共查询到20条相似文献,搜索用时 15 毫秒
1.
The adult brain was thought to be a slowly decaying organ, a sophisticated but flawed machine condemned to inevitable decline. Today we know that the brain is more plastic than previously assumed, as most prominently demonstrated by the constitutive birth of new neurons that occurs in selected regions of the adult brain, even in humans. However, the overall modest capacity for endogenous repair of the central nervous system (CNS) has sparked interest in understanding the barriers to neuronal regeneration and in developing novel approaches to enable neuronal and circuit repair for therapeutic benefit in neurodegenerative disorders and traumatic injuries. Scientists recently assembled in Baeza, a picturesque town in the south of Spain, to discuss aspects of CNS regeneration. The picture that emerged shows how an integrated view of developmental and adult neurogenesis may inform the manipulation of neural progenitors, differentiated cells, and pluripotent stem cells for therapeutic benefit and foster new understanding of the inner limits of brain plasticity. 相似文献
2.
Embryonic stem cells: a promising tool for cell replacement therapy 总被引:20,自引:0,他引:20
Doss MX Koehler CI Gissel C Hescheler J Sachinidis A 《Journal of cellular and molecular medicine》2004,8(4):465-473
Embryonic stem (ES) cells are revolutionizing the field of developmental biology as a potential tool to understand the molecular mechanisms occurring during the process of differentiation from the embryonic stage to the adult phenotype. ES cells harvested from the inner cell mass (ICM) of the early embryo can proliferate indefinitely in vitro while retaining the ability to differentiate into all somatic cells. Emerging results from mice models with ES cells are promising and raising tremendous hope among the scientific community for the ES-cell based cell replacement therapy (CRT) of various severe diseases. ES cells could potentially revolutionize medicine by providing an unlimited renewable source of cells capable of replacing or repairing tissues that have been damaged in almost all degenerative diseases such as diabetes, myocardial infarction and Parkinson's disease. This review updates the progress of ES cell research in CRT, discusses about the problems encountered in the practical utility of ES cells in CRT and evaluates how far this approach is successful experimentally. 相似文献
3.
Success in the derivation of human embryonic stem cell (hESC) lines has opened up a new area of research in biomedicine. Human ESC not only raise hope for cell replacement therapies but also provide a potential novel system to better understand early human normal development, model human abnormal development and disease, and perform drug-screening and toxicity studies. The realization of these potentials, however, depends on expanding our knowledge about the cellular and molecular mechanisms that regulate self-renewal and lineage specification. Here, we briefly highlight the potential applications of hESC and review how flow cytometry has contributed to the initial characterization of both undifferentiated hESC cultures and hematopoietic development arising from hESC. We envision that a combination of state-of-the-art technologies, including cytomics, proteomics and genomics, will be instrumental in moving the field forward, ultimately lending invaluable knowledge to research areas such as human embryology, oncology and immunology. 相似文献
4.
How and when do vertebrate neural precursor cells choose their fates? While some studies suggest a series of commitments on the road to fate choice, many recent experiments indicate that precursor fate choices can often be changed. Additionally, the identification of common gene control mechanisms in precursors suggest that these cells share fundamental properties throughout development. 相似文献
5.
Ernest Arenas 《Biochemical and biophysical research communications》2010,396(1):152-156
Current therapeutic approaches for Parkinson’s disease (PD) provide symptomatic relief but none of them change the course of disease. There is therefore a clear need for regenerative and cell replacement therapies (CRT). However, CRT faces several important challenges. First, the main symptoms of PD result from the loss of midbrain dopamine (DA) neurons, but other cell types are also affected. Second, transplantation of human ventral midbrain tissue from aborted fetuses has lead to proof of principle that CRT may work, however, it has also pointed out to important patient-, surgery- and cell preparation-related variables, which need to be improved. Third, while some patients have developed dyskinesias and, with time, Lewy bodies in the grafted cells, other patients have experienced remarkable improvement and have been able to stop their medication. Is there a case for PD CRT today? What is the possible contribution of stem cells to CRT? In this review, I will discuss what we learned from clinical trials using fetal tissue grafts, recent progress in the development of human stem cell-derived-DA neurons for CRT, and some of the issues that need to be solved in order to develop stem cells as tools for PD CRT. 相似文献
6.
7.
Embryonic stem cells 总被引:3,自引:0,他引:3
Embryonic stem cells have huge potential in the field of tissue engineering and regenerative medicine as they hold the capacity to produce every type of cell and tissue in the body. In theory, the treatment of human disease could be revolutionized by the ability to generate any cell, tissue, or even organ, 'on demand' in the laboratory. This work reviews the history of murine and human ES cell lines, including practical and ethical aspects of ES cell isolation from pre-implantation embryos, maintenance of undifferentiated ES cell lines in the cell culture environment, and differentiation of ES cells in vitro and in vivo into mature somatic cell types. Finally, we discuss advances towards the clinical application of ES cell technology, and some of the obstacles which must be overcome before large scale clinical trials can be considered. 相似文献
8.
Johansson CB 《Journal of cellular physiology》2003,196(3):409-418
Injury to the central nervous system (CNS) can result in severe functional impairment. The brain and spinal cord, which constitute the CNS, have been viewed for decades as having a very limited capacity for regeneration. However, over the last several years, the body of evidence supporting the concept of regeneration and continuous renewal of neurons in specific regions of the CNS has increased. This evidence has significantly altered our perception of the CNS and has offered new hope for possible cell therapy strategies to repair lost function. Transplantation of stem cells or the recruitment of endogenous stem cells to repair specific regions of the brain or spinal cord is the next exciting research challenge. However, our understanding of the existing stem cell pool in the adult CNS remains limited. This review will discuss the identification and characterization of CNS stem cells in the adult brain and spinal cord. 相似文献
9.
Cancer stem cells in the mammalian central nervous system 总被引:1,自引:0,他引:1
Pilkington GJ 《Cell proliferation》2005,38(6):423-433
Malignant tumours intrinsic to the central nervous system (CNS) are among the most difficult of neoplasms to treat effectively. The major biological features of these tumours that preclude successful therapy include their cellular heterogeneity, which renders them highly resistant to both chemotherapy and radiotherapy, and the propensity of the component tumour cells to invade, diffusely, the contiguous nervous tissues. The tumours are classified according to perceived cell of origin, gliomas being the most common generic group. In the 1970s transplacental administration of the potent neurocarcinogen, N-ethyl-N-nitrosourea (ENU), enabled investigation of the sequential development of brain and spinal neoplasms by electron microscopy and immunohistochemistry. The significance of the primitive cells of the subependymal plate in cellular origin and evolution of a variety of glial tumours was thereby established. Since then, the development of new cell culture methods, including the in vitro growth of neurospheres and multicellular tumour spheroids, and new antigenic markers of stem cells and glial/neuronal cell precursor cells, including nestin, Mushashi-1 and CD133, have led to a reappraisal of the histological classification and origins of CNS tumours. Moreover, neural stem cells may also provide new vectors in exciting novel therapeutic strategies for these tumours. In addition to the gliomas, stem cells may have been identified in paediatric tumours including cerebellar medulloblastoma, thought to be of external granule cell neuronal derivation. Interestingly, while the stem cell marker CD133 is expressed in these primitive neuroectodermal tumours (PNETs), the chondroitin sulphate proteoglycan neuronal/glial 2 (NG2), which appears to denote increased proliferative, but reduced migratory activity in adult gliomas, is rarely expressed. This is in contrast to the situation in the histologically similar supratentorial PNETs. A possible functional 'switch' between proliferation and migration in developing neural tumour cells may exist between NG2 and ganglioside GD3. The divergent pathways of differentiation of CNS tumours and the possibility of stem cell origin, for some, if not all, such neoplasms remain a matter for debate and continued research, but the presence of self-renewing neural stem cells in the CNS of both children and adults strongly suggests a role for these cells in tumour initiation and resistance to current therapeutic strategies. 相似文献
10.
David A. Weisblat Georgia Harper Gunther S. Stent Roy T. Sawyer 《Developmental biology》1980,76(1):58-78
The lines of descent of cells of the nervous system of the leech Helobdella triserialis have been ascertained by injection of horseradish peroxidase (HRP) as a tracer into identified cells of early embryos. Such experiments show that the nervous system of the leech has several discrete embryological origins. Some of the neurons on one side of each of the segmental ganglia derive from a single cell, the ipsilateral N ectoteloblast. Other neurons derive from a different precursor cell, the ipsilateral OPQ cell that gives rise to the O, P, and Q ectoteloblasts. The positions within the ganglion of neuronal populations derived from each of these sources are relatively invariant from segment to segment and from specimen to specimen. Other nerve cord cells derive from the mesoteloblast M; of these four per segment appear to be the precursors of the muscle cells of the connective. The A, B, or C macromeres contribute cells to the supraesophageal ganglion. In preparations in which an N ectoteloblast was injected with HRP after production of its bandlet of n stem cells had begun, the boundary between unstained (rostral) and stained (caudal) tissues can fall within a ganglion or between ganglia. This suggests that each hemiganglion contains the descendants of more than one, and probably two, n stem cells. 相似文献
11.
鱼类的胚胎干细胞 总被引:6,自引:1,他引:6
胚胎干细胞(ES)是未分化的细胞培养物,来自动物的早期胚胎。它们能成为稳定的细胞系和长期冻存。在适当的条件下,ES细胞能分化成各种细胞类型,包括生殖细胞。这样,ES细胞就提供了一个有效的纽带,将动物基因组的体外和体内遗传操作连系起来。ES细胞的魅力就由其在产生和分析基因敲除老鼠中显现出来。目前,ES细胞技术仅见之老鼠,因其它脊椎动物的ES细胞的培养和建系难获成功。在鱼类,人们已做了大量的尝试。我们以青鳉(Oryzias latipes)作为建立鱼类ES细胞技术的模式,通过建立并应用无滋养层细胞的培养条件,获得了来自中期囊胚的ES细胞系。青鳉的ES细胞和老鼠的ES细胞有很多共同特征,如二倍体核型、分化潜力和形成嵌合体。因此,在鱼类建立和应用ES细胞技术是可能的。青鳉ES细胞的培养条件已成功地应用到其它鱼类如斑马鱼甚至海水鱼。本文旨在以青鳉为模式,综述获得和应用模式鱼和经济鱼ES细胞的主要进展和前景。 相似文献
12.
13.
Embryonic potential and stem cells 总被引:1,自引:0,他引:1
Agar N 《Bioethics》2007,21(4):198-207
This paper examines three arguments that use the concept of potential to identify embryos that are morally suitable for embryonic stem cell research (ESCR). According to the first argument, due to Ronald Green, the fact that they are scheduled for disposal makes embryos left over from IVF treatments morally appropriate for research. Paul McHugh argues that embryos created by somatic cell nuclear transfer differ from those that result directly from the meeting of sperm and egg in having potential especially conducive to the therapeutic use of their stem cells. I reject both of these arguments. According to the way of making distinctions in embryonic potential that I defend, it is the absence of a functional relationship with a womb that marks embryos morally suitable for ESCR. 相似文献
14.
15.
Martina Zizkova Rita Sucha Jirina Tyleckova Karla Jarkovska Katerina Mairychova Eva Kotrcova 《Expert review of proteomics》2015,12(1):83-95
Neurodegenerative diseases are devastating disorders and the demands on their treatment are set to rise in connection with higher disease incidence. Knowledge of the spatiotemporal profile of cellular protein expression during neural differentiation and definition of a set of markers highly specific for targeted neural populations is a key challenge. Intracellular proteins may be utilized as a readout for follow-up transplantation and cell surface proteins may facilitate isolation of the cell subpopulations, while secreted proteins could help unravel intercellular communication and immunomodulation. This review summarizes the potential of proteomics in revealing molecular mechanisms underlying neural differentiation of stem cells and presents novel candidate proteins of neural subpopulations, where understanding of their functionality may accelerate transition to cell replacement therapies. 相似文献
16.
17.
The process of cortical expansion in the central nervous system is a key step of mammalian brain development to ensure its physiological function. Radial glial (RG) cells are a glial cell type contributing to this progress as intermediate neural progenitor cells responsible for an increase in the number of cortical neurons. In this review, we discuss the current understanding of RG cells during neurogenesis and provide further information on the mechanisms of neurodevelopmental diseases and stem cell-related brain tumorigenesis. Knowledge of neuronal stem cell and relative diseases will bridge benchmark research through translational studies to clinical therapeutic treatments of these diseases. 相似文献
18.
Embryonic stem cells and retinal repair 总被引:1,自引:0,他引:1
Vugler A Lawrence J Walsh J Carr A Gias C Semo M Ahmado A da Cruz L Andrews P Coffey P 《Mechanisms of development》2007,124(11-12):807-829
In this review we examine the potential of embryonic stem cells (ESCs) for use in the treatment of retinal diseases involving photoreceptors and retinal pigment epithelium (RPE). We outline the ontogenesis of target retinal cell types (RPE, rods and cones) and discuss how an understanding of developmental processes can inform our manipulation of ESCs in vitro. Due to their potential for cellular therapy, special emphasis is placed upon the derivation and culture of human embryonic stem cells (HESCs) and their differentiation towards a retinal phenotype. In terms of achieving this goal, we suggest that much of the success to date reflects permissive in vitro environments provided by established protocols for HESC derivation, propagation and neural differentiation. In addition, we summarise key factors that may be important for enhancing efficiency of retinal cell-type derivation from HESCs. The retina is an amenable component of the central nervous system (CNS) and as such, diseases of this structure provide a realistic target for the application of HESC-derived cellular therapy to the CNS. In order to further this goal, the second component of our review focuses on the cellular and molecular cues within retinal environments that may influence the survival and behaviour of transplanted cells. Our analysis considers both the potential barriers to transplant integration in the retina itself together with the remodelling in host visual centres that is known to accompany retinal dystrophy. 相似文献
19.
20.
Embryonic stem cells assume a primitive neural stem cell fate in the absence of extrinsic influences 总被引:5,自引:0,他引:5 下载免费PDF全文
The mechanisms governing the emergence of the earliest mammalian neural cells during development remain incompletely characterized. A default mechanism has been suggested to underlie neural fate acquisition; however, an instructive process has also been proposed. We used mouse embryonic stem (ES) cells to explore the fundamental issue of how an uncommitted, pluripotent mammalian cell will self-organize in the absence of extrinsic signals and what cellular fate will result. To assess this default state, ES cells were placed in conditions that minimize external influences. Individual ES cells were found to rapidly transition directly into neural cells, a process shown to be independent of suggested instructive factors (e.g., fibroblast growth factors). Further, we provide evidence that the default neural identity is that of a primitive neural stem cell (NSC). The exiguous conditions used to reveal the default state were found to present primitive NSCs with a survival challenge (limiting their persistence and proliferation), which could be mitigated by survival factors or genetic interference with apoptosis. 相似文献