首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper reports the preparation of specific anti-slow myosin antibodies (anti-I) and anti-fast myosin antibodies (anti-IIA) raised against myosins from sheep and guinea pig masseter muscles. The specificity of the antibodies has been studied by immunodiffusion in agar and by the GEDELISA test using slow-twitch (type I), fast-twitch red (type IIA) and fast-twitch white (type IIB) myofibrils isolated from guinea pig muscles. The principal specificity of the anti-I and anti-IIA antibodies was for the heavy chains of type I and IIA myosins, respectively. A smaller reaction with the corresponding light chains was also detected. Immunohistochemical staining of muscle sections using these antibodies confirmed their fibre type specificity.  相似文献   

2.
In this study of masticatory maturation, the ontogeny of the histochemical fiber type composition of musculus masseter is examined in the omnivorous miniature swine (Sus scrofa). Fiber type characteristics are interpreted by comparison with electromyography (EMG) recorded during feeding behavior. Similar to locomotion studies, the results suggest a correspondence between the composition and arrangement of motor units and their recruitment pattern. Serial sections of masseter muscles from 10 minipigs, ranging from 2 weeks to slightly over 1 year of age, were stained for myosin adenosine triphosphatase (mATPase) activity to distinguish slow-twitch from fast-twitch fibers, and for nicotinamide adenosine dehydrogenase-tetrazolium reductase to assess the aerobic capacity of the same fibers. Although maintaining a uniformly high aerobic capacity throughout ontogeny and in adult animals, a transition is observed in the relative proportions of fast- and slow-twitch fibers. The primarily fast-twitch neonatal pig masseter eventually comprises approximately 25-30% slow-twitch fibers in adults, with a higher predominance of slow fibers in the deep (vs. superficial) and anterior (vs. posterior) regions of the muscle. Furthermore, while individual fibers of adult masseters generally stain for either alkaline- or acid-stable mATPase activity, a substantial proportion of cells in developing animals exhibits the presence of both isozymes. EMG results indicate functional heterogeneity within the masseter of adult pigs. During chewing, when pig chow is replaced by cracked corn, EMG activity in the deep portion of the muscle either decreases or increases slightly. In the superficial portion, however, muscle amplitudes become dramatically higher for corn, surpassing levels generated for chewing the less obdurate chow. These results are consistent with a behavioral transition from neonatal suckling to sustained mastication of foods of more complex textures eaten by adult pigs. The relationship between these fiber type and EMG results for pig masseter corresponds to those pertaining to motor unit recruitment in the extensor muscles of locomotion. Implications of this work for the evolutionary morphology of mastication also are discussed.  相似文献   

3.
Klotho mutant (kl/kl) mice, a type of short-lived mouse models, display several aging-related phenotypes. To investigate whether the atrophy of skeletal muscles is induced in these mice via activation of the ubiquitin-proteasomal pathway and/or the autophagic-lysosomal pathway through an alteration of insulin/IGF-I signaling, we analyzed the activity of the two pathways for protein degradation and components of the insulin/IGF signaling pathway in their skeletal muscles. The masseter, tongue, and gastrocnemius muscles in kl/kl showed marked reductions in muscle weight and in myofiber diameter compared with +/+. The autophagic-lysosomal pathway in kl/kl was activated in the masseter and tongue, but not in the gastrocnemius, compared with that in +/+, whereas the ubiquitin-proteasomal pathway in these three muscles of kl/kl was not altered. No marked difference in the phosphorylation levels of insulin/IGF-I signaling components, such as insulin/IGF-I receptor, Akt, and FoxO in three muscles studied were found between kl/kl and +/+, but the phosphorylation levels of signaling component at the downstream of mTOR such as 4E-BP1 and p70 S6K were suppressed in the masseter and tongue of kl/kl compared with +/+. Deficiency of essential amino acids is reported to activate the autophagy-lysosomal pathway through the down-regulation of mTOR, not through IGF-Akt-FoxO. The masseter and tongue seem to be more actively moved than limb muscles in kl/kl, because they are essential for survival activities such as mastication, swallowing, and respiration. Thus, the deficiency of amino acid by the active movement of the masseter and tongue seems to stimulate the autophagic-lysosomal pathway via the down-regulation of mTOR signalling pathway.  相似文献   

4.
Skeletal muscle grows at a very rapid rate in the neonatal pig, due in part to an enhanced sensitivity of protein synthesis to the postprandial rise in amino acids. An increase in leucine alone stimulates protein synthesis in skeletal muscle of the neonatal pig; however, the effect of isoleucine and valine has not been investigated in this experimental model. The left ventricular wall of the heart grows faster than the right ventricular wall during the first 10 days of postnatal life in the pig. Therefore, the effects of individual BCAA on protein synthesis in individual skeletal muscles and in the left and right ventricular walls were examined. Fasted pigs were infused with 0 or 400 micromol x kg(-1) x h(-1) leucine, isoleucine, or valine to raise individual BCAA to fed levels. Fractional rates of protein synthesis and indexes of translation initiation were measured after 60 min. Infusion of leucine increased (P < 0.05) phosphorylation of eukaryotic initiation factor (eIF)4E-binding protein-1 and increased (P < 0.05) the amount and phosphorylation of eIF4G associated with eIF4E in longissimus dorsi and masseter muscles and in both ventricular walls. Leucine increased (P < 0.05) the phosphorylation of ribosomal protein (rp)S6 kinase and rpS6 in longissimus dorsi and masseter but not in either ventricular wall. Leucine stimulated (P < 0.05) protein synthesis in longissimus dorsi, masseter, and the left ventricular wall. Isoleucine and valine did not increase translation initiation factor activation or protein synthesis rates in skeletal or cardiac muscles. The results suggest that the postprandial rise in leucine, but not isoleucine or valine, acts as a nutrient signal to stimulate protein synthesis in cardiac and skeletal muscles of neonates by increasing eIF4E availability for eIF4F complex assembly.  相似文献   

5.
This study is an attempt to objectively evaluate age-related changes in human muscles by use of histomorphometric methods. Aging in humans induces dramatic transformations in the skeletal muscles but little is known as to whether or not the aging processes per se may affect all muscles equally. In this study aging of two human muscles with different functions, origin and nerve supply is compared. Sections were cut from masseter and vastus lateralis muscles obtained from young adults aged 18-24 years and from the very old aged 90-102 years. Muscle fiber types were classified with the traditional myofibrillar ATPase staining. Various histomorphometric parameters of the different fiber types in human masseter and vastus lateralis muscle sections were obtained by image analyses to evaluate the age-related changes in the muscle fibers. The following variables were calculated: the number of each fiber type per photographed area; the area of each fiber and two indicators for the shape of the muscle fibers. In the aging muscles there was no relative preferential loss of a fiber type. High numbers of intermediate ATPase-stained fibers (IM fibers) were found in some old vastus muscles but were only sporadic in young vastus muscles. However, there was no change in the percentage distribution of intermediate ATPase-stained fibers when young and very old human masseter muscles were compared. Incubation of the sections with antimyosin antibodies showed that the IM fibers in old masseter and old vastus contained different myosin heavy chains. Thus ATPase activity and anti-myosin staining displayed a somewhat different pattern of fiber type distribution. The main changes in the shape and area indicated that type I fibers in the masseter became more circular while in the vastus they decreased significantly in size. The type II fibers in the vastus became very small and deviated significantly from circularity whereas the type II fibers in the masseter only exhibited a decrease in the size of the fibers. Histomorphometric measurements show that aging affects different human muscles in various ways.  相似文献   

6.
Adult human jaw muscles differ from limb and trunk muscles in enzyme-histochemical fibre type composition. Recently, we showed that the human masseter and biceps differ in fibre type pattern already at childhood. The present study explored the myosin heavy-chain (MyHC) expression in the young masseter and biceps muscles by means of gel electrophoresis (GE) and immuno-histochemical (IHC) techniques. Plasticity in MyHC expression during life was evaluated by comparing the results with the previously reported data for adult muscles. In young masseter, GE identified MyHC-I, MyHC-IIa MyHC-IIx and small proportions of MyHC-fetal and MyHC-α cardiac. Western blots confirmed the presence of MyHC-I, MyHC-IIa and MyHC-IIx. IHC revealed in the masseter six isomyosins, MyHC-I, MyHC-IIa, MyHC-IIx, MyHC-fetal, MyHC α-cardiac and a previously not reported isoform, termed MyHC-IIx'. The majority of the masseter fibres co-expressed two to four isoforms. In the young biceps, both GE and IHC identified MyHC-I, MyHC-IIa and MyHC-IIx. MyHC-I predominated in both muscles. Young masseter showed more slow and less-fast and fetal MyHC than the adult and elderly masseter. These results provide evidence that the young masseter muscle is unique in MyHC composition, expressing MyHC-α cardiac and MyHC-fetal isoforms as well as hitherto unrecognized potential spliced isoforms of MyHC-fetal and MyHC-IIx. Differences in masseter MyHC expression between young adult and elderly suggest a shift from childhood to adulthood towards more fast contractile properties. Differences between masseter and biceps are proposed to reflect diverse evolutionary and developmental origins and confirm that the masseter and biceps present separate allotypes of muscle.  相似文献   

7.
In architecturally complex muscles with large attachment areas, it can be expected that during movement different muscle regions undergo different amounts of length excursions. As a consequence, the amount of passive force produced by the regions will differ. Therefore, we tested the hypothesis that during movement the vector of the passive force of such a muscle, which defines the magnitude, position and orientation of the resultant force of the various regions, has no fixed position, between the muscle's center of origin and insertion. As a model for an architecturally complex muscle we used the masseter muscle. It was expected that during jaw opening anterior muscle regions are more stretched than posterior regions, leading to an anterior shift of the passive force vector. A three-component force transducer was used to measure both the position and magnitude of passive force in the masseter muscle of 9 rabbits. Forces were recorded during repeated cycles of stepwise opening and closure of the jaw. The muscle exhibited a clear hysteresis: passive force measured during jaw opening was larger than that during jaw closing. With an increase of the jaw gape there was an approximately exponential increase of the magnitude of the passive muscle force, while simultaneously the passive force vector shifted anteriorly. Moment arm length of passive force increased by about 100%. This anterior shift contributed substantially to the increase of the passive muscle moment generated during jaw opening. It can be concluded that in architecturally complex muscles the increase of the passive resistance moment which is associated with muscle lengthening might not only be due to an increase of the magnitude of passive muscle force but also to an increase of the moment arm of this force.  相似文献   

8.
9.
Development of the masseter muscle and oral behavior in the pig   总被引:1,自引:0,他引:1  
During mastication the adult pig masseter contracts with a complex pattern involving a wave of electromyographic (EMG) activity moving from the ventro-rostral corner to the dorso-caudal corner. The present study was undertaken to ascertain the ontogeny of that contraction pattern. Anatomical measurements were made on masseters from fetal, infant, and juvenile pigs. EMG activity from different parts of the masseter was recorded along with oral movements in infant and juvenile pigs as they suckled, drank, and chewed on food and non-food objects. The basic arrangement of muscle fibers and tendinous aponeuroses was found to be the same in all ages. The longest and most vertical fibers were found rostrally and ventrally, whereas the shortest and most horizontal fibers were found caudally and dorsally. The length of fasciculi decreased with age, relative to muscle weight. Variance in length among different parts of the muscle increased with age. Fetal masseters were oriented generally more horizontally than the masseters of older animals, except that the dorso-caudal corner, usually the most horizontal portion, is not developed in fetuses. The contraction patterns within the infant masseter were less complex than those of older animals; only the dorso-caudal corner was distinct. The further development of intramuscular differences in activity may be associated with the increasing anatomical complexity of the masseter, which augments its functional capabilities.  相似文献   

10.
The treatment of hypertrophy of the masseter and temporal muscles has to date been dominated by conservative and surgical measures. Local therapy with type A botulinum toxin permits an alternative method of treatment. After targeted, sometimes electromyographically controlled, intramuscular injection of the affected muscles, marked inactivity atrophy occurred in the muscles of seven patients over the course of 3 to 8 weeks. This atrophy remained constant over a follow-up period of up to 25 months, and no side effects were observed. Because of its minimal invasiveness, this technique seems to have an advantage over conventional surgical therapy. Consequently, treatment with type A botulinum toxin can be regarded as a sensible alternative to surgery in cases of hypertrophy of the masseter and/or temporal muscles.  相似文献   

11.
12.
Little is known regarding the role of androgenic hormones in the maintenance of myosin heavy chain (MHC) composition of rodent masticatory muscles. Because the masseter is the principal jaw closer in rodents, we felt it was important to characterize the influence of androgenic hormones on the MHC composition of the masseter. To determine the extent of sexual dimorphism in the phenotype of masseter muscle fibers of adult (10-mo-old) C57 mice, we stained tissue sections with antibodies specific to type IIa and IIb MHC isoforms. Females contain twice as many fibers containing the IIa MHC as males, and males contain twice as many fibers containing the IIb MHC as females. There is a modest amount of regionalization of MHC phenotypes in the mouse masseter. The rostral portions of the masseter are composed mostly of type IIa fibers, whereas the midsuperficial and caudal regions contain mostly type IIb fibers. Using immunoblots, we showed that castration results in an increase in the expression of type IIa MHC fibers in males. Ovariectomy has no effect on the fiber type composition in females. We conclude that testosterone plays a role in the maintenance of MHC expression in the adult male mouse masseter.  相似文献   

13.
Closure of the jaw exerts traction on muscles that insert on the hyoid bone and that may stabilize or expand the pharyngeal airway. We postulated that the masseter muscles, which close the jaw, would be activated when the patency of the pharyngeal airway is threatened. We therefore measured electromyographic activation of the masseters during inspiratory resistance loading and compared it with activation of chin muscles and alae nasi in 10 normal subjects. We observed no masseter activation during quiet unloaded breathing, but as pharyngeal pressure became lower there was a significant increase in masseter activation in all subjects. The change in masseter activation relative to pharyngeal pressure was similar to that of chin muscles and alae nasi. Activation of the masseter preceded the fall in pharyngeal pressure as also occurred in the chin muscles and alae nasi. We conclude that the masseters are activated by inspiratory resistance loading and have respiratory activity similar to pharyngeal airway muscles.  相似文献   

14.
Neural controlling mechanisms between the digastric (jaw-opening) and masseter (jaw-closing) muscles were studied in the cat. High threshold afferent impulses from the anterior belly of the digastric muscle to masseteric montoneurons in the trigeminal motor nucleus induced an EPSP-IPSP sequence of potentials with long latency, and high threshold afferent impulses from the masseter muscle also exerted a similar effect on digastric motoneurons in the same nucleus innervating the anterior belly of the digastric muscle. These results suggest that reciprocal inhibition via Ia interneurons as observed between the flexor and extensor muscles in the spinal cord does not exist between the digastric and masseter muscles in the cat. However, the respective motoneurons innervating the masseter and digastric muscles receive inputs of early excitation-late inhibition via high threshold afferent nerve fibers from each antagonistic muscle. As such, since EPSPs preceding IPSPs are recognized, these high threshold afferent impulses may exert not only a reciprocal inhibitory effect, but also a synchronous excitatory or inhibitory effect on the antagonistic motoneurons.  相似文献   

15.
This study was performed to evaluate the application of different lectins and monoclonal antibodies against ABH antigens to detect and characterize carbohydrate structures in capillaries of skeletal muscle from humans and laboratory animals. Blood group specific lectins (Griffonia simplicifolia, Griffonia simplicifolia isolectin B4,Lotus tetragonlobus, Ulex europaeus, andDolichos biflorus) and monoclonal antibodies reacting with histo-blood group carbohydrate antigens belonging to type 1 (Lea) and type 2 (H, A and Ley) chains were used as histological markers for capillaries in sections from skeletal muscle. The material consisted of 20 human masseter muscle biopsies from individuals with known blood types: (eight blood group O, nine blood group A, two blood group B, and one blood group AB) and masseter muscles specimens from different laboratory animals (mouse, rat, rabbit, cat, dog, pig, cow, and macaca monkey). Unfixed sections and an avidin alkaline phosphatase method were used to visualize the specific reaction.Ulex lectin stained capillaries in all human biopsies either strongly or moderately. Strong muscle capillary reaction was observed in biopsies from O, B and AB individuals while capillaries from A individuals were only moderately stained.Griffonia simplicifolia marked capillaries in A, B, and AB individuals andGriffonia simplicifolia isolectin B4 stained capillaries in muscle biopsies from B and AB donors.Dolichos biflorus was a weak marker of muscle capillaries from A individuals. Only capillaries from O individuals were stained with the antibody against H type 2. Capillary reaction was not observed with the other antibodies used.Girffonia simplicifolia was an excellent marker for capillaries in mouse muscle whileGriffonia simplicifolia isolectin B4 is recommended for rat muscles. Periodic acid treatment and subsequentLotus tetragonolobus staining is suitable to visualize capillaries in mouse, rat and pig muscle. Using a sensitive histochemical technique for staining with lectins and monoclonal antibodies reacting with blood group related antigens the microvascular density in human skeletal muscle may be estimated. Further, the carbohydrate compounds in the muscle capillaries reflect the individual blood type. A selection of lectins is suitable for demonstration of capillaries in animal skeletal muscle.  相似文献   

16.
The relationship between human craniofacial morphology and the biomechanical efficiency of bite force generation in widely varying muscular and skeletal types is unknown. To address this problem, we selected 22 subjects with different facial morphologies and used magnetic resonance imaging, cephalometric radiography, and data from dental casts to reconstruct their craniofacial tissues in three dimensions. Conventional cephalometric analyses were carried out, and the cross-sectional sizes of the masseter and medial pterygoid muscles were measured from reconstituted sections. The potential abilities of the muscles to generate bite forces at the molar teeth and mandibular condyles were calculated according to static equilibrium theory using muscle, first molar, and condylar moment arms. On average, the masseter muscle was about 66% larger in cross section than the medial pterygoid and was inclined more anteriorly relative to the functional occlusal plane. There was a significant positive correlation (P less than 0.01) between the cross-sectional areas of the masseter and medial pterygoid muscles (r = 0.75) and between the bizygomatic arch width and masseter cross-sectional area (r = 0.56) and medial pterygoid cross-sectional area (r = 0.69). The masseter muscle was always a more efficient producer of vertically oriented bite force than the medial pterygoid. Putative bite force from the medial pterygoid muscle alone correlated positively with mandibular length and inversely with upper face height. When muscle and tooth moment arms were considered together, a system efficient at producing force on the first molar was statistically associated with a face having a large intergonial width, small intercondylar width, narrow dental arch, forward maxilla, and forward mandible. There was no significant correlation between muscle cross-sectional areas and their respective putative bite forces. This suggests that there is no simple relationship between the tension-generating capacity of the muscles and their mechanical efficiency as described by their spatial arrangement. The study shows that in a modern human population so many combinations of biomechanically relevant variables are possible that subjects cannot easily be placed into ideal or nonideal categories for producing molar force. Our findings also confirm the impression that similar bite-force efficiencies can be found in subjects with disparate facial features.  相似文献   

17.
The program of acquisition of adult metabolic phenotypes was studied in three jaw muscles in order to determine the link between muscle metabolism and functional development. During early postnatal stages, there were similar transitions in the masseter, anterior digastric, and internal pterygoid muscles with respect to fiber growth, fiber type composition, and whole muscle energy metabolism. Oxidative capacity, as judged by the activities of the enzymes succinate dehydrogenase (SDH), malate dehydrogenase (MDH), and beta-hydroxyacyl CoA dehydrogenase (beta OAC), rose sharply after birth to reach near maximal levels by 3 weeks. The capacities for glycolytic metabolism represented by lactate dehydrogenase (LDH), and for high-energy phosphate metabolism represented by adenylokinase (AK) and creatine kinase (CK) activities, rose gradually, not reaching peak values until 6 weeks or later. Thus, the maturation of oxidative metabolism preceded that of glycolytic metabolism in the developing jaw muscles. This was documented for individual fibers in the masseter muscle. Differential metabolic maturation among the jaw muscles was evident beyond 3 weeks. All three jaw muscles attained their specific adult fiber-type profile by about 6 weeks. This maturation program differed from that of hindlimb muscles [Nemeth et al., J Neurosci 9:2336-2343, 1989] and diaphragm muscle [Kelly et al., J Neurosci 11:1231-1242, 1991], reflecting their differential energy demands for contractile performance.  相似文献   

18.
This paper presents a three-dimensional finite element model of human mastication. Specifically, an anatomically realistic model of the masseter muscles and associated bones is used to investigate the dynamics of chewing. A motion capture system is used to track the jaw motion of a subject chewing standard foods. The three-dimensional nonlinear deformation of the masseter muscles are calculated via the finite element method, using the jaw motion data as boundary conditions. Motion-driven muscle activation patterns and a transversely isotropic material law, defined in a muscle-fibre coordinate system, are used in the calculations. Time-force relationships are presented and analysed with respect to different tasks during mastication, e.g. opening, closing, and biting, and are also compared to a more traditional one-dimensional model. The results strongly suggest that, due to the complex arrangement of muscle force directions, modelling skeletal muscles as conventional one-dimensional lines of action might introduce a significant source of error.  相似文献   

19.
The muscle fiber fascicles of the temporo-masseter complex of the cat were minutely dissected. Some heads were embedded in paraffin while others were put into methyl-methacrylate resin and sections were made. The results of this anatomical study demonstrate that this complex consists of the masseter muscle, the temporal muscle and two well individualized transitional fascicles: the maxillomandibularis and zygomato-comandibularis muscles. The masseter and temporal muscles are composed of individualized compartments in which the orientation and aponeuroses of the fibers of which they are composed differ with regard to the centric occlusion plane. The masseter muscle consists of a superficial fascicle made up of two layers, an intermediate fascicle, and a deep fascicle composed of two layers. The temporal muscle consists of one anterior orbital part and one posterior temporal part. This structure is in accordance with the mammalian archetype described by Gaspard and Saban. These findings should lead towards a homology-based nomenclature founded on comparative anatomy studies of mammalian species. Such a classification would permit the comparison of results obtained from physiological and histochemical studies of these complex muscle fibers when they are published by different researchers.  相似文献   

20.
In adult human subjects, the correlations were determined between the cross-sectional areas of the jaw muscles (measured in CT scans) and a number of facial angles and dimensions (measured from lateral radiographs). Multivariate statistical analysis of the skeletal variables in a group of 50 subjects led to the recognition of six independent factors determining facial shape, i.e., cranial base length, lower facial height, cranial base flexure and prognathism, facial width, mandibular length, and upper facial height. In 29 of these subjects, the cross-sectional areas of the jaw muscles were determined, and correlations between these areas and the scores on the above-mentioned factors were calculated. It appeared that the cross-sectional areas of temporalis and masseter muscles correlated positively with facial width, whereas the areas of masseter and both pterygoid muscles did so with mandibular length. It has been shown experimentally that a decrease in jaw muscle size in various animals likewise has an effect on facial width and mandibular length. Our results therefore support the hypothesis that in man too the jaw muscles affect facial growth and partly determine the final facial dimensions. They also hint that the role of each muscle is different.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号