首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of compounds structurally related to aripiprazole (1), an atypical antipsychotic and antidepressant used clinically for the treatment of schizophrenia, bipolar disorder, and depression, have been prepared and evaluated for affinity at D(?-like) dopamine receptors. These compounds also share structural elements with the classical D(?-like) dopamine receptor antagonists, haloperidol, N-methylspiperone, domperidone and benperidol. Two new compounds, 7-(4-(4-(2-methoxyphenyl)piperazin-1-yl)butoxy)-3,4-dihydroquinolin-2(1H)-one oxalate (6) and 7-(4-(4-(2-(2-fluoroethoxy)phenyl)piperazin-1-yl)butoxy)-3,4-dihydroquinolin-2(1H)-one oxalate (7) were found to (a) bind to the D? receptor subtype with high affinity (K(i) values < 0.3 nM), (b) exhibit >50-fold D? versus D? receptor binding selectivity and (c) be partial agonists at both the D? and D? receptor subtype.  相似文献   

2.
Glutamate and Schizophrenia: Beyond the Dopamine Hypothesis   总被引:3,自引:0,他引:3  
1. After 50 years of antipsychotic drug development focused on the dopamine D2 receptor, schizophrenia remains a chronic, disabling disorder for most affected individuals.2. Studies over the last decade demonstrate that administration of low doses of NMDA receptor antagonists can cause in normal subjects the negative symptoms, cognitive impairments and physiologic disturbances observed in schizophrenia.3. Furthermore, a number of recently identified risk genes for schizophrenia affect NMDA receptor function or glutamatergic neurotransmission.4. Placebo-controlled trials with agents that directly or indirectly activate the glycine modulatory site on the NMDA receptor have shown reduction in negative symptoms, improvement in cognition and in some cases reduction in positive symptoms in schizophrenic patients receiving concurrent antipsychotic medications.5. Thus, hypofunction of the NMDA receptor, possibly on critical GABAergic inter-neurons, may contribute to the pathophysiology of schizophrenia.  相似文献   

3.
Schizophrenia is a mental illness characterized by a breakdown in cognition and emotion. Over the years, drug treatment for this disorder has mainly been compromised of orthosteric ligands that antagonize the active site of the dopamine D2 receptor. However, these drugs are limited in their use and often lead to the development of adverse movement and metabolic side effects. Allosteric modulators are an emerging class of therapeutics with significant advantages over orthosteric ligands, including an improved therapeutic and safety profile. This study investigates our newly developed allosteric modulator, PAOPA, which is a specific modulator of the dopamine D2 receptor. Previous studies have shown PAOPA to attenuate schizophrenia-like behavioral abnormalities in preclinical models. To advance this newly developed allosteric drug from the preclinical to clinical stage, this study examines the pharmacokinetic behavior and toxicological profile of PAOPA. Results from this study prove the effectiveness of PAOPA in reaching the implicated regions of the brain for therapeutic action, particularly the striatum. Pharmacokinetic parameters of PAOPA were found to be comparable to current market antipsychotic drugs. Necropsy and histopathological analyses showed no abnormalities in all examined organs. Acute and chronic treatment of PAOPA indicated no movement abnormalities commonly found with the use of current typical antipsychotic drugs. Moreover, acute and chronic PAOPA treatment revealed no hematological or metabolic abnormalities classically found with the use of atypical antipsychotic drugs. Findings from this study demonstrate a better safety profile of PAOPA, and necessitates the progression of this newly developed therapeutic for the treatment of schizophrenia.  相似文献   

4.
The high affinity of antipsychotic drugs for the dopamine D2 receptor focused attention onto the role of these receptors in the genesis of psychoses and the pathology of schizophrenia. However, psychotic symptoms are only one aspect of the complex symptom profile associated with schizophrenia. Therefore, research continues into other neurochemical systems and their potential roles in key features associated with schizophrenia. Modulating the cholinergic system in attempts to treat schizophrenia predates specific neurochemical hypotheses of the disorder. Cholinergic modulation has progressed from the use of coma therapy, through the use of anti-cholinergic drugs to control side-effects of older (typical) antipsychotic medications, to the development of drugs designed to specifically activate selected muscarinic receptors. This review presents data implicating a decrease in muscarinic receptors, particularly the M1 receptor, in the pathology of schizophrenia and explores the potential physiological consequences of such a change, drawing on data available from muscarinic receptor knockout mice as well as clinical and pre-clinical pharmacology. The body of evidence presented suggests that deficits in muscarinic receptors are associated with some forms of schizophrenia and that targeting these receptors could prove to be of therapeutic benefit to patients with the disorder.  相似文献   

5.
Apolipoprotein D (apoD) is an atypical plasma apolipoprotein and, based on its primary structure, it is a member of the lipocalin protein superfamily. Lipocalins have been extensively used as disease markers and, accordingly, apoD has become increasingly recognized as an important factor in the pathology of human neurodegenerative and neuropsychiatric disorders. ApoD expression is increased in the plasma and brains of subjects with schizophrenia and bipolar disorder, suggesting that it acts as a marker for disease pathology. ApoD also exhibits complex regulation by antipsychotic drug treatment and may represent a distinguishing mechanism of typical versus atypical drugs. The precise role of apoD in the CNS and disease remains to be elucidated, but recent findings have suggested that it plays an important role in the regulation of arachidonic acid signaling and metabolism providing further support for phospholipid membrane pathology in schizophrenia.  相似文献   

6.
Mood disorders and schizophrenia share a number of common properties, including: genetic susceptibility; differences in brain structure and drug based therapy. Some genetic loci may even confer susceptibility for bipolar mood disorder and schizophrenia, and some atypical antipsychotic drugs are used as mood stabilizers. As schizophrenia is associated with aberrant neurodevelopment, could this also be true for mood disorders? Such changes could arise pre- or post-natal, however the recent interest in neurogenesis in the adult brain has suggested involvement of these later processes in the origins of mood disorders. Interestingly, the common mood stabilizing drugs, lithium, valproic acid (VPA) and carbamazepine, are teratogens, affecting a number of aspects of animal development. Recent work has shown that lithium and VPA interfere with normal cell development, and all three drugs affect neuronal morphology. The molecular basis for mood stabilizer action in the treatment of mood is unknown, however these studies have suggested both targets and potential mechanisms. Lithium directly inhibits two evolutionarily conserved signal transduction pathways: the protein kinase Glycogen Synthase Kinase-3 (GSK-3) and inositol signaling. VPA can up-regulate gene expression through inhibition of histone deacetylase (HDAC) and indirectly reduce GSK-3 activity. VPA effects are not conserved between cell types, and carbamazepine has no effect on the GSK-3 pathway. All three mood stabilizers suppress inositol signaling, results further supported by studies on the enzyme prolyl oligopeptidase (PO) and the sodium myo-inositol transporter (SMIT). Despite these intriguing observations, it remains unclear whether GSK-3, inositol signaling or both underlie the origins of bipolar disorder.  相似文献   

7.
It remains unclear why atypical antipsychotics confer a risk for hyperglycemia compared to typical antipsychotics. Atypical antipsychotics antagonize dopamine receptors-2 (D(2)) and serotonin (5-HT) receptors-2, while typical antipsychotics antagonize only D(2) receptors. We aimed at elucidating the mechanistic differences between the role of typical and atypical antipsychotics on prolactin levels and glucose regulation. A Medline search was conducted during 2010 using the search terms type 2 diabetes (T2D), typical/atypical antipsychotics, schizophrenia, prolactin, and serotonin. We discuss the effect of typical and atypical antipsychotics on prolactin levels and glucose regulation. Given that prolactin is under negative control by dopamine and positive control by serotonin, typical antipsychotics induce elevations in prolactin, while atypical antipsychotics do not. Research studies show protective effects of prolactin on T2D. We hypothesize that the difference in induction of T2D between typical and atypical antipsychotics is due to the antipsychotic receptor binding mediated effect in changes in prolactin levels.  相似文献   

8.
Schizophrenia is a complex and serious disorder which affects some 0.5-1.0% of the population. The disease generally begins in adolescence. This early onset, together with the progressive and often irreversible nature of schizophrenia, account for its high social cost. Positive symptoms, such as hallucinations, are generally well-controlled by antipsychotics, whereas cognitive and deficit symptoms are poorly-treated. All antipsychotic agents, irrespective of their overall receptor-binding profiles, interact with dopaminergic mechanisms that are known to be perturbed in schizophrenic patients. Dopamine exerts its actions via five classes of receptor, offering a broad palette of targets for the conception of novel antipsychotic agents. The present article focuses on the relevance of dopamine D3 receptors to the aetiology and treatment of schizophrenia. Experimental studies suggest that, as compared to other drugs, antipsychotic agents which preferentially block D3 receptors may possess therapeutic advantages, notably in the control of cognitive symptoms. The first clinical studies for the evaluation of this hypothesis have recently got underway.  相似文献   

9.
The most dominant hypotheses for the pathogenesis of schizophrenia have focused primarily upon hyperfunctional dopaminergic and hypofunctional glutamatergic neurotransmission in the central nervous system. The therapeutic efficacy of all atypical antipsychotics is explained in part by antagonism of the dopaminergic neurotransmission, mainly by blockade of D2 dopamine receptors. N-methyl-d-aspartate (NMDA) receptor hypofunction in schizophrenia can be reversed by glycine transporter type-1 (GlyT-1) inhibitors, which regulate glycine concentrations at the vicinity of NMDA receptors. Combined drug administration with D2 dopamine receptor blockade and activation of hypofunctional NMDA receptors may be needed for a more effective treatment of positive and negative symptoms and the accompanied cognitive deficit in schizophrenia. To investigate this type of combined drug administration, rats were treated with the atypical antipsychotic risperidone together with the GlyT-1 inhibitor Org-24461. Brain microdialysis was applied in the striatum of conscious rats and determinations of extracellular dopamine, DOPAC, HVA, glycine, glutamate, and serine concentrations were carried out using HPLC/electrochemistry. Risperidone increased extracellular concentrations of dopamine but failed to influence those of glycine or glutamate measured in microdialysis samples. Org-24461 injection reduced extracellular dopamine concentrations and elevated extracellular glycine levels but the concentrations of serine and glutamate were not changed. When risperidone and Org-24461 were added in combination, a decrease in extracellular dopamine concentrations was accompanied with sustained elevation of extracellular glycine levels. Interestingly, the extracellular concentrations of glutamate were also enhanced. Our data indicate that coadministration of an antipsychotic with a GlyT-1 inhibitor may normalize hypofunctional NMDA receptor-mediated glutamatergic neurotransmission with reduced dopaminergic side effects characteristic for antipsychotic medication.  相似文献   

10.
S Matsubara  H Y Meltzer 《Life sciences》1989,45(15):1397-1406
The effect of acute treatment with seven atypical antipsychotic drugs and four typical antipsychotic drugs on serotonin2 (5-HT2) receptor binding sites in rat cerebral cortex was studied. Among the atypical antipsychotic drugs examined, clozapine, fluperlapine, RMI-81582 and setoperone decreased the density of 5-HT2 receptors, but ticspirone, amperozide and melperone did not. None of the drugs affected the Kd value. Among the typical antipsychotic drugs, loxapine decreased Bmax and increased the Kd of 5-HT2 receptor binding sites, whereas chlorpromazine and cis-flupenthixol had no effect. Clothiapine, a typical antipsychotic drug of the same chemical class as clozapine, decreased Bmax without increasing Kd. The downregulation of 5-HT2 receptor binding sites following a single injection of clozapine, 20 mg/kg, remained almost unchanged during the first 72 hrs and was still significantly decreased for up to 120 hrs. There was no relationship between the affinity for the downregulation of rat cortical 5-HT2 receptor binding site and 5-HT2 receptor density. Coadministration of the D1 dopamine agonist, SKF-38393, did not affect the clozapine-induced downregulation. It is suggested that rapid and prolonged downregulation of 5-HT2 receptor sites is characteristic of some but not all atypical antipsychotic drugs and is not specific to atypical antipsychotic drugs. Dibenzo-epines (clozapine, loxapine, amoxapine, chlothiapine) consistently downregulate 5-HT2 receptors in frontal cortex after acute treatment.  相似文献   

11.
Conventional antipsychotic drugs, although efficacious in the treatment of mania, have not demonstrated a significant usefulness in the maintenance treatment of bipolar disorder. This has primarily been due to a tendency to induce depressive symptoms and depressive recurrences in this group of patients in the course of long-term administration. However, the picture has changed following the introduction of second-generation antipsychotics. These drugs have pro-depressant properties (if any) that are much weaker than conventional antipsychotics. Furthermore, their tolerability, especially in long-term treatment, is more favorable compared to classical antipsychotics. Clinical observations of the action profile of second-generation antipsychotic drugs in the treatment of schizophrenia have pointed to a possibility of these agents possessing mood-stabilizing properties. The first such suggestion was made by Zarate (1995) in connection with clozapine. The prevention of manic and depressive recurrences in bipolar disorder is a hallmark of the definition of mood-stabilizers.  相似文献   

12.
CGS 10746B, a benzothiadiazepine, has a behavioral profile in mice and monkeys similar to the atypical antipsychotic clozapine. Unlike clozapine, CGS 10746B suppresses dopamine neuron firing rates and, when administered at behaviorally effective doses by the oral or intraperitoneal route, decreases neostriatal dopamine release without changing dopamine metabolism or occupying D2 receptors. CGS 10746B is the first atypical antipsychotic candidate that selectively decreases dopamine release.  相似文献   

13.
A mass spectrometry based high throughput approach was employed to profile white and gray matter lipid levels in the prefrontal cortex (Brodmann area 9) of 45 subjects including 15 schizophrenia and 15 bipolar disorder patients as well as 15 controls samples. We found statistically significant alterations in levels of free fatty acids and phosphatidylcholine in gray and white matter of both schizophrenia and bipolar disorder samples compared to controls. Also, ceramides were identified to be significantly increased in white matter of both neuropsychiatric disorders as compared to control levels. The patient cohort investigated in this study includes a number of drug naive as well as untreated patients, allowing the assessment of drug effects on lipid levels. Our findings indicate that while gray matter phosphatidylcholine levels were influenced by antipsychotic medication, this was not the case for phosphatidylcholine levels in white matter. Changes in free fatty acids or ceramides in either white or gray matter also did not appear to be influenced by antipsychotic treatment. To assess lipid profiles in the living patient, we also profiled lipids of 40 red blood cell samples, including 7 samples from drug naive first onset patients. We found significant alterations in the concentrations of free fatty acids as well as ceramide. Overall, our findings suggest that lipid abnormalities may be a disease intrinsic feature of both schizophrenia and bipolar disorder reflected by significant changes in the central nervous system as well as peripheral tissues.  相似文献   

14.
Dean B  Pavey G  Scarr E  Goeringer K  Copolov DL 《Life sciences》2004,74(25):3115-3131
In situ radioligand binding with autoradiography and anti-human dopamine D(2) receptor antibodies with Western blots have been used to measure the density of dopamine D(2)-like receptors in the caudate-putamen and pituitary from schizophrenic subjects who did or did not have residual antipsychotic drugs in their tissue at death. There was a significant decrease in the Ki for haloperidol displaceable [(125)I]iodosulpride binding in the pituitary (p < 0.01) and caudate-putamen (p < 0.05) from subjects with schizophrenia with residual drugs in their tissue. There was a significant decrease in the density of [(125)I]iodosulpride in the pituitary (p < 0.001) and a strong trend to a decrease in binding in the caudate-putamen (p = 0.055) from subjects with schizophrenia. By contrast, [(3)H]spiperone binding was decreased in the caudate-putamen (p < 0.05) with a trend to decreased binding in the pituitary (p = 0.07) from subjects with schizophrenia. There was no difference in the density of dopamine D(2) receptors in the caudate-putamen from subjects with schizophrenia (p = 0.31). All the findings on receptor densities were independent of drug status. [(125)I]iodosulpride binds to the dopamine D(2&3) receptors. We have shown that there is no change in the dopamine D(2) receptor in the caudate-putamen from subjects with schizophrenia and therefore, these data would be consistent with there being a decrease in the dopamine D(3) in the caudate-putamen from subjects with schizophrenia. Since dopamine D(3) receptors are absent or present at low concentrations in the pituitary, our data would suggest the dopamine D(2) receptor is decreased in that tissue from schizophrenic subjects.  相似文献   

15.
A(2A) adenosine receptors are considered an excellent target for drug development in several neurological and psychiatric disorders. It is noteworthy that the responses evoked by A(2A) adenosine receptors are regulated by D(2) dopamine receptor ligands. These two receptors are co-expressed at the level of the basal ganglia and interact to form functional heterodimers. In this context, possible changes in A(2A) adenosine receptor functional responses caused by the chronic blockade/activation of D(2) dopamine receptors should be considered to optimise the therapeutic effectiveness of dopaminergic agents and to reduce any possible side effects. In the present paper, we investigated the regulation of A(2A) adenosine receptors induced by antipsychotic drugs, commonly acting as D(2) dopamine receptor antagonists, in a cellular model co-expressing both A(2A) and D(2) receptors. Our data suggest that the treatment of cells with the classical antipsychotic haloperidol increased both the affinity and responsiveness of the A(2A) receptor and also affected the degree of A(2A)-D(2) receptor heterodimerisation. In contrast, an atypical antipsychotic, clozapine, had no effect on A(2A) adenosine receptor parameters, suggesting that the two classes of drugs have different effects on adenosine-dopamine receptor interaction. Modifications to A(2A) adenosine receptors may play a significant role in determining cerebral adenosine effects during the chronic administration of antipsychotics in psychiatric diseases and may account for the efficacy of A(2A) adenosine receptor ligands in pathologies associated with dopaminergic system dysfunction. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11302-010-9201-z) contains supplementary material, which is available to authorized users.  相似文献   

16.
As part of an on-going effort to investigate the chemical space requirements for D(2)/5-HT(2A) receptor antagonists as atypical antipsychotics, new 1-aminoindanes were synthesized. The replacement of the heterocycle (oxindole) in ziprasidone with a carbocycle (indane) was well tolerated and was found to retain binding affinities for dopamine D(2), serotonin 5-HT(2A), and serotonin 5-HT(1A). Such compounds hold promise as a new chemical motif with atypical antipsychotic properties for the treatment of schizophrenia and related disorders.  相似文献   

17.
Pillai A 《PloS one》2008,3(3):e1784

Background

Current theories on the pathophysiology of schizophrenia suggest altered brain plasticity such as decreased neural proliferation and migration, delayed myelination, and abnormal synaptic modeling, in the brain of subjects with schizophrenia. Though functional alterations in BDNF, which plays important role in neuroplasticity, are implicated in many abnormalities found in schizophrenia, the regulatory mechanism(s) involved in the abnormal signaling of BDNF in schizophrenia is not clear. The present study investigated whether Sprouty2, a regulator of growth factor signaling, is abnormally expressed in schizophrenia, and is associated with the changes in BDNF mRNA in this disorder. The potential effect of antipsychotic drugs on Sprouty2 expression was tested in adult rats.

Methods and Findings

Sprouty2 and BDNF gene expression were analyzed in dorsolateral prefrontal cortex samples from the Stanley Array Collection. Quantitative real-time PCR analysis of RNA in 100 individuals (35 with schizophrenia, 31 with bipolar disorder, and 34 psychiatrically normal controls) showed significantly decreased expression of Sprouty2 and BDNF in both schizophrenia and bipolar disorder. Moreover, a significant correlation between these two genes existed in control, schizophrenia and bipolar subjects. Long-term treatment with antipsychotic drugs, haloperidol and olanzapine, showed differential effects on both Sprouty2 and BDNF mRNA and protein levels in the frontal cortex of rats.

Conclusion

These findings demonstrating decreased expression of Sprouty2 associated with changes in BDNF, suggest the possibility that these decreases are secondary to treatment rather than to factors that are significant in the disease process of either schizophrenia and/or bipolar disorder. Further exploration of Sprouty2-related signal transduction pathways may be helpful to design novel treatment strategies for these disorders.  相似文献   

18.
Schizophrenia: moving beyond monoamine antagonists   总被引:1,自引:0,他引:1  
Schizophrenia is a disabling psychiatric disorder characterized by positive, negative, and cognitive symptoms. The first pharmacological treatments for schizophrenia were discovered by serendipitous, albeit carefully documented, clinical observations. The discovery of chlorpromazine and other dopamine D2 receptor antagonists as antipsychotic agents set the early course of drug discovery in the context of schizophrenia and other psychiatric disorders, and various monoamine receptors became the prime focus of neuropharmacological studies. Success in treating the positive symptoms nevertheless remained limited by the general lack of efficacy in addressing negative symptoms and cognitive impairment. In recent years, several new experimental approaches have emerged for the identification and treatment of different symptom clusters that do not rely on blockade of monoamine receptors. Muscarinic, nicotinic, and glutamatergic signaling mechanisms have become essential to neuropharmacological and behavioral models of discrete aspects of schizophrenia. And as a consequence of these insights, novel drug entities have become available to study and potentially treat the disabling cognitive and negative symptoms of psychiatric disease. Current attempts to target a new range of receptors entail unprecedented fine-tuning in the pharmacological manipulation of specific receptor subtypes.  相似文献   

19.
Dopamine-mediated neurotransmission imbalances are associated with several psychiatry illnesses, such as schizophrenia. Recently it was demonstrated that two proteins involved in dopamine signaling are altered in prefrontal cortex (PFC) of schizophrenic patients. DARPP-32 is a key downstream effector of intracellular signaling pathway and is downregulated in PFC of schizophrenic subjects. NCS-1 is a neuronal calcium sensor that can inhibit dopamine receptor D2 internalization and is upregulated in PFC of schizophrenic subjects. It is well known that dopamine D2 receptor is the main target of antipsychotic. Therefore, our purpose was to study if chronic treatment with typical or atypical antipsychotics induced alterations in DARPP-32 and NCS-1 expression in five brain regions: prefrontal cortex, hippocampus, striatum, cortex and cerebellum. We did not find any changes in DARPP-32 and NCS-1 protein expression in any brain region investigated.  相似文献   

20.
D2 dopamine receptor may be related with the pathogenesis of Parkinson's disease and schizophrenia. Furthermore, the antipsychotic drugs have high affinity for D2 dopamine receptor. We carried out the cloning of the genomic DNA for human D2 dopamine receptor and clarified the structure of this gene. Our isolated gene spans about 15 kbp and consists of seven exons interrupted by six introns. However, putative first exon was not yet identified. Spot blot hybridization analysis of cell sorter fractionated human chromosomal DNA with D2 receptor genomic DNA revealed the localization of this gene in the chromosome 11 fraction. We analyzed human genomic DNA by Southern blot hybridization with D2 dopamine receptor genomic DNA as a probe, but so far we could not find RFLP. Northern blot analyses of brain RNA of several animals and rat brain RNA after various treatments were carried out. Developmental changes of D2 dopamine receptor mRNA were observed in the rat brains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号