首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of underivatized sulfoglycolipids (SM4g, lyso-SM4g, SM4s, SM3, SM2, SB2, and SB1a) from various tissues were analyzed by both positive (POS-SI-MS) and negative (NEG-SI-MS) secondary ion mass spectrometry. By POS-SI-MS were detected the molecular ions of sulfoglycolipids in the form with sodium or potassium together with some fragment ions useful for the carbohydrate sequence determination. The analysis of monosulfogangliotriaosyl- or monosulfogangliotetraosylceramide and bis-sulfoglycolipid was difficult due to noise in the high mass region. On the other hand, NEG-SI-MS of sulfoglycolipids gave more intense signals from molecular ion of (M-H)- for monosulfoglycolipids and [M-H+Na)-H)- for bis-sulfoglycolipid. Many fragment ions useful for the elucidation of the carbohydrate sequences were also obtained with significant intensities. The fragmentation was assessed to occur at the glycosidic linkages to form ions of the oligosaccharides with or without ceramide. These ions were useful for sugar sequencing and also for distinguishing the differences in the position of the sulfate group. The intensities of saccharide ions without sulfate were lower than those with sulfates. In the case of SB2 and SB1a, containing 2 mol of sulfate ester groups, the molecular ion was detected as [M-H+Na)-H)-. Also, fragment ions with 2 mol of sulfate were detected as the sodium-additive form. It was concluded that NEG-SI-MS is a very useful technique for the structural elucidation of higher sulfoglycolipids.  相似文献   

2.
Arginine (Arg)-specific ADP-ribosylation is one of the posttranslational modifications of proteins and is thought to play an important role in reversibly regulating functions of the target proteins in eukaryotes. However, the physiological target protein has not been established. We examined the fragmentation pattern of both ADP-ribosyl-Arg (ADP-R-Arg) and Arg-ADP-ribosylated peptides by quadrupole tandem mass spectrometry and found a specific cleavage of ADP-R-Arg into N-(ADP-ribosyl)-carbodiimide (ADP-R-carbodiimide) and ornithine. Based on this specific fragmentation pattern, we successfully identified the modification site and sequence of Arg-ADP-ribosylated peptide using a two-step collision and showed that ADP-R-carbodiimide is an excellent marker ion for precursor ion scanning of Arg-ADP-ribosylated peptide. We propose that a combination of the precursor ion scanning with ADP-R-carbodiimide as a marker ion and two-step collision is useful in searching for physiological target proteins of Arg-ADP-ribosylation.  相似文献   

3.
An algorithm is introduced to assess spectral quality for peptide CID spectra acquired by a quadrupole ion trap mass spectrometer. The method employs a quadratic discriminant function calibrated with manually classified 'bad' and 'good' quality spectra, producing a single 'spectral quality' score. Many spectra examined that do not have significant matches are assessed to have good spectral quality, indicating that advances in search methods may yield substantial improvements in results.  相似文献   

4.

Background  

Mass spectrometry (MS) is an essential analytical tool in proteomics. Many existing algorithms for peptide detection are based on isotope template matching and usually work at different charge states separately, making them ineffective to detect overlapping peptides and low abundance peptides.  相似文献   

5.
Xia D  Ghali F  Gaskell SJ  O'Cualain R  Sims PF  Jones AR 《Proteomics》2012,12(12):1912-1916
The development of ion mobility (IM) MS instruments has the capability to provide an added dimension to peptide analysis pipelines in proteomics, but, as yet, there are few software tools available for analysing such data. IM can be used to provide additional separation of parent ions or product ions following fragmentation. In this work, we have created a set of software tools that are capable of converting three dimensional IM data generated from analysis of fragment ions into a variety of formats used in proteomics. We demonstrate that IM can be used to calculate the charge state of a fragment ion, demonstrating the potential to improve peptide identification by excluding non-informative ions from a database search. We also provide preliminary evidence of structural differences between b and y ions for certain peptide sequences but not others. All software tools and data sets are made available in the public domain at http://code.google.com/p/ion-mobility-ms-tools/.  相似文献   

6.
Stable isotopes of Mg were used to measure bidirectional magnesium ion fluxes in single barnacle giant muscle fibers immersed in Ca- and Na-free, isosmotic media. Measurements were made using a mass spectrometric technique, thermal ionization mass spectrometry (TIMS), in conjunction with atomic absorption spectroscopy. Kinetic relations based on a first-order model were developed that permit the determination of unidirectional rate coefficients for Mg influx, ki, and efflux, ke, in the same experiment from knowledge of initial conditions and the initial and final ratios of 26Mg/24Mg and 25Mg/24Mg in ambient solutions (i.e., by isotope dilution). Such determinations were made for three values of the external Mg ion concentration: 5, 25, and 60 mM. At the concentration [Mg+2]o = 5 mM, ki and ke were about equal at a value of 0.01 min-1. At the higher values of [Mg+2]o, the values of ke increased along a curve suggesting saturation, whereas the values of ki remained essentially constant. As could be expected on the basis of a constant ki, the initial influx rate varied in direct linear proportion to [Mg+2]o, and was 11.8 pmol/cm2s when [Mg+2]o was 5 mM. However, the initial efflux rate appeared to increase nonlinearly with [Mg+2]o, varying from 13.4 pmol/cm2s ([ Mg+2]o = 5 mM) to approximately 80 pmol/cm2s ([ Mg+2]o = 60 mM). The results are consistent with a model that assumes Mg influx to be mainly an electrodiffusive inward leak with PMg = 0.07 cm/s and Mg efflux to be almost entirely by active transport processes. Where comparisons can be made, the rate coefficients determined from stable isotope measurements agree with those previously obtained using radioactive Mg. The rate coefficients can be used to correctly predict time-dependent changes in total fiber Mg content. The results support the conclusion that nonradioactive tracers can be used to measure ion fluxes and ion flux ratios in excitable cells; it is expected that this method will greatly assist in the study of Mg regulation in general.  相似文献   

7.
8.
A relatively recent method developed to determine the molecular weights of intact peptides and proteins, matrix-assisted UV laser desorption time-of-flight mass spectrometry (LDTOF-MS), has been evaluated as a new means to investigate the metal ion-binding properties of model synthetic peptides. A contiguous sequence of 25 residues on the surface of the 74 kDa human plasma metal-binding transport protein histidine-rich glycoprotein (HRG) has been identified as a bioactive metal-binding domain. The peptide, (GHHPH)5G, was synthesized and evaluated by LDTOF-MS before and after the addition of Cu(II) in solution with 2,5-dihydroxybenzoic acid as the matrix. In the absence of added Cu(II), the major protonated molecular ion (M + H)+ was observed to have a mass equal to its calculated mass (2904.0 Da). In the presence of Cu(II), however, five additional peaks were observed at mass increments of approximately 63.9 Da. The maximum Cu(II)-binding capacity observed for the 26-residue peptide (5 g-atoms/mol) suggested that up to 1 Cu(II) may be bound per 5-residue internal repeat unit (GHHPH) within this peptide; several other monovalent and divalent metal cations were not bound under identical conditions of analysis. The Cu(II)-binding stoichiometry was verified by spectrophotometric titration and by frontal analyses of the immobilized peptide with a solution of Cu(II) ions. These results demonstrate the ability to verify directly the solution-phase binding capacity of metal-binding peptides by LDTOF-MS.  相似文献   

9.
This study addressed the question of which properties in MALDI-TOF spectra are relevant to the task of identifying mass and abundance of a peptide species in human serum. Data of this type are common to biomarker studies, but significant within- and between-spectrum variabilities make quantifying biologically induced features difficult. We investigated this signal content and quantified the existence, or lack, of peptide-induced signal (as manifest in a multiresolution decomposition) by generating spectra from human serum in which the abundance of peptides of specific masses is controlled by a sequence of dilutions. The intensities of the corresponding features were directly proportional to peptide concentration. The primary goal was to exhibit some quantifiable properties of raw spectra from this application of MALDI-TOF mass spectrometry. Although no recommendations are given regarding the best method for processing these data, the results confirm the utility of a simple method, based on wavelets, for defining and quantifying features related to low abundance peptide species in a heterogeneous set of complex spectra. Estimates on lower limits of detectable peptide abundance (in the 20-nmol range) and on the number of features present in a spectrum are made possible by the controlled experimental design, the use of a large external reference data set, and dependence on relatively few modeling assumptions.  相似文献   

10.
This review discusses the application of time-of-flight secondary ion mass spectrometry (TOF-SIMS) and magnetic sector SIMS with high lateral resolution performed on a Cameca NanoSIMS 50(L) to imaging lipids. The similarities between the two SIMS approaches and the differences that impart them with complementary strengths are described, and various strategies for sample preparation and to optimize the quality of the SIMS data are presented. Recent reports that demonstrate the new insight into lipid biochemistry that can be acquired with SIMS are also highlighted. This article is part of a Special Issue entitled Tools to study lipid functions.  相似文献   

11.
Hulme AN  McNab H  Peggie DA  Quye A 《Phytochemistry》2005,66(23):2766-2770
The electrospray ionisation mass spectra of the neoflavanoids brazilin and hematoxylin are reported in both their reduced (1 and 2, respectively) and their oxidised forms (3 and 4, respectively). In the reduced forms, breakdown pathways under collision induced decomposition (CID) conditions produce fragments characteristic of rings A and C; in their oxidised forms, the fragments are characteristic of rings B and D. The structural assignments of the fragments are substantiated by recording the spectra after deuterium exchange at the hydroxyl groups.  相似文献   

12.
The use of ion mobility mass spectrometry has grown rapidly over the last two decades. This powerful analytical platform now forms an attractive prospect for comprehensive analysis of many different molecular species, including chemically complex biological molecules. This paper describes the application of IM-MS to the study of peptides. We focus on three different ion mobility devices that are most frequently found in tandem with mass spectrometers. These are instruments using linear drift tubes (LDT), those using travelling wave ion guides (TWIGS) and those employing high field asymmetric ion mobility spectrometry (FAIMS). Each technique is described. Examples are given on the use of IM-MS for the determination of peptide structure, the study of peptides that form amyloid fibrils, and the study of complex peptide mixtures in proteomic investigations. We describe and comment on the methodologies used and the outlook for this developing analytical technique.  相似文献   

13.
MS (mass spectrometry) techniques are rapidly evolving to high levels of performance and robustness. This is allowing the application of these methods to the interrogation of signalling networks with unprecedented depth and accuracy. In the present review we discuss how MS-based multiplex quantification of kinase activities and phosphoproteomics provide complementary means to assess biological signalling activity. In addition, we discuss how a wider application of these analytical concepts to quantify kinase signalling will result in a more comprehensive understanding of normal and disease biology at the system level.  相似文献   

14.
The desorption/ionization behavior of individual peptides, an equimolare peptide mixture and a tryptic digest was investigated by AP-MALDI-IT-MS using four different target materials (gold-covered stainless steel (SS), titanium nitride-covered SS, hand-polished SS, and microdiamond-covered hardmetal) under identical conditions. Gold-covered as well as polished SS targets yielded comparable mass spectra for peptides and peptide mixture in the low pMol-range. The first target exhibited superior data down to the 10fMol-range. In contrast, titanium nitride-covered SS and microdiamond-covered hardmetal AP-MALDI-targets yielded poor sensitivity. These observations could be correlated with the surface roughness of the targets determined by 3D-confocal-white-light-microscopy. The roughest surfaces were found for titanium nitride-covered SS and microdiamond-covered hardmetal material showing both poor MS sensitivity. A less rough surface could be determined for the hand-polished SS target and the smoothest surface was found for the gold-covered target yielding the best sensitivity of all surfaces. These differences in the roughness having a strong impact on the ultimate sensitivity obtainable for peptide samples could be corroborated by electron microscopy. A peptide mixture covering a wide range of molecular weights and a tryptic protein digest (from 2-DE) exhibit the same behavior. This clearly indicates that the smooth gold-covered SS target is the surface of choice in AP-MALDI MS proteomics.  相似文献   

15.
Mass spectrometry data from high-resolution time-of-flight instruments often contain a vast number of noninformative background-ion peaks whose signal is similar to that of peptide peaks. Consequently, seeking peptide signal in these spectra based on a signal-to-noise ratio will remove signal peaks as well as noise. This work characterizes the background as a precursor to seeking peptide-related features. Robust-regression methods are used to estimate distributions for null (background) peak intensities and locations. Defining signal peaks as outliers with respect to these distributions leads to more precision in detecting the isotopic envelope of peaks from low-abundance peptides in high-resolution spectra.  相似文献   

16.
Glycosphingolipids serve as ligands for receptors involved in signal transduction and immune recognition, as exemplified by isoglobotrihexosylceramide, an antigenic ligand for T cell receptors. Mechanistic studies on the regulation of isoglobotrihexosylceramide require biochemical measurement of its lysosomal precursor, isoglobotetraglycosylceramide. It remains a challenge to distinguish between complex tetraglycosylceramide glycosphingolipid isomers with the same sugar components but diverse internal linkages. Here we established a simple and sensitive method to separate globo- and isoglobotetraglycosylceramide by MS5 ion trap mass spectrometry, and report the identification of isoglobotetraglycosylceramide in a CHO cell line transfected by iGb3 synthase, as well as in human thymus.  相似文献   

17.
Assays for the detection of the iron regulatory hormone hepcidin in plasma or urine have not yet been widely available, whereas quantitative comparisons between hepcidin levels in these different matrices were thus far even impossible due to technical restrictions. To circumvent these limitations, we here describe several advances in time-of flight mass spectrometry (TOF MS), the most important of which concerned spiking of a synthetic hepcidin analogue as internal standard into serum and urine samples. This serves both as a control for experimental variation, such as recovery and matrix-dependent ionization and ion suppression, and at the same time allows value assignment to the measured hepcidin peak intensities. The assay improvements were clinically evaluated using samples from various patients groups and its relevance was further underscored by the significant correlation of serum hepcidin levels with serum iron indices in healthy individuals. Most importantly, this approach allowed kinetic studies as illustrated by the paired analyses of serum and urine samples, showing that more than 97% of the freely filtered serum hepcidin can be reabsorbed in the kidney. Thus, the here reported advances in TOF MS-based hepcidin measurements represent critical steps in the accurate quantification of hepcidin in various body fluids and pave the way for clinical studies on the kinetic behavior of hepcidin in both healthy and diseased states.  相似文献   

18.
This article provides an overview of the technique of secondary ion mass spectrometry imaging and highlights some current and future areas of application relevant to the field of metabolomics. The approach benefits from label-free analysis of molecular species up to ~1500 Da with minimal sample preparation. Offering the highest spatial resolution of current mass spectrometry imaging methodologies, the technique is well-suited to metabolite imaging in both biological tissue and cells, in both 2D and 3D.  相似文献   

19.

This article provides an overview of the technique of secondary ion mass spectrometry imaging and highlights some current and future areas of application relevant to the field of metabolomics. The approach benefits from label-free analysis of molecular species up to ~1500 Da with minimal sample preparation. Offering the highest spatial resolution of current mass spectrometry imaging methodologies, the technique is well-suited to metabolite imaging in both biological tissue and cells, in both 2D and 3D.

  相似文献   

20.
The ability to acquire structurally informative daughter ion spectra for individual peptides undergoing separation and analysis by continuous flow fast atom bombardment (CF FAB) is demonstrated. To illustrate the potential of this methodology, tryptic and chymotryptic digests of the 29-residue peptide glucagon were analyzed by CF FAB using mass spectrometric and tandem mass spectrometric detection in consecutive analyses. Daughter ion spectra were recorded using B/E linked scans for the major hydrolysis products observed by liquid chromatography/mass spectrometry. The peptide mixtures were separated by gradient capillary high-performance liquid chromatography with the FAB matrix being added post-column using a coaxial flow interface between the column and flow probe. The entire effluent (3 microl min(-1)) was sampled by the mass spectrometer. Results obtained using less than 300 pmol of digested glucagon indicated several advantages to tandem mass spectrometric detection including the ability to confirm identities for products of enzymatic digestion and the potential use of this method for tandem sequence analysis of peptide mixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号