首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A major problem hampering effective stem cell-based therapies is the absence of a clear understanding of the human hematopoietic stem cell (HSC) pool composition. The severe combined immunodeficiency (SCID) repopulating cell (SRC) xenotransplant assay system provides a powerful tool for characterizing the frequency, cell surface markers, cell cycle status, homing and response to cytokine stimulation of human HSCs. Clonal tracking of retrovirally transduced SRCs and transplantation of specific subpopulations revealed SRC classes with distinct repopulation potentials. However, all HSC repopulation assays are based on intravenous injection, a complex process that requires circulation through blood, recognition and extravasation through bone marrow vasculature, and migration to a supportive microenvironment. Thus, some classes of HSCs may remain undetected. By direct intrafemoral injection, we identified rapid SRCs (R-SRCs) within the Lin-CD34+CD38loCD36- subpopulation. R-SRCs rapidly generate high levels of human myeloid and erythroid cells within the injected femur, migrate to the blood and colonize individual bones of non-obese diabetic (NOD)-SCID mice within 2 weeks after transplantation. Lentivector-mediated clonal analysis of individual R-SRCs revealed heterogeneity in their proliferative and migratory properties. The identification of a new HSC class and an effective intrafemoral assay provide the tools required to develop more effective stem cell-based therapies that rely on rapid reconstitution.  相似文献   

2.
Haematopoietic stem cell (HSC) niches provide an environment essential for life‐long HSC function. Intense investigation of HSC niches both feed off and drive technology development to increase our capability to assay functionally defined cells with high resolution. A major driving force behind the desire to understand the basic biology of HSC niches is the clear implications for clinical therapies. Here, with particular emphasis on cell type‐specific deletion of SCL and CXCL12, we focus on unresolved issues on HSC niches, framed around some very recent advances and novel discoveries on the extrinsic regulation of HSC maintenance. We also provide ideas for possible paths forward, some of which are clearly within reach while others will require both novel tools and vision.  相似文献   

3.
Many of viral and eukaryotic proteins are required for signal transduction and regulatory functions which undergo a lipid modification by the enzyme N-myristoyltransferase (NMT). In this study, we demonstrated that heat shock cognate protein 70 (HSC70) is homologous to NMT inhibitor protein (NIP71), which was discovered in our laboratory, based on MALDI-TOF mass spectrometric analysis. The purified bovine cytosolic HSC70 and particulate NIP71 produced a dose-dependent inhibition of human NMT having half maximal inhibitions of 235 and 230 nM, respectively. Further, Western blot analysis revealed that the purified particulate NIP71 and cytosolic HSC70 cross-reacted with both anti-NIP71 and anti-HSC70 antibodies. The results we obtained imply that molecular chaperones could be involved in the regulation of NMT in normal and cancerous cells. Further studies directed to revealing the role of HSC70 in the regulation of NMT may lead to the development of gene based therapies of colon cancer.  相似文献   

4.
Nemeth MJ  Bodine DM 《Cell research》2007,17(9):746-758
Hematopoietic stem cells (HSCs) are a rare population of cells that are responsible for life-long generation of blood cells of all lineages. In order to maintain their numbers, HSCs must establish a balance between the opposing cell fates of self-renewal (in which the ability to function as HSCs is retained) and initiation of hematopoietic differentiation. Multiple signaling pathways have been implicated in the regulation of HSC cell fate. One such set of pathways are those activated by the Wnt family of ligands. Wnt signaling pathways play a crucial role during embryogenesis and deregulation of these pathways has been implicated in the formation of solid tumors. Wnt signaling also plays a role in the regulation of stem cells from multiple tissues, such as embryonic, epidermal, and intestinal stem cells. However, the function of Wnt signaling in HSC biology is still controversial. In this review, we will discuss the basic characteristics of the adult HSC and its regulatory microenvironment, the "niche", focusing on the regulation of the HSC and its niche by the Wnt signaling pathways.  相似文献   

5.
Hematopoietic stem cells (HSCs) give rise to all lineages of blood cells. Because HSCs must persist for a lifetime, the balance between their proliferation and quiescence is carefully regulated to ensure blood homeostasis while limiting cellular damage. Cell cycle regulation therefore plays a critical role in controlling HSC function during both fetal life and in the adult. The cell cycle activity of HSCs is carefully modulated by a complex interplay between cell-intrinsic mechanisms and cell-extrinsic factors produced by the microenvironment. This fine-tuned regulatory network may become altered with age, leading to aberrant HSC cell cycle regulation, degraded HSC function, and hematological malignancy.  相似文献   

6.
Recent technological advances in the generation, characterization, and bioprocessing of human pluripotent stem cells (hPSCs) have created new hope for their use as a source for production of cell-based therapeutic products. To date, a few clinical trials that have used therapeutic cells derived from hESCs have been approved by the Food and Drug Administration (FDA), but numerous new hPSC-based cell therapy products are under various stages of development in cell therapy-specialized companies and their future market is estimated to be very promising. However, the multitude of critical challenges regarding different aspects of hPSC-based therapeutic product manufacturing and their therapies have made progress for the introduction of new products and clinical applications very slow. These challenges include scientific, technological, clinical, policy, and financial aspects. The technological aspects of manufacturing hPSC-based therapeutic products for allogeneic and autologous cell therapies according to good manufacturing practice (cGMP) quality requirements is one of the most important challenging and emerging topics in the development of new hPSCs for clinical use. In this review, we describe main critical challenges and highlight a series of technological advances in all aspects of hPSC-based therapeutic product manufacturing including clinical grade cell line development, large-scale banking, upstream processing, downstream processing, and quality assessment of final cell therapeutic products that have brought hPSCs closer to clinical application and commercial cGMP manufacturing.  相似文献   

7.

Background

Hematopoietic stem cells (HSCs) are a population of multipotent cells that can self-renew and differentiate into all blood lineages. HSC development must be tightly controlled from cell fate determination to self-maintenance during adulthood. This involves a panel of important developmental signaling pathways and other factors which act synergistically within the HSC population and/or in the HSC niche. Genetically conserved processes of HSC development plus many other developmental advantages make the zebrafish an ideal model organism to elucidate the regulatory mechanisms underlying HSC programming.

Scope of review

This review summarizes recent progress on zebrafish HSCs with particular focus on how developmental signaling controls hemogenic endothelium-derived HSC development. We also describe the interaction of different signaling pathways during these processes.

Major conclusions

The hematopoietic stem cell system is a paradigm for stem cell studies. Use of the zebrafish model to study signaling regulation of HSCs in vivo has resulted in a great deal of information concerning HSC biology in vertebrates.

General significance

These new findings facilitate a better understanding of molecular mechanisms of HSC programming, and will provide possible new strategies for the treatment of HSC-related hematological diseases, such as leukemia. This article is part of a Special Issue entitled Biochemistry of Stem Cells.  相似文献   

8.
9.
The stringent regulation of hematopoietic stem cell (HSC) quiescence versus cell cycle progression is essential for the preservation of a pool of long-term self-renewing cells and vital for sustaining an adequate supply of all blood lineages throughout life. Cell growth, the process that is mass increase, serves as a trigger for cell cycle progression and is regulated predominantly by mammalian target of rapamycin complex 1 (mTORC1) signaling. Emerging data from various mice models show deletion of several mTORC1 negative regulators, including PTEN, TSC1, PML and Fbxw7 result in similar HSC phenotypes characterized as HSC hyper-proliferation and subsequent exhaustion, and defective repopulating potential. Further pharmacological approaches show that PTEN, TSC1 and PML regulate HSC maintenance through mTORC1. mTORC1-mediated cell growth regulatory circuits thus plays a critical role in the regulation of HSC quiescence.  相似文献   

10.
Because of their ability to self-renew and differentiate, adult stem cells are the in vivo source for replacing cells lost on a daily basis in high turnover tissues during the life of an organism. Adult stem cells however, do suffer the effects of aging resulting in decreased ability to self-renew and properly differentiate. Aging is a complex process and identification of the mechanisms underlying the aging of (stem) cell population(s) requires that relatively homogenous and well characterized populations can be isolated. Evaluation of the effect of aging on one such adult stem cell population, namely the hematopoietic stem cell (HSC), which can be purified to near homogeneity, has demonstrate that they do suffer cell intrinsic age associated changes. The cells that support HSC, namely marrow stromal cells, or mesenchymal stem cells (MSC), may similarly be affected by aging, although the inability to purify these cells to homogeneity precludes definitive assessment. As HSC and MSC are being used in cell-based therapies clinically, improved insight in the effect of aging on these two stem cell populations will probably impact the selection of sources for these stem cells.  相似文献   

11.
《Cytotherapy》2019,21(7):699-724
Cellular & Gene Therapies (CGTs) are complex products, which have been key foci of the International Society for Cell & Gene Therapy (ISCT). For this ISCT North American Legal & Regulatory Affairs Committee review publication, CGTs include but are not limited to somatic cell-based therapies, pluripotent cell-derived cell-based therapies, gene- or non-gene-modified or gene edited versions of these cell-based therapies, in vivo gene therapies, organ/tissue engineered products, and relevant combination products. These products are regulated by the Food and Drug Administration (FDA) in the United States. This publication reviews selected laws, regulations, guidance, definitions, processes, types of meetings and submissions, and other key factors that the FDA follows and implements to regulate and support development of these types of products. These factors may be considered in order to help current and potential product developers/sponsors/applicants navigate through FDA regulatory pathways. We also review expedited programs including types of Designations available at the FDA, and their specific eligibility criteria. We include FDA and other stakeholder resources to consider regarding CGT regulation, to help prepare for CGT development and subsequent FDA approval.  相似文献   

12.
Hematopoietic stem cells (HSC) are multi-potent cells that function to generate a lifelong supply of all blood cell types. During mammalian embryogenesis, sites of hematopoiesis change over the course of gestation: from extraembryonic yolk sac and placenta, to embryonic aorta-gonad-mesonephros region, fetal liver, and finally fetal bond marrow where HSC reside postnatally. These tissues provide microenviroments for de novo HSC formation, as well as HSC maturation and expansion. Within adult bone marrow, HSC self-renewal and differentiation are thought to be regulated by two major cellular components within their so-called niche: osteoblasts and vascular endothelial cells. This review focuses on HSC generation within, and migration to, different tissues during development, and also provides a summary of major regulatory factors provided by osteoblasts and vascular endothelial cells within the adult bone marrow niche.  相似文献   

13.
The hematopoietic system is a distributed tissue that consists of functionally distinct cell types continuously produced through hematopoietic stem cell (HSC) differentiation. Combining genomic and phenotypic data with high‐content experiments, we have built a directional cell–cell communication network between 12 cell types isolated from human umbilical cord blood. Network structure analysis revealed that ligand production is cell type dependent, whereas ligand binding is promiscuous. Consequently, additional control strategies such as cell frequency modulation and compartmentalization were needed to achieve specificity in HSC fate regulation. Incorporating the in vitro effects (quiescence, self‐renewal, proliferation, or differentiation) of 27 HSC binding ligands into the topology of the cell–cell communication network allowed coding of cell type‐dependent feedback regulation of HSC fate. Pathway enrichment analysis identified intracellular regulatory motifs enriched in these cell type‐ and ligand‐coupled responses. This study uncovers cellular mechanisms of hematopoietic cell feedback in HSC fate regulation, provides insight into the design principles of the human hematopoietic system, and serves as a foundation for the analysis of intercellular regulation in multicellular systems.  相似文献   

14.
Bone marrow mesenchymal stromal cells (BMMSCs) have been used as feeder support for the ex vivo expansion of hematopoietic stem cells (HSCs) but have the limitations of painful harvest, morbidity, and risk of infection to the patient. This prompted us to explore the use of human umbilical cord Wharton's jelly MSCs (hWJSCs) and its conditioned medium (hWJSC-CM) for ex vivo expansion of HSCs in allogeneic and autologous settings because hWJSCs can be harvested in abundance painlessly, are proliferative, hypoimmunogenic, and secrete a variety of unique proteins. In the presence of hWJSCs and hWJSC-CM, HSCs put out pseudopodia-like outgrowths and became highly motile. Time lapse imaging showed that the outgrowths helped them to migrate towards and attach to the upper surfaces of hWJSCs and undergo proliferation. After 9 days of culture in the presence of hWJSCs and hWJSC-CM, MTT, and Trypan blue assays showed significant increases in HSC numbers, and FACS analysis generated significantly greater numbers of CD34(+) cells compared to controls. hWJSC-CM produced the highest number of colonies (CFU assay) and all six classifications of colony morphology typical of hematopoiesis were observed. Proteomic analysis of hWJSC-CM showed significantly greater levels of interleukins (IL-1a, IL-6, IL-7, and IL-8), SCF, HGF, and ICAM-1 compared to controls suggesting that they may be involved in the HSC multiplication. We propose that cord blood banks freeze autologous hWJSCs and umbilical cord blood (UCB) from the same umbilical cord at the same time for the patient for future ex vivo HSC expansion and cell-based therapies.  相似文献   

15.
Advances in stem cell biology and cellular therapy have led to promising treatments in a range of incurable diseases. However, it is unclear whether primitive stem cells can be delivered to damage tissue for regeneration of functional mature cells or stem cells must be stimulated to differentiate into mature cells in vitro and these cells delivered to patients. A range of other questions remains to be determined including how to formulate cellular products for in vivo delivery and how to undertake pharmacological testing of cellular products. Insights into these questions can be obtained from hematopoietic stem cells (HSC) which have been used for the past 50 years in bone marrow transplantation for regeneration of blood cells in patients undergoing high dose chemotherapy to treat cancer. The differentiation of HSC into mature blood cells is controlled by proteins called hematopoietic growth factors and these factors have been used to generate cellular products in vitro for clinical applications. This chapter will review some of the results of cellular therapies performed with HSC and the lessons that can be learned from these studies.  相似文献   

16.
《遗传学报》2022,49(7):599-611
The CD4+FOXP3+ regulatory T (Treg) cells are essential for maintaining immune homeostasis in healthy individuals. Results from clinical trials of Treg cell-based therapies in patients with graft versus host disease (GVHD), type 1 diabetes (T1D), liver transplantation, and kidney transplantation have demonstrated that adoptive transfer of Treg cells is emerging as a promising strategy to promote immune tolerance. Here we provide an overview of recent progresses and current challenges of Treg cell-based therapies. We summarize the completed and ongoing clinical trials with human Treg cells. Notably, a few of the chimeric antigen receptor (CAR)-Treg cell therapies are currently undergoing clinical trials. Meanwhile, we describe the new strategies for engineering Treg cells used in preclinical studies. Finally, we envision that the use of novel synthetic receptors, metabolic regulators, combined therapies, and in vivo generated antigen-specific or engineered Treg cells through the delivery of modified mRNA and CRISPR-based gene editing will further promote the advances of next-generation Treg cell therapies.  相似文献   

17.
18.
During chronic liver diseases, hepatic stellate cells (HSC) acquire a myofibroblastic phenotype, proliferate, and synthetize fibrosis components. Myofibroblastic HSC (mHSC) also participate to the regulation of intrahepatic blood flow, because of their contractile properties. Here, we examined whether human mHSC express natriuretic peptide receptors (NPR). Only NPR-B mRNA was identified, which was functional as demonstrated in binding studies and by increased cGMP levels in response to C-type natriuretic peptide (CNP). CNP inhibited mHSC proliferation, an effect blocked by the protein kinase G inhibitor 8-(4 chlorophenylthio)-cGMP and by the NPR antagonist HS-142-1 and reproduced by analogs of cGMP. Growth inhibition was associated with a reduction of extracellular signal-regulated kinase and c-Jun N-terminal kinase and with a blockade of AP-1 DNA binding. CNP and cGMP analogs also blunted mHSC contraction elicited by thrombin, by suppressing calcium influx. The relaxing properties of CNP were mediated by a blockade of store-operated calcium channels, as demonstrated using a calcium-free/calcium readdition protocol. These results constitute the first evidence for a hepatic effect of CNP and identify mHSC as a target cell. Activation of NPR-B by CNP in human mHSC leads to inhibition of both growth and contraction. These data suggest that during chronic liver diseases, CNP may counteract both liver fibrogenesis and associated portal hypertension.  相似文献   

19.
For almost two decades, cell-based therapies have been tested in modern regenerative medicine to either replace or regenerate human cells, tissues, or organs and restore normal function. Secreted paracrine factors are increasingly accepted to exert beneficial biological effects that promote tissue regeneration. These factors are called the cell secretome and include a variety of proteins, lipids, microRNAs, and extracellular vesicles, such as exosomes and microparticles. The stem cell secretome has most commonly been investigated in pre-clinical settings. However, a growing body of evidence indicates that other cell types, such as peripheral blood mononuclear cells (PBMCs), are capable of releasing significant amounts of biologically active paracrine factors that exert beneficial regenerative effects. The apoptotic PBMC secretome has been successfully used pre-clinically for the treatment of acute myocardial infarction, chronic heart failure, spinal cord injury, stroke, and wound healing. In this review we describe the benefits of choosing PBMCs instead of stem cells in regenerative medicine and characterize the factors released from apoptotic PBMCs. We also discuss pre-clinical studies with apoptotic cell-based therapies and regulatory issues that have to be considered when conducting clinical trials using cell secretome-based products. This should allow the reader to envision PBMC secretome-based therapies as alternatives to all other forms of cell-based therapies.  相似文献   

20.
Tissue homeostasis demands regulatory feedback, suggesting that hematopoietic stem cell (HSC) activity is controlled in part by HSC progeny. Yet, cell extrinsic HSC regulation has been well characterized only in niche cells of non-hematopoietic origin. Here we identify feedback regulation of HSCs by megakaryocytes (Mks), which are mature hematopoietic cells, through production of thrombopoietin (Thpo), a cytokine pertinent for HSC maintenance. Induced ablation of Mk cell population in mice perturbed quiescent HSCs in bone marrow (BM). The ablation of Mks resulted in decreased intra-BM Thpo concentration presumably due to Thpo production by Mks. Thpo administration Mk ablated mice restored HSC functions. Overall, our study establishes Mk as an essential cellular component of the HSC niche and delineates cytokine-oriented regulation of HSCs by their own progeny.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号