首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Wu J  Lin Q  Lim TK  Liu T  Hew CL 《Journal of virology》2007,81(21):11681-11689
Shrimp subcuticular epithelial cells are the initial and major targets of white spot syndrome virus (WSSV) infection. Proteomic studies of WSSV-infected subcuticular epithelium of Penaeus monodon were performed through two approaches, namely, subcellular fractionation coupled with shotgun proteomics to identify viral and host proteins and a quantitative time course proteomic analysis using cleavable isotope-coded affinity tags (cICATs) to identify differentially expressed cellular proteins. Peptides were analyzed by offline coupling of two-dimensional liquid chromatography with matrix-assisted laser desorption ionization-tandem time of flight mass spectrometry. We identified 27, 20, and 4 WSSV proteins from cytosolic, nuclear, and membrane fractions, respectively. Twenty-eight unique WSSV proteins with high confidence (total ion confidence interval percentage [CI%], >95%) were observed, 11 of which are reported here for the first time, and 3 of these novel proteins were shown to be viral nonstructural proteins by Western blotting analysis. A first shrimp protein data set containing 1,999 peptides (ion score, > or =20) and 429 proteins (total ion score CI%, >95%) was constructed via shotgun proteomics. We also identified 10 down-regulated proteins and 2 up-regulated proteins from the shrimp epithelial lysate via cICAT analysis. This is the first comprehensive study of WSSV-infected epithelia by proteomics. The 11 novel viral proteins represent the latest addition to our knowledge of the WSSV proteome. Three proteomic data sets consisting of WSSV proteins, epithelial cellular proteins, and differentially expressed cellular proteins generated in the course of WSSV infection provide a new resource for further study of WSSV-shrimp interactions.  相似文献   

2.
Two-dimensional electrophoresis (2-DE) and shotgun peptide sequencing are the two major technologies to compare the expression profile of proteins, which is also referred to as comparative proteomics or quantitative proteomics. Although the methodologies, such as difference gel electrophoresis for 2-DE and isotope-coded affinity tags for shotgun peptide sequencing, have made rapid progress, these two approaches have their own strengths and weaknesses. Therefore, the combination of the two methodologies is beneficial for the purpose of better comparative proteomics, especially in comprehensive coverage of the proteome and protein information such as post-translational modifications.  相似文献   

3.
A gene fusion approach to simplify protein immobilization and purification is described. A gene encoding the protein of interest is fused to a gene fragment encoding the affinity peptide Ala-His-Gly-His-Arg-Pro. The expressed fusion proteins can be purified using immobilized metal affinity chromatography. A vector, designed to ensure obligate head-to-tail polymerization of oligonucleotide linkers was constructed by in vitro mutagenesis. A linker encoding the affinity peptide, was synthesized and polymerized to two, four and eight copies. These linkers were fused to the 3' end of a structural gene encoding a two-domain protein A molecule, ZZ, and to the 5' end of a gene encoding beta-galactosidase. Fusion proteins, of both types, with zero or two copies of the linker showed little or no binding to immobilized Zn2+, while a relatively strong interaction could be observed for the fusions based on four or eight copies of the linker. Using a pH gradient, the ZZ fusions were found to be eluted from the resin at different pHs depending on the number of the affinity peptide. These results demonstrate that genetic engineering can be used to facilitate purification and immobilization of proteins to immobilized Zn2+ and that the multiplicity of the affinity peptide is an important factor determining the binding characteristics.  相似文献   

4.
5.
In this report, we describe the construction and analysis of a cell-free protein synthesis system immobilized in calcium alginate microbeads. When incubated in a feeding solution that contained amino acids and other low-molecular-weight substrates, the microbeads transcribed and translated coimmobilized DNA into functional proteins. Protein synthesis continued for more than 15 h with the diffusional supply of substrates and removal of by-products. In addition, functional proteins were generated from PCR-amplified genes as efficiently as from plasmid, suggesting that these cell-like microbeads could be used for functional screening of genomic libraries.  相似文献   

6.
This study proved a possibility of a peptide probe for evaluating affinity properties of proteins. We have designed and synthesized three different peptide probes, H-Ala3-(Gly-Pro5)3-Gly-OH (peptide A), H-Ala3-(Gly-Pro5)-Gly-OH (peptide B) and H-Ala3-Gly-OH (peptide C) for testing their affinities to profilin. Each peptide probe was immobilized on a quartz crystal microbalance (QCM) sensor. The QCM sensor with the peptide A showed a 93 Hz decrease of resonant frequency which indicated profilin bound to the QCM sensor in a single layer. In a successive reaction with actin, the QCM analysis resulted in a 123 Hz decrease of resonant frequency which showed actin bound to the QCM sensor. A fluorescence microscope image of the sensor surface exhibited clear fluorescence after binding a rhodamine labeled actin on the sensor surface. These results supported stepwise reactions of profilin binding to the peptide A and actin binding to profilin. In the three peptide probes, the peptide A showed the highest affinity to profilin, i.e., sequence dependent affinity was confirmed.  相似文献   

7.
8.
Many elution buffers are in use for the retrieval of proteins from affinity columns. While the aim of these buffers is to dissociate the various chemical bonds that make up protein-protein interactions and return the target protein to the mobile phase in active form, there is considerable difference of opinion as to which buffer is more suitable for particular applications. This review examines the chemical effect of various elution buffers on protein-protein interactions in the context of affinity chromatography and examines strategies that may be used for selection of an appropriate buffer.  相似文献   

9.
Recognition of membrane proteins by the Nedd4/Rsp5 ubiquitin ligase family is a critical step in their targeting to the multivesicular body pathway. Some substrates contain "PY" motifs (PPxY), which bind to WW domains in the ligase. Others lack PY motifs and instead rely on adaptors that recruit the ligase to them. To investigate the mechanism of adaptor-mediated ubiquitination, we have characterized the interactions between the adaptor Bsd2, the ubiquitin ligase Rsp5, and the membrane proteins Cps1, Tre1, and Smf1 from Saccharomyces cerevisiae. We have reconstituted adaptor-mediated modification of Cps1 and Tre1 in vitro, and we show that two PY motifs in Bsd2 and two WW domains (WW2 and WW3) in Rsp5 are crucial for this. The binding of a weak noncanonical DMAPSY motif in Bsd2 to WW3 is an absolute requirement for Bsd2 adaptor function. We show that sorting of the manganese transporter Smf1, which requires both Bsd2 and Tre1, depends upon two PY motifs in Bsd2 and one motif in Tre1 but only two WW domains in Rsp5. We suggest that sequential assembly of first a Bsd2/Rsp5 complex, then a Tre1/Bsd2/Rsp5 complex followed by a rearrangement of PY-WW interactions is required for the ubiquitination of Smf1.  相似文献   

10.
Cryptococcus neoformans causes a life-threatening meningoencephalitis in a significant percentage of AIDS patients. Mice immunized with a glycoconjugate vaccine composed of the glucuronoxylomannan (GXM) component of the cryptococcal capsular polysaccharide conjugated to tetanus toxoid (TT) produce Abs that, based on the epitope recognized, can be either protective or nonprotective. Since nonprotective Abs block the efficacy of protective Abs, we are interested in developing a vaccine that would focus the immune response specifically to protective epitopes. Previously, we screened a phage display library with 2H1, a protective anti-GXM mAb, and isolated PA1, a representative peptide that had a K(d) of 295 nM for 2H1. Mice immunized with PA1 conjugated to keyhole limpet hemocyanin developed high anti-peptide (1/13,000), but low anti-GXM (maximum, 1/200) titers. We now report our efforts to improve this vaccine by screening a sublibrary with six random amino acids added to either end of the PA1 motif to identify higher affinity peptides. P206.1, a peptide isolated from this sublibrary, had 80-fold higher affinity for 2H1 (K(d) = 3.7 nM) than PA1. P206.1 bound protective, but not nonprotective, anti-GXM Abs. Mice immunized with P206.1 conjugated to various carriers did not mount an Ab response to GXM despite developing high anti-peptide titers. However, mice primed with GXM-TT and boosted with P206.1-TT developed significant anti-GXM titers (maximum, 1/180,000). This latter immunization scheme focused the immune response on protective epitopes, since only 2-5% of these titers were directed against nonprotective de-O-acetylated GXM epitopes compared with 20-60% in animals primed and boosted with GXM-TT.  相似文献   

11.
New technologies are needed that can diagnose cancer more rapidly and accurately. These technologies must also have the ability to identify the particular cellular abnormalities contributing to the malignancy, thus directing the appropriate treatments. Such technologies should permit absolute quantitation of specific tumor biomarkers and their level of posttranslational modifications. Quantitative molecular profiling of cancer signaling networks would provide a more detailed understanding of the contribution of protein expression and posttranslational modification levels to tumorigenesis. We have developed a unique approach for absolute quantitation of protein expression that integrates affinity capture of proteolytic peptides with mass spectrometry and thus provides detection, identification, and quantitation of their cognate proteins. We have previously shown the high sensitivity and specificity of this approach. Here we demonstrate the absolute quantitation of a model peptide using our technology. We have used this approach to capture epitope-containing peptides from proteolytically digested target proteins, including p53, epidermal growth factor receptor (EGFR), and prostate-specific antigen (PSA). Our technology can easily be extended to the absolute quantitation of protein modification levels, in addition to the determination of protein expression levels, and can be readily adapted for use in a microarray format. This method offers an improved approach to protein chip technology that should prove useful for clinical diagnosis and drug development applications.  相似文献   

12.
In the past few years, the field of metagenomics has been growing at an accelerated pace, particularly in response to advancements in new sequencing technologies. The large volume of sequence data from novel organisms generated by metagenomic projects has triggered the development of specialized databases and tools focused on particular groups of organisms or data types. Here we describe a pipeline for the functional annotation of viral metagenomic sequence data. The Viral MetaGenome Annotation Pipeline (VMGAP) pipeline takes advantage of a number of specialized databases, such as collections of mobile genetic elements and environmental metagenomes to improve the classification and functional prediction of viral gene products. The pipeline assigns a functional term to each predicted protein sequence following a suite of comprehensive analyses whose results are ranked according to a priority rules hierarchy. Additional annotation is provided in the form of enzyme commission (EC) numbers, GO/MeGO terms and Hidden Markov Models together with supporting evidence.  相似文献   

13.
核糖体展示及体外分子选择与进化   总被引:4,自引:0,他引:4  
核糖体展示是20世纪90年代中期发展起来的一种简便而有效的体外分子选择与进化技术。它也是第一种完全在体外进行蛋白质或多肽分子选择与进化的方法。本主要概述了体外核糖体展示技术的建立基础、基本原理和技术特点等,并跟踪了目前该领域的最新研究进展和发展前景。  相似文献   

14.
A ribosome display from a diverse random library was applied for selecting peptide aptamers with high binding affinity to single-wall carbon nanotubes (SWCNTs). The selected peptide aptamer bound to and solubilized SWCNTs more strongly than did the peptide aptamer selected by a phage display method reported previously, and more strongly than other commonly used organic surfactants. The fluorescence spectrum of this aptamer showed a red shift upon interaction with SWCNTs but circular dichroism spectroscopy did not show any significant difference between the presence or absence of SWCNT binding.  相似文献   

15.
Phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) synthesis is required for calcium-dependent exocytosis in neurosecretory cells. We developed a PtdIns(4,5)P2 bead pulldown strategy combined with subcellular fractionation to identify endogenous chromaffin granule proteins that interact with PtdIns(4,5)P2. We identified two synaptotagmin isoforms, synaptotagmins 1 and 7; spectrin; alpha-adaptin; and synaptotagmin-like protein 4 (granuphilin) by mass spectrometry and Western blotting. The interaction between synaptotagmin 7 and PtdIns(4,5)P2 and its functional relevance was investigated. The 45-kDa isoform of synaptotagmin 7 was found to be highly expressed in adrenal chromaffin cells compared with PC12 cells and to mainly localize to secretory granules by subcellular fractionation, immunoisolation, and immunocytochemistry. We demonstrated that synaptotagmin 7 binds PtdIns(4,5)P2 via the C2B domain in the absence of calcium and via both the C2A and C2B domains in the presence of calcium. We mutated the polylysine stretch in synaptotagmin 7 C2B and demonstrated that this mutant domain lacks the calcium-independent PtdIns(4,5)P2 binding. Synaptotagmin 7 C2B domain inhibited catecholamine release from digitonin-permeabilized chromaffin cells, and this inhibition was abrogated with the C2B polylysine mutant. These data indicate that synaptotagmin 7 C2B-effector interactions, which occur via the polylysine stretch, including calcium-independent PtdIns(4,5)P2 binding, are important for chromaffin granule exocytosis.  相似文献   

16.
Eye lens alpha-crystallin is a member of the small heat shock protein (sHSP) family and forms large multimeric structures. Earlier studies have shown that it can act like a molecular chaperone and form a stable complex with partially unfolded proteins. We have observed that prior binding of the hydrophobic protein melittin to alpha-crystallin diminishes its chaperone-like activity toward denaturing alcohol dehydrogenase, suggesting the presence of mutually exclusive sites for these proteins in alpha-crystallin. To investigate the mechanism of the interaction between alpha-crystallin and substrate proteins, we determined the melittin-binding sites in alpha-crystallin by cross-linking studies. Localization of melittin-binding sites in alpha-crystallin resulted in the identification of RTLGPFYPSR and FVIFLDVKHFSPEDLTVK of alphaA-crystallin and FSVNLDVK of alphaB-crystallin as the chaperone sites. Of these sites, FVIFLDVKHFSPEDLTVK and FSVNLDVK were identified earlier as 1,1'-bi(4-anilino) naphthalene-5,5'-disulfonic acid (bis-ANS)-binding hydrophobic sites. Here we also report the synthesis and characterization of the peptide, KFVIFLDVKHFSPEDLTVK, having the melittin as well as bis-ANS-binding sequence of alphaA-crystallin. We show that this peptide has characteristics similar to that of alphaA-crystallin by in vitro thermal aggregation assay, gel filtration study, CD spectroscopy, and bis-ANS interaction studies. The peptide sequence corresponds to the beta3 and beta4 region present in the alpha-crystallin domain of sHSP 16.5. We hypothesize that the alpha-crystallin domain in other sHSPs may have a similar function and would likely possess the anti-aggregation property even when separated from the native protein.  相似文献   

17.
Spinach ferredoxin-NADP+ oxidoreductase was inactivated by treatment with 2',3'-dialdehyde NADP+ (periodate-oxidized NADP+), which selectively modifies a lysine residue at the nucleotide-binding domain of the enzyme. The identity of the derivatized residue was ascertained by thin-layer chromatography of the protein hydrolysate. Reductase that had been labeled with periodate-oxidized NADP+ and NaB3H4 was treated with trypsin, and samples of the tryptic digest were subjected to reverse-phase high-performance liquid chromatography. The radioactivity profiles showed modification of one specific peptide. The primary structure of this peptide was found to be Gly-Glu-Lys*-Met-Tyr-Ile-Gln-Thr-Arg, where Lys* represents the derivatized lysine. The sequence obtained corresponds to residues 242-250 in the primary structure of spinach ferredoxin-NADP+ reductase recently reported [Karplus et al. (1984) Biochemistry 23, 6576-6583].  相似文献   

18.
Shotgun tandem mass spectrometry-based peptide sequencing using programs such as SEQUEST allows high-throughput identification of peptides, which in turn allows the identification of corresponding proteins. We have applied a machine learning algorithm, called the support vector machine, to discriminate between correctly and incorrectly identified peptides using SEQUEST output. Each peptide was characterized by SEQUEST-calculated features such as delta Cn and Xcorr, measurements such as precursor ion current and mass, and additional calculated parameters such as the fraction of matched MS/MS peaks. The trained SVM classifier performed significantly better than previous cutoff-based methods at separating positive from negative peptides. Positive and negative peptides were more readily distinguished in training set data acquired on a QTOF, compared to an ion trap mass spectrometer. The use of 13 features, including four new parameters, significantly improved the separation between positive and negative peptides. Use of the support vector machine and these additional parameters resulted in a more accurate interpretation of peptide MS/MS spectra and is an important step toward automated interpretation of peptide tandem mass spectrometry data in proteomics.  相似文献   

19.
Conditions for recovery of small amounts of proteins (1-50 micrograms) from disulfide crosslinked polyacrylamide gels have been examined. Procedures were developed for solubilization and precipitation of Coomassie blue-stained protein bands excised from gels after electrophoretic separations. The precipitated protein was then resolubilized for use in peptide mapping, amino acid analyses, or microsequencing. The amino acid compositions of standard proteins (bovine albumin, ovalbumin, phosphorylase b, and beta-galactosidase) isolated by this method were in good agreement with the values for the corresponding conventionally purified proteins. Sequencing was done with high repetitive yield on samples of 100 pmol or below. The method has been successfully applied to several proteins and protein fragments.  相似文献   

20.
A detailed knowledge of a protein's functional site is an absolute prerequisite for understanding its mode of action at the molecular level. However, the rapid pace at which sequence and structural information is being accumulated for proteins greatly exceeds our ability to determine their biochemical roles experimentally. As a result, computational methods are required which allow for the efficient processing of the evolutionary information contained in this wealth of data, in particular that related to the nature and location of functionally important sites and residues. The method presented here, referred to as conserved functional group (CFG) analysis, relies on a simplified representation of the chemical groups found in amino acid side-chains to identify functional sites from a single protein structure and a number of its sequence homologues. We show that CFG analysis can fully or partially predict the location of functional sites in approximately 96% of the 470 cases tested and that, unlike other methods available, it is able to tolerate wide variations in sequence identity. In addition, we discuss its potential in a structural genomics context, where automation, scalability and efficiency are critical, and an increasing number of protein structures are determined with no prior knowledge of function. This is exemplified by our analysis of the hypothetical protein Ydde_Ecoli, whose structure was recently solved by members of the North East Structural Genomics consortium. Although the proposed active site for this protein needs to be validated experimentally, this example illustrates the scope of CFG analysis as a general tool for the identification of residues likely to play an important role in a protein's biochemical function. Thus, our method offers a convenient solution to rapidly and automatically process the vast amounts of data that are beginning to emerge from structural genomics projects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号