lactis biovar. diacetylactis) was studied in batch culture in medium with 50 g·l–1 lactose and 2 g·l–1 citrate. The effect of pH on the physiology of growth and the production of flavour compounds was investigated with a mathematical model. The specific rates of growth and of lactose fermentation obeyed a law of non-competitive inhibition by lactic acid produced, inhibition increasing as the pH of the medium decreased. The pH thus acted indirectly by increasing the proportion of non-dissociated lactic acid, identified as the inhibiting form of lactic acid. The generalized model, taking into account the effect of pH, was tested using fermentations at pH controlled at different values (4.5–6.5), as well as with a fermentation conducted at non-regulated pH. These simulations supported the working hypotheses. The effect of pH on the fermentation of citric acid resulted in an increase in the maximal specific rate of citrate utilization, in the bioconversion yield, and in the constant of diacetyl and acetoin reduction at acid pH. The production of flavour compounds is a complex phenomenon resulting from the interaction of pH, citric acid concentration, and the physiological state of the cells. These results are discussed with respect to the use of this strain in the preparation of manufactured dairy products.  相似文献   

14.
Summary Intact biomass of an albino and a melanic strain of Aureobacidium pullulans, as well as purified melanin from the latter strain, was capable of tributyltin chloride (TBTC) removal from solution. Melanized biomass had a greater biosorptive capacity than albino biomass, this difference being attributable to the presence of melanin. Purified melanin had a large capacity for TBTC biosorption, the calculated maximum uptake capacity, q e, being approximately 35 mmol (g dry wt)–1. TBTC biosorption by intact biomass and melanin obeyed the Langmuir adsorption isotherm over the concentration range used, and was relatively unaffected by external pH between pH 3.5 and 6.5: an approximate 20% decrease in TBTC biosorption resulted at external pH 2.5. A TBTC concentration of 0.3 M in growth medium resulted in a lag period which was longer with the albino strain (approximately 50 h) than with the pigmented strain (approximately 25 h). The addition of melanin to TBTC-containing growth media resulted in a reduction in toxicity and attainment of higher cell yields. The applied and environmental significance of these interactions are discussed. Offprint requests to: G. M. Gadd  相似文献   

15.
Uricase (urate oxidase EC 1.7.3.3) is a therapeutic enzyme that is widely used to catalyze the enzymatic oxidation of uric acid in the treatment of hyperuricemia and gout diseases. In this study, three bacterial species capable of producing extracellular uricase were isolated from a poultry source and screened based on the size of the clear zone using a uric acid agar plate. The bacterial species capable of producing uricase with the highest uricolytic activity was identified as Bacillus cereus strain DL3 using a 16SrRNA gene sequencing approach. The time-course study of uricase production was performed and the medium was optimized. Carboxymethylcellulose and asparagine were found to be the best carbon and nitrogen sources. Maximum uricolytic activity was observed at pH 7.0 with an inducer concentration of 2.0 g/L. Inoculum size of 5% gave maximum uricolytic activity. The maximum uricolytic activity of 15.43 U/mL was achieved at optimized conditions, which is 1.61 times more than the initial activity. Further, enzymatic stability was determined at different pH and temperature.  相似文献   

16.
Ampicillin and cephalexin are beta-lactam antibiotics that are synthesized by the condensation of D-(-)-alpha-aminophenylacetic acid with 6-aminopenicillanic acid or 7-aminodeacetoxycephalosporanic acid, respectively. The rates at which the penicillin amidase of Escherichia coli catalyzes these reactions are too low to be of practical use. The objective of this study was to determine whether it is possible to alter the substrate specificity of penicillin amidase and select enzymes that efficiently hydrolyze substrates with alpha-aminophenylacetyl moieties at low pH, at which the alpha-amino group is nearly completely protonated. In this study, D-(-)-alpha-aminophenylacetyl-(L)-leucine (APAL) was used as a substrate analog of ampicillin and cephalexin. The gene for the penicillin amidase of E. coli ATCC 11105 was cloned and transferred to a leucine auxotroph of E. coli; numerous amidase mutants were selected by their ability to cleave APAL and provide leucine for growth in low-pH medium. The plasmid encoding one of the mutant amidases (pA135) was used to transform naive cells, and transformants that expressed the mutant amidase were shown to grow more rapidly in medium at pH 6.5 containing 0.1 mM APAL as the sole leucine source than did cells with the wild-type amidase. The mutant amidase was purified, and the second-order rate constant (kcat/Km) for APAL hydrolysis at pH 6.5 was found to be 10-fold greater than the rate observed with the wild-type enzyme. The difference between the rates of APAL hydrolysis by the mutant and wild-type amidases increased as the pH of the reactions decreased.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Ampicillin and cephalexin are beta-lactam antibiotics that are synthesized by the condensation of D-(-)-alpha-aminophenylacetic acid with 6-aminopenicillanic acid or 7-aminodeacetoxycephalosporanic acid, respectively. The rates at which the penicillin amidase of Escherichia coli catalyzes these reactions are too low to be of practical use. The objective of this study was to determine whether it is possible to alter the substrate specificity of penicillin amidase and select enzymes that efficiently hydrolyze substrates with alpha-aminophenylacetyl moieties at low pH, at which the alpha-amino group is nearly completely protonated. In this study, D-(-)-alpha-aminophenylacetyl-(L)-leucine (APAL) was used as a substrate analog of ampicillin and cephalexin. The gene for the penicillin amidase of E. coli ATCC 11105 was cloned and transferred to a leucine auxotroph of E. coli; numerous amidase mutants were selected by their ability to cleave APAL and provide leucine for growth in low-pH medium. The plasmid encoding one of the mutant amidases (pA135) was used to transform naive cells, and transformants that expressed the mutant amidase were shown to grow more rapidly in medium at pH 6.5 containing 0.1 mM APAL as the sole leucine source than did cells with the wild-type amidase. The mutant amidase was purified, and the second-order rate constant (kcat/Km) for APAL hydrolysis at pH 6.5 was found to be 10-fold greater than the rate observed with the wild-type enzyme. The difference between the rates of APAL hydrolysis by the mutant and wild-type amidases increased as the pH of the reactions decreased.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Fluoride was supplied as dissolved NaF at concentrations ranging from 0.26 to 7.9 mM (5–150 ppm) to three freshwater microalgae: Synechococcus leopoliensis (Racib.) Komarek (Cyanophyta), Oscillatoria limnetica Lemmermann (Cyanophyta) and Chlorella pyrenoidosa Chick (Chlorophyta). Growth of C. pyrenoidosa was unaffected by fluoride, and uptake of fluoride by this organism was not detectable. Growth of the cyanophytes was temporarily inhibited by NaF. The duration of this growth lag increased markedly as the pH was lowered at constant external fluoride concentration. In S. leopoliensis, fluoride uptake and inhibition of photosynthesis by NaF increased in the same way as did the growth lag in response to pH. Growth-inhibitory NaF treatments decreased the ATP level in cells of S. leopoliensis by 75% and also abolished phosphate uptake. Cells of S. leopoliensis in which fluoride-resistance was induced by prior growth in non-growth-inhibitory levels of NaF accumulated much less fluoride than did normal (“sensitive”) cells, and also did not respond to fluride by reduction of the ATP pool. It is suggested (1) that fluoride enters sensitive cells of S. leopoliensis principally as undissociated HF; (2) that its major inhibitory effect in these cells is the reduction in cellular ATP; (3)that fluoride-resistant cells accumulate less fluoride by developing incresed permeability to the fluoride anion.  相似文献   

19.
The aim of this study was to investigate some of the factors affecting pectin lyase (PL) production by an Aspergillus giganteus strain, and to characterize this pectinolytic activity excreted into the medium. The highest activities were obtained with orange waste, citrus pectin and galacturonic acid as carbon sources. The highest activity, using citrus pectin as carbon source, was obtained in 11-day-old standing cultures, but the highest specific activity was obtained in 6.5-day-old shaken cultures, at pH 6.5 and 35°C. Using orange waste as carbon source, the highest activity was observed in 8-day-old standing cultures, at pH 7.0 and 30°C. Optimal assay conditions were pH 8.5–9.0 and 50°C. The PL activity showed thermal stability, with half-lives of 30 and 27 min when incubated at 45 and 50°C, respectively. High stability was observed at room temperature from pH 6.0 to 10.0; more than 85% of enzyme activity was preserved in this pH range. Under optimum conditions, the highest pectin lyase activity in the medium was 470 U/ml, with orange waste as carbon source.  相似文献   

20.
Bacterial cellulose finds novel applications in biomedical, biosensor, food, textile and other industries. The optimum fermentation conditions for the production of cellulose by newly isolated Enterobacter amnigenus GH-1 were investigated. The strain was able to produce cellulose at temperature 25–35°C with a maximum at 28°C. Cellulose production occurred at pH 4.0–7.0 with a maximum at 6.5. After 14 days of incubation, the strain produced 2.5 g cellulose/l in standard medium whereas cellulose yield in the improved medium was found to be 4.1 g/l. The improved medium consisted of 4% (w/v) fructose, 0.6% (w/v) casein hydrolysate, 0.5% (w/v) yeast extract, 0.4% (w/v) disodium phosphate, and 0.115% (w/v) citrate. Addition of metal ions like zinc, magnesium, and calcium and solvents like methanol and ethanol were found to be stimulatory for cellulose production by the strain. The strain used natural carbon sources like molasses, starch hydrolysate, sugar cane juice, coconut water, coconut milk, pineapple juice, orange juice, and pomegranate juice for growth and cellulose production. Fruit juices can play important role in commercial exploitation of bacterial cellulose by lowering the cost of the production medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号