首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Serotonin N-acetyltransferase (arylalkylamine N-acetyl-transferase, AANAT) is an enzyme that catalyses the first rate limiting step in the biosynthesis of melatonin (5-methoxy-N-acetyltryptamine). Different physiopathological disorders in human may be due to abnormal secretion of melatonin leading to an inappropriate exposure of melatonin receptors to melatonin. For that reason, we have designed, synthesized and evaluated as inhibitors of human serotonin N-acetyltransferase, a series of compounds that were able to react with coenzyme A to give a bisubstrate analog inhibitor. Compound 12d was found to be a potent AANAT inhibitor (IC50 = 0.18 microM).  相似文献   

2.
Presence of basic calcium phosphate in knee joints of osteoarthritis patients could be prevented by inhibiting tissue non-specific alkaline phosphatase (TNAP) activity. Levamisole or the L stereoisomer of tetramisole (a known TNAP inhibitor) has been used as a treatment for curing rheumatoid arthritis but its therapeutical use is limited due to side effects. We report the synthesis and the TNAP inhibition property of benzo[b]thiophene derivatives, among which benzothiopheno-tetramisole and benzothiopheno-2,3-dehydrotetramisole, which could be involved in a drug therapy for osteoarthritis. Two water soluble racemic benzothiopheno-tetramisole and -2,3-dehydrotetramisole with apparent inhibition constants Ki = 85 ± 6 μM and 135 ± 3 μM (n = 3) comparable to that of enantiomeric levamisole 93 ± 4 μM were found. Several novel derivatives showed more pronounced inhibition properties towards intestinal alkaline phosphatase than TNAP.  相似文献   

3.
Serotonin N-acetyltransferase (arylalkylamine N-acetyltransferase, AANAT) is the penultimate enzyme in melatonin (5-methoxy-N-acetyltryptamine) biosynthesis. It is the key-enzyme responsible of the nocturnal rhythm of melatonin production in the pineal gland. Specific AANAT inhibitors could be useful for treatment of different physiopathological disorders encountered in diseases such as seasonal affective disorders or obesity. On the basis of previous works and 3D-QSAR studies carried out in our laboratory, we have synthesized and evaluated four novel benzo[b]thiophene derivatives designed as AANAT inhibitors. Compound 13 exhibited high inhibitory activity (IC50=1.4?μM) and low affinities for both MT1 (1100?nM) and MT2 (1400?nM) receptors.  相似文献   

4.
Neuropeptide Y is one of the most potent appetite stimulating hormones known. Novel thiophene and benzo[b]thiophene hydrazide derivatives were synthetized and evaluated biologically as NPY Y(1) and Y(5) receptor subtype antagonists. They were found to have nanomolar binding affinities for human NPY Y(5) receptor, obtaining the lead compound, trans-N-4-[N'-(thiophene-2-carbonyl)hydrazinocarbonyl]cyclohexylmethyl-4-bromobenzenesulfonamide, which binds with a 7.70 nM IC(50) to the hY(5) receptor.  相似文献   

5.
We have identified a new class of chymase inhibitor through a substituent analysis of MWP00965, which we previously discovered by in silico screening. TY-51076 (7) showed high potency (IC(50)=56 nM) and excellent selectivity for chymase compared to chymotrypsin and cathepsin G (>400-fold). The synthesis and structure-activity relationship of this class are described.  相似文献   

6.
A novel series of 3-pyrrolo[b]cyclohexylene-2-dihydroindolinone derivatives targeting VEGFR-2, PDGFR-β and c-Kit kinases were designed and synthesized. The molecular design was based on the SAR features of indolin-2-ones as kinase inhibitors. SAR study of the series allowed us to identify compounds possessing more potent inhibitory activities against the three kinases than sunitinb with IC50 values in the low nanomolar range in vitro. Additionally, some compounds also showed favorable antiproliferative activities against a panel of cancer cell lines (BXPC-3, T24, BGC, HEPG2 and HT29).  相似文献   

7.
A series of novel cyclic amine-substituted imidazo[4,5-c]pyridinecarboxamide analogs were designed and synthesized. All the target compounds were evaluated for their PARP inhibition activity, and the result indicated that most of the compounds possessed inhibitory effect on PARP at the concentration of 1 μM, among which compound 8d (IC50 = 0.528 μM) was selected for evaluating the antitumor effect in vivo. The result showed the antitumor efficacy of the compound 8d and cisplatin combination group in a mouse A549 model is similar with that of the ABT-888 and cisplatin combination group.  相似文献   

8.
Aiming to develop potent JAK inhibitors, two series of 4-(1H-pyrazol-4-yl)-7H-pyrrolo[2,3-d]pyrimidine derivatives (8a–8p and 11a–11i) were designed and synthesized by coalescing various N-acylpiperidine motifs with baricitinib. The pharmacological results based on enzymatic and cellular assays identified the optimized compound 11e, which exerted over 90% inhibition rates against JAK1 and JAK2, and displayed the most compelling anti-inflammatory efficacy superior to baricitinib by inhibiting NO generation from LPS-induced RAW264.7 macrophages. Importantly, low cytotoxity of 11e was revealed by the IC50 value of 88.2 μM against normal RAW264.7 cells. The binding mode of 11e with JAK1 and JAK2 identified the essential structural bases in accord with SARs analysis. Furthermore, cellular morphology observation and western blot analysis disclosed the ability of 11e to relieve cells inflammatory damage by significantly down-regulating LPS-induced high expression of JAK1, JAK2, as well as pro cytokine IL-1β. Together, 11e was verified as a promising lead for JAK inhibitors for the treatment of inflammatory diseases.  相似文献   

9.
An efficient four-component reaction of 6-amino-1,3-dimethyluracil, N,N-dimethylformamide dimethylacetal, 1-phenyl-3-(4-substituted-phenyl)-4-formyl-1H-pyrazoles and aromatic amines was conducted in the presence of [Bmim]FeCl4 ionic liquid as a promoting medium. This strategy provided a convenient route without any additional catalyst or metal salt under mild conditions. All the synthesized pyrazolo-pyrimido[4,5-d]pyrimidines derivatives were evaluated for their antibacterial, minimum bactericidal concentration (MBC), biofilm inhibition, intracellular ROS accumulation and protein leakage activities. The results revealed that among all the screened derivatives, the compounds 5c, 5i, 5l and 5m were quite promising with MIC values ranging between 3.9 and 15.6 μg/mL, while the MBC values were 2-fold the antibacterial activity values. The biofilm inhibition activity revealed that the compounds 5l and 5 m exhibited promising activity with IC50 values ranging between 1.8 and 8.2 μg/mL. It was observed that at a concentration of 0.5 μg/mL, the compound 5l treated biofilms of Micrococcus luteus showed increased levels of intracellular ROS accumulation. Further, the protein leakage study revealed that the Micrococcus luteus cells treated with compound 5l caused membrane permeability which resulted in protein leakage and subsequent bacterial cell death.  相似文献   

10.
Herein, we describe the discovery and synthesis of a new series of 1,2,4,7-tetra-substituted indole derivatives as novel AKT inhibitors by optimization of a weak hit methyl 4-(2-aminoethoxy)-1H-indole-2-carboxylate (1). Both representative compounds 6a and 6o exhibited the most potent inhibitory activities against AKT1, with inhibition rates of 72.5% and 78.6%, respectively, at concentrations of 10 nM. In addition, compounds 6a and 6o also potently inhibited the phosphorylation of the downstream GSK3 protein and displayed slightly better anti-proliferative activities in a prostate cancer cell line.  相似文献   

11.
A series of 3H-imidazo [4,5-b] pyridines derivatives were designed and synthesized as selective mTOR inhibitors. The systematic optimization of the molecules resulted in the identification of two compounds 10d and 10n with nanomolar mTOR inhibitory activity and selectivity over PI3Kα. Besides, compounds 10d and 10n demonstrated attractive potency against human breast cancer cells (MCF-7) and human ovarian cancer cell (A2780).  相似文献   

12.
In the present study, we have designed imidazo[2,1-b]thiazole and benzo[d]imidazo[2,1-b]thiazole derivatives from earlier reported imidazo[1,2-a]pyridine based Mycobacterium tuberculosis (MTB) pantothenate synthetase (PS) inhibitors. We synthesized thirty compounds and they were evaluated for MTB PS inhibition study, in vitro anti-TB activities against replicative and non-replicative MTB, in vivo activity using Mycobacterium marinum infected Zebra fish and cytotoxicity against RAW 264.7 cell line. Among them compound 2-methyl-N′-(4-phenoxybenzoyl)benzo[d]imidazo[2,1-b]thiazole-3-carbohydrazide (5bc) emerged as potent compound active against MTB PS with IC50 of 0.53 ± 0.13 μM, MIC of 3.53 μM, 2.1 log reduction against nutrient starved MTB, with 33% cytotoxicity at 50 μM. It also showed 1.5 log reduction of M. marinum load in Zebra fish at 10 mg/kg.  相似文献   

13.
A series of novel N-phenylsulfonylnicotinamide derivatives (1-24) have been synthesized and evaluated as potential EGFR tyrosine kinase (TK) inhibitors. Among all the compounds, compound 10 (5-bromo-N-(4-chlorophenylsulfonyl)nicotinamide) showed the most potent growth inhibitory activity against EGFR TK and antiproliferative activity of MCF-7 cancer cell line in vitro, with IC(50) value of 0.09 and 0.07 μM. Docking simulation was performed to insert compound 10 into the EGFR TK active site to determine the probable binding model. Based on the preliminary results, compound 10 with potent inhibitory activity to tumor growth may be a potential anticancer agent.  相似文献   

14.
A novel series of Hh signaling pathway inhibitors were designed by replacing the pyrimidine skeleton of our earlier reported lead compound 1 with pyrrolo[2,1-f][1,2,4]triazine scaffold. Starting from this new scaffold, SAR exploration was investigated based on structural modification on A-ring, C-ring and D-ring. And several much potent compounds were studies in vivo to profile their pharmacokinetic properties. Finally, optimization leads to the identification of compound 19a, a potent Hh signaling pathway inhibitor with superior potency in vitro and satisfactory pharmacokinetic properties in vivo.  相似文献   

15.
Recently, diverse kinase inhibitors were reported having interaction with BRD4. It provided a strategy for developing a new structural framework for the next-generation BRD4-selective inhibitors. Starting from PLK1 kinase inhibitor BI-2536, we designed 18 compounds by modifying dihydropteridine core. Compound 23 showed potent BRD4 inhibitory activities with IC50 of 79 nM and no inhibitory activities for PLK1. Cell antiproliferation assay was performed and potent inhibitory activity against MV4;11 with IC50 of 1.53 μM. Cell apoptosis and western blotting indicated compound 23 induced apoptosis by down-regulating c-Myc. These novel selective BRD4 inhibitors provided new lead compounds for further drug development.  相似文献   

16.
A novel series of HCV NS5B polymerase inhibitors comprising 1,1-dioxoisothiazoles and benzo[b]thiophene-1,1-dioxides were designed, synthesized, and evaluated. SAR studies guided by structure-based design led to the identification of a number of potent NS5B inhibitors with nanomolar IC50 values. The most potent compound exhibited IC50 less than 10 nM against the genotype 1b HCV polymerase and EC50 of 70 nM against a genotype 1b replicon in cell culture. The DMPK properties of selected compounds were also evaluated.  相似文献   

17.
Potent, subnanomolar thrombin inhibitors 4, 5, and 6 are developed through side chain optimization of novel, benzo[b]thiophene-based small organic entities 2 and 3 and through SAR additivity studies of the new structural elements identified. X-ray crystallographic studies of 4b-thrombin complex revealed a hydrophobic and an electrostatic interaction of these new elements with thrombin at the S2 and S3 binding sites. In vitro and in vivo pharmacological studies showed that 4, 5, and 6 are potent anticoagulants in human plasma with demonstrated antithrombotic efficacy in a rat model of thrombosis.  相似文献   

18.
A novel scaffold derived from l-SPD with a substituted thiophene group in the D ring were designed, synthesized, and evaluated for their binding affinities at dopamine (D1, D2 and D3) and serotonin (5-HT1A and 5-HT2A) receptors. Most of the tetracyclic compounds exhibited higher affinities for D2 and 5-HT1A receptors than l-SPD, while compound 23e showed the highest Ki value of 7.54 nM at D2 receptor which was 14 times more potent than l-SPD. Additionally, compounds 23d and 23e were more potent than l-SPD at D3 receptor. According to the functional assays, 23d and 23e were demonstrated as full antagonists at D1 and D2 receptors and full agonists at 5-HT1A receptor. Since the combination of D2 antagonism and 5-HT1A agonism is considered effective in treating both the positive and negative symptoms of schizophrenia, these novel compounds are implicated as potential therapeutic agents.  相似文献   

19.
A novel series of 2-(3,6-dimethyl-1-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4-yloxy)-N-(4-substitutedbenzylidene)acetohydrazide (12ag) was prepared and their structures were confirmed by spectral and elemental analyses. The cytotoxic activity of the newly synthesized compounds was evaluated against breast carcinoma (MCF-7), non-small cell lung cancer (A549) and human colorectal adenocarcinoma (HT-29) cell lines using MTT and colony formation assays. The tested compounds showed a marked anticancer activity against all the tested cell lines, especially compound 12g, which was the most potent anticancer agent with half maximal inhibitory concentrations (IC50) between 5.36 and 9.09 μM. Docking studies into ATP binding site of EGFR protein tyrosine kinase were performed to predict their scores and mode of binding to amino acids, In addition, the inhibitory activity of the target compounds against epidermal growth factor receptor tyrosine kinase (EGFR-TK) was evaluated. Results indicated the ability of the target compounds to inhibit EGFR-TK with half maximal inhibitory concentrations (IC50) in the range of 4.18–35.88 μM. Furthermore, The most active compounds 12g, 12c and 12d were assayed against Fibroblast Growth Factor Receptor (FGFR), Insulin Receptor (IR) and Vascular Endothelial Growth Factor Receptor (VEGFR). The activity of the reported compounds warrants further optimization as novel members in cancer treatment protocols.  相似文献   

20.
A series of 4-anilinothieno[2,3-d]pyrimidine-based hydroxamic acid derivatives as novel HDACs inhibitors were designed, synthesized and evaluated. Most of these compounds displayed good to excellent inhibitory activities against HDAC1, 3, 6. The IC50 values of compound 10r against HDAC1, HDAC3, HDAC6 was 1.14 ± 0.03 nM, 3.56 ± 0.08 nM, 11.43 ± 0.12 nM. Compound 10r noticeably up-regulated the level of histone H3 acetylation compared to the SAHA. Most of the compounds showed the strong anti-proliferative activity against human cancer cell lines including RMPI8226 and HCT-116. The IC50 values of Compounds 10r and 10t against RPMI8226 was 2.39 ± 0.20 μM, 1.41 ± 0.44 μM, respectively, and the HCT-116 was sensitive to the compounds 10h, 10m, 10r, 10w with the IC50 values <1.9 μM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号