首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The lysozyme (rabbit kidney lysozyme) from the homogenate of rabbit kidney (Japanese white) was purified by repeated cation-exchange chromatography on Bio-Rex 70. The amino acid sequence was determined by automated gas-phase Edman degradation of the peptides obtained from the digestion of reduced and S-carboxymethylated rabbit lysozyme with Achromobacter protease I (lysyl endopeptidase). The sequence thus determined was KIYERCELARTLKKLGLDGYKGVSLANWMCLAKWESSYNTRATNYNPGDKSTDYGIFQ INSRYWCNDGKTPRAVNACHIPCSDLLKDDITQAVACAKRVVSDPQGIRAWVAWRNHCQ NQDLTPYIRGCGV, indicating 25 amino acid substitutions from human lysozyme. The lytic activity of rabbit lysozyme against Micrococcus lysodeikticus at pH 7, ionic strength of 0.1, and 30 degrees C was found to be 190 and 60% of those of hen and human lysozymes, respectively. The lytic activity-pH profile of rabbit lysozyme was slightly different from those of hen and human lysozymes. While hen and human lysozymes had wide optimum activities at around pH 5.5-8.5, the optimum activity of rabbit lysozyme was at around pH 5.5-7.0. The high proline content (five residues per molecule compared with two prolines per molecule in hen or human lysozyme) is one of the interesting features of rabbit lysozyme. The transition temperatures for the unfolding of rabbit, human, and hen lysozymes in 3 M guanidine hydrochloride at pH 5.5 were 51.2, 45.5, and 45.4 degrees C, respectively, indicating that rabbit lysozyme is stabler than the other two lysozymes. The high proline content may be responsible for the increased stability of rabbit lysozyme.  相似文献   

2.
We isolated and sequenced the cDNAs coding for lysozymes of six bivalve species. Alignment and phylogenetic analysis showed that, together with recently described bivalve lysozymes, the leech destabilase, and a number of putative proteins from extensive genomic and cDNA analyses, they belong to the invertebrate type of lysozymes (i type), first described by Jollès and Jollès (1975). We determined the genomic structure of the gene encoding the lysozyme of Mytilus edulis, the common mussel. We provide evidence that the central exon of this gene is homologous to the second exon of the chicken lysozyme gene, belonging to the c type. We propose that the origin of this domain can be traced back in evolution to the origin of bilaterian animals. Phylogenetic analysis suggests that i-type proteins form a monophyletic family. Received: 21 May 2001 / Accepted: 22 October 2001  相似文献   

3.
Cation exchange column chromatography and gel filtration chromatography were used to purify four reptile lysozymes from egg white: SSTL A and SSTL B from soft shelled turtle (Trionyx sinensis), ASTL from Asiatic soft shelled turtle (Amyda cartilagenea) and GSTL from green sea turtle (Chelonia mydas). The molecular masses of the purified reptile lysozymes were estimated to be 14 kDa by SDS-PAGE. Enzyme activity of the four lysozymes could be confirmed by gel zymograms and showed charge differences on native-PAGE. SSTL A, SSTL B and ASTL had sharp pH optima of about pH 6.0, which contrasts with that of GSTL, which showed dual pH optima at about pH 6.0 and pH 8.0. The activities of the reptile lysozymes rapidly decreased within 30 min of incubation at 90 degrees C except for ASTL, which was more stable. Partial N-terminal amino acid sequencing and peptide mapping strongly suggested that the enzymes were C-type lysozymes. Interestingly, the mature SSTL lysozymes show an extra Gly residue at the N-terminus, which was previously found in soft-shelled turtle lysozyme. The reptile lysozymes showed lytic activity against several species of bacteria, such as Micrococcus luteus and Vibrio cholerae, but showed only weak activity to Pseudomonas aeruginosa and lacked activity towards Aeromonas hydrophila.  相似文献   

4.
The complete sequence of 129 amino acids has been determined for one of three closely related lysozymes c purified from cow stomach mucosa. The sequence differs from those known for 17 other lysozymes c at 39-60 positions, at one of which there has been a deletion of 1 amino acid. The glutamate replacement at position 101 and the deletion of proline at position 102 eliminate the aspartyl-prolyl bond that is present between these positions in all other mammalian lysozymes c tested. This bond appears to be the most acid-sensitive one in such lysozymes at physiological temperature. Of the 40 positions previously found to be invariant among lysozymes c, only one has undergone substitution in the cow lineage. This modest number of changes at novel positions is consistent with the inference, based on tree analysis and antigenic comparisons, that the tempo of evolutionary change in the cow lysozyme lineage has not been radically different from that in other lysozyme c lineages. The mutations responsible for the distinctive catalytic properties and stability of cow lysozyme c could be a minor fraction of the total that have been fixed in the cow lineage.  相似文献   

5.
Lysozyme was purified from the plasma of eastern oysters (Crassostrea virginica) using a combination of ion exchange and gel filtration chromatographies. The molecular mass of purified lysozyme was estimated at 18.4 kDa by SDS-PAGE, and its isoelectric point was greater than 10. Mass spectrometric analysis of the purified enzyme revealed a high-sequence homology with i-type lysozymes. No similarity was found however between the N-terminal sequence of oyster plasma lysozyme and N-terminal sequences of other i-type lysozymes, suggesting that the N-terminal sequences of the i-type lysozymes may vary to a greater extent between species than reported in earlier studies. The optimal ionic strength, pH, cation concentrations, sea salt concentrations, and temperature for activity of the purified lysozyme were determined, as well as its temperature and pH stability. Purified oyster plasma lysozyme inhibited the growth of Gram-positive bacteria (e.g., Lactococcus garvieae, Enterococcus sp.) and Gram-negative bacteria (e.g., Escherichia coli, Vibrio vulnificus). This is a first report of a lysozyme purified from an oyster species and from the plasma of a bivalve mollusc.  相似文献   

6.
Martin MN 《Plant physiology》1991,95(2):469-476
The latex of the commercial rubber tree, Hevea brasiliensis, was fractionated by ultracentrifugation as described by G. F. J. Moir ([1959] Nature 184: 1626-1628) into a top layer of rubber particles, a cleared cytoplasm, and a pellet that contains primarily specialized vacuoles known as lutoids. The proteins in each fraction were resolved by two-dimensional gel electrophoresis. Both the pellet fraction and cleared cytoplasm contained large amounts of relatively few proteins, suggesting that laticifers serve a very specialized function in the plant. More than 75% of the total soluble protein in latex was found in the pellet fraction. Twenty-five percent of the protein in the pellet was identified as chitinases/lysozymes, which are capable of degrading the chitin component of fungal cell walls and the peptidoglycan component of bacterial cell walls. Both the chitinase and lysozyme activities were localized exclusively in the pellet or lutoid fraction. The chitinases/lysozymes were resolved into acidic and basic classes of proteins and further purified. An acidic protein (molecular mass 25.5 kD) represented 20% of the chitinase activity in latex; this protein lacked the low level of lysozyme activity that is associated with many plant chitinases. Six basic proteins, having both chitinase and lysozyme activities in various ratios and molecular mass of 27.5 or 26 kD, were resolved. Two of the basic proteins had very high lysozyme specific activities which were comparable to the specific activities reported for animal lysozymes. Like animal lysozymes, but unlike previously characterized plant chitinases/lysozymes, these basic chitinases/lysozymes were also capable of completely lysing or clearing suspensions of bacterial cell walls. These results suggest that laticifers may serve a defensive role in the plant.  相似文献   

7.
The gut of the adult soft ticks Ornithodoros moubata displays high lytic activity against the bacteria Micrococcus luteus. The activity differed in the range of two orders of magnitude among individual animals and increased on average 4 fold during the first week following ingestion. In homogenates of first instar nymphs the activity was much lower increasing exponentially as nymphs neared the first molt. The protein responsible for this activity was purified out of gut contents of adult ticks by means of affinity adsorption on magnetic-chitin followed by two chromatography steps on cation exchange FPLC column MonoS. The homogeneous active protein has a mass of 14006 +/- 20 Daltons as determined by MALDI-TOF mass spectrometry. The N-terminal amino-acid sequence of this protein is K-V-Y-D-R-C-S-L-A-S-E-L-R with the highest similarity to the lysozyme from liver of rainbow trout and to lysozymes from digestive tracts of several mammals. The motif DRCSLA is specific for the digestive lysozymes of several dipteran insects. Based on this evidence, we have identified the protein as the tick gut lysozyme. The tick gut lysozyme has a pI near 9.7 and retains its full activity after treatment at 60 degrees C for 30 minutes. The pH optimum of the tick lysozyme was in the range from pH 5-7. Only marginal activity could be detected at pH > 8 which raises the question about the function of lysozyme in anti-bacterial defense in the environment of the tick gut.  相似文献   

8.
Two lysozymes were purified from quail egg white by cation exchange column chromatography and analyzed for amino acid sequence. The enzymes showed the same pH optimum profile for lytic activity with broad pH optima (pH 5.0-8.0) but had difference in mobility on native-PAGE. The native-PAGE immunoblot showed one or two lysozymes present in individual egg whites. The established amino acid sequence of quail egg white lysozyme A (QEWL A) was the same as quail lysozyme reported by Kaneda et al. [Kaneda, M., Kato, I., Tominaga, N., Titani, K., Narita, K., 1969. The amino acid sequence of quail lysozyme. J. Biochem. (Tokyo). 66, 747-749] and had six amino acid substitutions at position 3 (Phe to Tyr), 19 (Asn to Lys), 21 (Arg to Gln), 102 (Gly to Val) 103 (Asn to His) and 121 (Gln to Asn) compared to hen egg white lysozyme. QEWL A and QEWL B showed one substitution, at the position 21, Gln replaced by Lys, plus an insertion of Leu between position 20 and 21, being the first report that QEWL B had 130 amino acids. The amino acid differences between two lysozymes did not seem to affect antigenic determinants detected by polyclonal anti-hen egg white lysozyme, but caused them to separate well from each other by ion exchange chromatography.  相似文献   

9.
We have investigated the specificity of six different lysozymes for peptidoglycan substrates obtained by extraction of a number of gram-negative bacteria and Micrococcus lysodeikticus with chloroform/Tris-HCl buffer (chloroform/buffer). The lysozymes included two that are commercially available (hen egg white lysozyme or HEWL, and mutanolysin from Streptomyces globisporus or M1L), and four that were chromatographically purified (bacteriophage lambda lysozyme or LaL, bacteriophage T4 lysozyme or T4L, goose egg white lysozyme or GEWL, and cauliflower lysozyme or CFL). HEWL was much more effective on M. lysodeikticus than on any of the gram-negative cell walls, while the opposite was found for LaL. Also the gram-negative cell walls showed remarkable differences in susceptibility to the different lysozymes, even for closely related species like Escherichia coli and Salmonella Typhimurium. These differences could not be due to the presence of lysozyme inhibitors such as Ivy from E. coli in the cell wall substrates because we showed that chloroform extraction effectively removed this inhibitor. Interestingly, we found strong inhibitory activity to HEWL in the chloroform/buffer extracts of Salmonella Typhimurium, and to LaL in the extracts of Pseudomonas aeruginosa, suggesting that other lysozyme inhibitors than Ivy exist and are probably widespread in gram-negative bacteria.  相似文献   

10.
Using PCR, cloning and sequencing techniques, a 1.1-kb complementary DNA fragment encoding for a beta-mannanase (mannan endo-1,4-beta-mannosidase, EC 3.2.1.78) has been identified in the digestive gland of blue mussel, Mytilus edulis. The cDNA sequence shows significant sequence identity to several beta-mannanases in glycoside hydrolase family 5. The beta-mannanase gene has been isolated and sequenced from gill tissue of blue mussel and contains five introns. The beta-mannanase has been expressed extracellularly in Pichia pastoris using the Saccharomyces cerevisiae alpha-factor signal sequence. The beta-mannanase was produced in a 14-L fermenter with an expression level of 900 mg.L-1. The expression level is strongly affected by the induction temperature. A two-step purification procedure, composed of a combination of immobilized metal ion affinity chromatography and ion exchange chromatography, is required to give a pure beta-mannanase. However, due to post-translational modifications, structural varieties regarding molecular mass and isoelectric point were obtained. The specific activity of the purified recombinant M. edulis beta-mannanase was close to that of the wild-type enzyme. Also pH and temperature optima were the same as for the native protein. In conclusion, P. pastoris is regarded as a suitable host strain for the production of blue mussel beta-mannanase. This is the first time a mollusc beta-mannanase has been characterized at the DNA level.  相似文献   

11.
Lysozymes have important roles in innate immune system. Here, a c-type and a g-type lysozyme were identified from yellow catfish (Pelteobagrus fulvidraco). The deduced amino acid sequences of both lysozymes were conserved in catalytic sites and structural features as compared to their counterparts from other species. It was interesting that the g-type lysozyme possessed a signal peptide. The c-type and g-type lysozymes had the highest identity 89.4 and 76.2 % with that from channel catfish respectively. Phylogenetic analysis showed that the two lysozymes had a closely relationship with that from channel catfish and Astyanax mexicanus. Lysozymes from one order could form more than one clade in the phylogenetic tree, which indicated the gene duplications in evolution. Expression analysis with real time quantitative PCR revealed that the two lysozyme genes were constitutively expressed in all the tested tissues. The highest expression of c-type lysozyme was observed in liver, followed by spleen, head kidney, and trunk kidney, while the g-type lysozyme had highest expression in intestine, followed by spleen, head kidney, and trunk kidney. The mRNA levels of both genes were all up-regulated after challenging with Aeromonas hydrophila. However, there were differences in tissues and time points when the mRNA levels reached its peak between the two lysozymes. It indicated the diversity in regulation mechanisms and detailed functions among lysozymes. Taking together, these results will benefit the understanding of yellow catfish lysozymes.  相似文献   

12.
To examine the effect of amino acid substitutions in lysozyme on the binding of antibodies to lysozyme, we purified lysozyme from the egg whites of California quail and Gambel quail. Tryptic peptides were isolated from digests of the reduced and carboxymethylated lysozymes and subjected to quantitative analysis of their amino acid compositions. The two proteins were identical by this criterion. Each peptide from the California quail lysozyme was then sequenced by quantitative Edman degradation, and the peptides were ordered by homology with other bird lysozymes. California quail lysozyme is most similar in amino acid sequence to bobwhite quail lysozyme, from which it differs by two substitutions: arginine for lysine at position 68 and histidine for glutamine at position 121. California and bobwhite quail lysozymes were antigenically distinct from each other in quantitative microcomplement fixation tests, indicating that substitutions at one or both of these positions can alter the antigenic structure of lysozyme. Yet neither of these positions is among those claimed to account for the precise and entire antigenic structure of lysozyme [Atassi, M. Z., & Lee, C.-L. (1978) Biochem. J. 171, 429--434]. Two possible explanations for this discrepancy are discussed.  相似文献   

13.
A novel goose-type lysozyme was purified from egg white of cassowary bird (Casuarius casuarius). The purification step was composed of two fractionation steps: pH treatment steps followed by a cation exchange column chromatography. The molecular mass of the purified enzyme was estimated to be 20.8 kDa by SDS-PAGE. This enzyme was composed of 186 amino acid residues and showed similar amino acid composition to reported goose-type lysozymes. The N-terminal amino acid sequencing from transblotted protein found that this protein had no N-terminal. This enzyme showed either lytic or chitinase activities and had some different properties from those reported for goose lysozyme. The optimum pH and temperature on lytic activity of this lysozyme were pH 5 and 30 degrees C at ionic strength of 0.1, respectively. This lysozyme was stable up to 30 degrees C for lytic activity and the activity was completely abolished at 80 degrees C. The chitinase activity against glycol chitin showed dual optimum pH around 4.5 and 11. The optimum temperature for chitinase activity was at 50 degrees C and the enzyme was stable up to 40 degrees C.  相似文献   

14.
Using random mutagenesis, we previously obtained K33N mutant lysozyme that showed a large lytic halo on the plate coating Micrococcus luteus. In order to examine the effects of mutation of K33N on enzyme activity, we prepared K33N and K33A mutant lysozymes from yeast. It was found that the activities of both the mutant lysozymes were higher than those of the wild-type lysozyme based on the results of the activity measurements against M. luteus (lytic activity) and glycol chitin. Moreover, 3D structures of K33N and K33A mutant lysozyme were solved by X-ray crystallographic analyses. The side chain of K33 in the wild-type lysozyme hydrogen bonded with N37 involved in the substrate-binding region, and the orientation of the side chain of N37 in K33 mutant lysozymes were different in the wild-type lysozyme. These results suggest that the enhancement of activity in K33N mutant lysozyme was due to an alteration in the orientation of the side chain of N37. On the other hand, K33N lysozyme was less stable than the wild-type lysozyme. Lysozyme may sacrifice its enzyme activity to acquire the conformational stability at position 33.  相似文献   

15.
The effects of chemical modifications of Trp62 and Trp108 on the folding of hen egg-white lysozyme from the reduced form were investigated by means of the sulfhydryl-disulfide interchange reaction at pH 8 and 40 degrees C. The folding of reduced lysozyme was monitored by following the recovery of the original activity. Under the conditions employed, the apparent first-order rate constant for the folding of reduced lysozyme was not changed by the modifications of both Trp62 and Trp108 and the folding was completed within 30 min. However, the extent of the correct folding was changed by the modification of Trp62 but not by that of Trp108. Native and oxindolealanine108 lysozymes recovered 80 and 81% of their original activities after 30-min refolding, respectively, but Trp62-modified lysozymes recovered their activities to a lesser extent than native and oxindolealanine108 lysozymes. The recovered activities of Trp62-modified lysozymes after 30-min refolding were 63% for oxindolealanine62 lysozyme, 65% for delta 1-carboxamidomethylthiotryptophan62 lysozyme, and 52% for delta 1-carboxymethylthiotryptophan62 lysozyme. These results suggest that Trp62 is important for preventing the misfolding of reduced lysozyme, but that neither Trp62 nor Trp108 is involved in the rate-determining step (the slowest step) in the folding pathway. A decrease in the hydrophobic nature of Trp62 seems to increase the misfolding and thus to decrease the extent of the correct folding of reduced lysozyme. A mechanism for the involvement of Trp62 in the folding pathway of reduced lysozyme is proposed.  相似文献   

16.
Multiple genes of the hoatzin encoding stomach lysozyme c and closely related members of this calcium-binding lysozyme c group were cloned from a genomic DNA library and sequenced. There are a minimum of five genes represented among these sequences that encode two distinct groups of protein sequences. One group of three genes corresponds to the stomach lysozyme amino acid sequences, and the remaining genes encode predicted proteins that are more basic in character and share several sequence identities with the pigeon egg-white lysozyme rather than with the hoatzin stomach lysozymes. Despite these structural similarities between some of the hoatzin gene products and the pigeon lysozyme, phylogenetic analyses indicate that all of the hoatzin sequences are closely related to one another. This is borne out by the relatively small genetic distances even in the intronic regions, which are not subject to the selective pressures operating on the coding regions of the stomach lysozymes. These results suggest that multiple gene duplication events have occurred during the evolution of hoatzin lysozymes.  相似文献   

17.
Salivary gland secretions of three species of the medicinal leech differ in the level of their lysozyme, and peptidoglycan-lysing activity. Using a synthetic fluorogenic substrate, 4-methylumbelliferyltetra N-acetyl-β-chitotetraoxide, the glycosidase activity (as one of peptidoglycan-lysing activities) of salivary gland secretion of these species of the medicinal leech was quantitatively evaluated in comparison with egg lysozyme. It is suggested that lysozyme activity of the leech secretions is determined not only by 5 isoforms of destabilase-lysozyme, but by some other enzymes which can utilize these substrates including lysozymes other than i-type (invertebrate) lysozymes.  相似文献   

18.
Studies on a trace cell lytic activity associated with alpha-lactalbumin   总被引:4,自引:0,他引:4  
alpha-Lactalbumin (alpha-LA) has been examined with a new and sensitive method for determination of lysozyme activity. Samples of bovine, human, equine, and rat alpha-LA exhibited cell lytic activity, from 2 X 10(-6) to 45 X 10(-6) of the specific activity of hen eggwhite lysozyme. The activity was chromatographically inseparable from bovine and human alpha-LA. Bovine serum albumin and purified beta-lactoglobulin were inactive. The pH profiles and reaction kinetics of bovine and human alpha-LA showed differences from those of the corresponding milk lysozymes, indicating that their lytic activities were not likely to have resulted from trace lysozyme content. Thus, it appears that a weak cell lytic activity is inherent to alpha-LA.  相似文献   

19.
Lysozyme was induced by dexamethasone during normal differentiation of cultured mouse myeloid leukemia cells (M1) to macrophages and granulocytes. A large amount of lysozyme was produced by macrophage-like line cells (Mm-1), established from spontaneously differentiated macrophage-like cells from a clonal line of M1 cells. Lysozyme purified from the culture medium of these Mm-1 cells (Mm-1 lysozyme) had a molecular weight of 15,000, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and showed maximal activity at pH 6.6 with an optimal NaCl concentration of 0.04 M. Its mobility on polyacrylamide gel electrophoresis at pH 4.5 was distinctly lower than those of lysozymes from hen egg white and human urine. Rabbit anti-Mm-1 lysozyme serum inhibited the activities of lysozyme preparations from peritoneal macrophages of normal mice and rats and dexamethasone-induced differentiated M1 cells, but not those of preparations from hen egg white and human urine. Lysozyme was also purified from normal mouse lung, which is rich in alveolar macrophages and was found to be similar to lysozyme purified from the culture medium of Mm-1 cells in size and electrophoretic mobility and in its pH optimum, trypsin peptide map, and antigenicity. Thus the molecular structure of the lysozyme induced in differentiated mouse myeloid leukemia cells is similar to that of lysozyme produced by normal cells.  相似文献   

20.
Trp108 of chicken lysozyme is in van der Waals contact with Glu35, one of two catalytic carboxyl groups. The role of Trp108 in lysozyme function and stability was investigated by using mutant lysozymes secreted from yeast. By the replacement of Trp108 with less hydrophobic residues, Tyr (W108Y lysozyme) and Gln (W108Q lysozyme), the activity, saccharide binding ability, stability, and pKa of Glu35 were all decreased with a decrease in the hydrophobicity of residue 108. Namely, at pH 5.5 and 40 degrees C, the activities of W108Y and W108Q lysozymes against glycol chitin were 17.3 and 1.6% of that of wild-type lysozyme, and their dissociation constants for the binding of a trimer of N-acetyl-D-glucosamine were 7.4 and 309 times larger than that of wild-type lysozyme, respectively. For the reversible unfolding at pH 3.5 and 30 degrees C, W108Y and W108Q lysozymes were less stable than wild-type lysozyme by 1.4 and 3.6 kcal/mol, respectively. As for the pKa of Glu35, the values for W108Y and W108Q lysozymes were found to be lower than that for wild-type lysozyme by 0.2 and by 0.6 pKa unit, respectively. The pKa of Glu35 in lysozyme was also decreased from 6.1 to 5.4 by the presence of 1-3 M guanidine hydrochloride, or to 5.5 by the substitution of Asn for Asp52, another catalytic carboxyl group. Thus, both the hydrophobicity of Trp108 and the electrostatic interaction with Asp52 are equally responsible for the abnormally high pKa (6.1) of Glu35, compared with that (4.4) of a normal glutamic acid residue.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号