共查询到20条相似文献,搜索用时 0 毫秒
1.
alpha-Tocopherol inhibits human glutathione S-transferase pi 总被引:2,自引:0,他引:2
van Haaften RI Evelo CT Haenen GR Bast A 《Biochemical and biophysical research communications》2001,280(3):631-633
alpha-Tocopherol is the most important fat-soluble, chain-breaking antioxidant. It is known that interplay between different protective mechanisms occurs. GSTs can catalyze glutathione conjugation with various electrophiles, many of which are toxic. We studied the influence of alpha-tocopherol on the activity of the cytosolic pi isoform of GST. alpha-Tocopherol inhibits glutathione S-transferase pi in a concentration-dependent manner, with an IC(50)-value of 0.5 microM. At alpha-tocopherol additions above 3 microM there was no GST pi activity left. alpha-Tocopherol lowered the V(max) values, but did not affect the K(m) for either CDNB or GSH. This indicates that the GST pi enzyme is noncompetitively inhibited by alpha-tocopherol. An inhibition of GST pi by alpha-tocopherol may have far-reaching implications for the application of vitamin E. 相似文献
2.
The three-dimensional structure of class pi glutathione S-transferase in complex with glutathione sulfonate at 2.3 A resolution 总被引:15,自引:1,他引:15 下载免费PDF全文
The three-dimensional structure of class pi glutathione S-transferase from pig lung, a homodimeric enzyme, has been solved by multiple isomorphous replacement at 3 A resolution and preliminarily refined at 2.3 A resolution (R = 0.24). Each subunit (207 residues) is folded into two domains of different structure. Domain I (residues 1-74) consists of a central four-stranded beta-sheet flanked on one side by two alpha-helices and on the other side, facing the solvent, by a bent, irregular helix structure. The topological pattern resembles the bacteriophage T4 thioredoxin fold, in spite of their dissimilar sequences. Domain II (residues 81-207) contains five alpha-helices. The dimeric molecule is globular with dimensions of about 55 A x 52 A x 45 A. Between the subunits and along the local diad, is a large cavity which could possibly be involved in the transport of nonsubstrate ligands. The binding site of the competitive inhibitor, glutathione sulfonate, is located on domain I, and is part of a cleft formed between intrasubunit domains. Glutathione sulfonate is bound in an extended conformation through multiple interactions. Only three contact residues, namely Tyr7, Gln62 and Asp96 are conserved within the family of cytosolic glutathione S-transferases. The exact location of the binding site(s) of the electrophilic substrate is not clear. Catalytic models are discussed on the basis of the molecular structure. 相似文献
3.
Immunohistochemical expression of pi class glutathione S-transferase and alpha-fetoprotein in hepatocellular carcinoma and chronic liver disease 总被引:6,自引:0,他引:6
Yusof YA Yan KL Hussain SN 《Analytical and quantitative cytology and histology / the International Academy of Cytology [and] American Society of Cytology》2003,25(6):332-338
OBJECTIVE: To determine whether tumor marker pi glutathione transferase (GST-pi) is expressed in hepatocellular carcinoma (HCC) and other chronic liver diseases and to compare its expression with that of alpha-fetoprotein (AFP). STUDY DESIGN: Samples used were formalin-fixed, paraffin-embedded liver tissues: normal (n = 3), chronic hepatitis B (n = 15), cirrhosis (n = 15) and HCC (n = 30). The expression of AFP and GST-pi was detected by using immunohistochemistry with the peroxidase-antiperoxidase method. AFP immunoreactivity was based on the cytoplasm of the hepatocytes, while GST-pi immunoreactivity was based on the nuclei of hepatocytes. RESULTS: In normal liver tissues, AFP was not expressed. However, there was strong staining of GST-pi in bile duct epithelium cells and weak staining in hepatocytes. Our results showed higher AFP immunoreactivity in cases of HCC (36.7%) as compared to cirrhosis (6.7%) and hepatitis B (0%), whereas GST-pi immunoreactivity was lower in cases of HCC (53.3%) as compared to cases of cirrhosis (100.0%) and hepatitis B (93.3%). Percent sensitivity of AFP determination for HCC was 36.7% as compared to 53.3% for GST-pi, thus making GST-pi a more sensitive marker for detection of HCC. This study showed a significant relationship between the intensity and percentage of cells stained in hepatitis B, cirrhosis and HCC for GST-pi immunoreactivity (P < .001, .001 and .05, respectively) but not for AFP (P > .05). Statistical analysis showed that there was no significant relationship between expression of AFP and GST-pi in cirrhosis and HCC cases. Hepatitis B virus infection in HCC cases showed a positive rate of 46.7%, with AFP staining positively in 42.9% of tissues and GST-pi staining positively in 57.1% of tissues. CONCLUSION: AFP is a diagnostic but rather insensitive tissue marker for HCC. However, the absence of AFP in benign chronic liver disease makes this marker useful in differentiating between HCC and other chronic liver diseases, whereas GST-pi can be used as a diagnostic marker for HCC as well as in detecting other chronic liver diseases. 相似文献
4.
5.
Glutathione S-transferases (GSTs) are enzymes that are involved in the detoxification of harmful electrophilic endogenous and exogenous compounds by conjugating with glutathione (GSH). The liver fluke GSTs have multifunctional roles in the host–parasite interaction, such as general detoxification and bile acid sequestration to synthase activity. The GSTs have been highlighted as vaccine candidates towards parasitic flukes. In this study, we have thoroughly examined the urea-induced unfolding of a mu-class Fasciola gigantica GST1 ( FgGST1) using spectroscopic techniques and molecular dynamic simulations. FgGST1 is a highly cooperative molecule, because during urea-induced equilibrium unfolding, a concurrent unfolding of the protein without stabilization of any folded intermediate was observed. The protein was stabilized with conformational free energy of about ~12.36 kcal/mol. The protein loses its activity with increasing urea concentration, as the GSH molecule is not able to bind to the protein. We also studied the fluorescence quenching of Trp residues and the obtained K SV data that provided additional information on the unfolding of FgGST1. Molecular dynamic trajectories simulated in different urea concentrations and temperatures indicated that urea destabilizes FgGST1 structure by weakening hydrophobic interactions and the hydrogen bond network. We observed a precise correlation between the in vitro and in silico studies. 相似文献
6.
Novel class of bivalent glutathione S-transferase inhibitors 总被引:1,自引:0,他引:1
Exploiting the principle of bivalent binding, we have designed symmetrical, bifunctional inhibitors to simultaneously occupy both active sites of cytosolic glutathione S-transferase, with enhanced specificity for the P1-1 isoform. We have prepared two series of compounds that differ in their binding domains-the first is a series of bis-glutathione conjugates, and the second is a series of compounds each possessing two equivalents of Uniblue A, an analogue of Cibacron Blue. For each series, a monofunctional reference compound was also prepared to determine the relative advantage of the bivalent inhibitors. Within each series, the most potent inhibitors exhibited IC(50) values 2 orders of magnitude lower than the relevant reference compounds. Moreover, within the bis-glutathionyl series, a 10-fold increase in selectivity was achieved for GST P1-1 over the A1-1 isoform. Isothermal titration calorimetry with a representative bis-glutathione conjugate and a monofunctional reference compound indicates that the bivalent inhibitor exhibits the expected increase in intrinsic affinity and decrease in stoichiometry relative to the monofunctional compound, supporting the overall design strategy. 相似文献
7.
Monobromobimane occupies a distinct xenobiotic substrate site in glutathione S-transferase pi 下载免费PDF全文
Monobromobimane (mBBr), functions as a substrate of porcine glutathione S-transferase pi (GST pi): The enzyme catalyzes the reaction of mBBr with glutathione. S-(Hydroxyethyl)bimane, a nonreactive analog of monobromobimane, acts as a competitive inhibitor with respect to mBBr as substrate but does not affect the reaction of GST pi with another substrate, 1-chloro-2,4-dinitrobenzene (CDNB). In the absence of glutathione, monobromobimane inactivates GST pi at pH 7.0 and 25 degrees C as assayed using mBBr as substrate, with a lesser effect on the enzyme's use of CDNB as substrate. These results indicate that the sites occupied by CDNB and mBBr are not identical. Inactivation is proportional to the incorporation of 2 moles of bimane/mole of subunit. Modification of GST pi with mBBr does not interfere with its binding of 8-anilino-1-naphthalene sulfonate, indicating that this hydrophobic site is not the target of monobromobimane. S-Methylglutathione and S-(hydroxyethyl)bimane each yield partial protection against inactivation and decrease reagent incorporation, while glutathionyl-bimane protects completely against inactivation. Peptide analysis after trypsin digestion indicates that mBBr modifies Cys45 and Cys99 equally. Modification of Cys45 is reduced in the presence of S-methylglutathione, indicating that this residue is at or near the glutathione binding region. In contrast, modification of Cys99 is reduced in the presence of S-(hydroxyethyl)bimane, suggesting that this residue is at or near the mBBr xenobiotic substrate binding site. Modification of Cys99 can best be understood by reaction with monobromobimane while it is bound to its xenobiotic substrate site in an alternate orientation. These results support the concept that glutathione S-transferase accomplishes its ability to react with a diversity of substrates in part by harboring distinct xenobiotic substrate sites. 相似文献
8.
Ralat LA Misquitta SA Manevich Y Fisher AB Colman RF 《Archives of biochemistry and biophysics》2008,474(1):109-118
Glutathione S-transferase pi has been shown to reactivate 1-cysteine peroxiredoxin (1-Cys Prx) by formation of a complex [L.A. Ralat, Y. Manevich, A.B. Fisher, R.F. Colman, Biochemistry 45 (2006) 360-372]. A model of the complex was proposed based on the crystal structures of the two enzymes. We have now characterized the complex of GST pi/1-Cys Prx by determining the Mw of the complex, by measuring the catalytic activity of the GST pi monomer, and by identifying the interaction sites between GST pi and 1-Cys Prx. The Mw of the purified GST pi/1-Cys Prx complex is 50,200 at pH 8.0 in the presence of 2.5 mM glutathione, as measured by light scattering, providing direct evidence that the active complex is a heterodimer composed of equimolar amounts of the two proteins. In the presence of 4 M KBr, GST pi is dissociated to monomer and retains catalytic activity, but the Km value for GSH is increased substantially. To identify the peptides of GST pi that interact with 1-Cys Prx, GST pi was digested with V8 protease and the peptides were purified. The binding by 1-Cys Prx of each of four pure GST pi peptides (residues 41-85, 115-124, 131-163, and 164-197) was investigated by protein fluorescence titration. An apparent stoichiometry of 1 mol/subunit 1-Cys Prx was measured for each peptide and the formation of the heterodimer is decreased when these peptides are included in the incubation mixture. These results support our proposed model of the heterodimer. 相似文献
9.
Primary and secondary structural analyses of glutathione S-transferase pi from human placenta 总被引:7,自引:0,他引:7
H Ahmad D E Wilson R R Fritz S V Singh R D Medh G T Nagle Y C Awasthi A Kurosky 《Archives of biochemistry and biophysics》1990,278(2):398-408
The primary structure of glutathione S-transferase (GST) pi from a single human placenta was determined. The structure was established by chemical characterization of tryptic and cyanogen bromide peptides as well as automated sequence analysis of the intact enzyme. The structural analysis indicated that the protein is comprised of 209 amino acid residues and gave no evidence of post-translational modifications. The amino acid sequence differed from that of the deduced amino acid sequence determined by nucleotide sequence analysis of a cDNA clone (Kano, T., Sakai, M., and Muramatsu, M., 1987, Cancer Res. 47, 5626-5630) at position 104 which contained both valine and isoleucine whereas the deduced sequence from nucleotide sequence analysis identified only isoleucine at this position. These results demonstrated that in the one individual placenta studied at least two GST pi genes are coexpressed, probably as a result of allelomorphism. Computer assisted consensus sequence evaluation identified a hydrophobic region in GST pi (residues 155-181) that was predicted to be either a buried transmembrane helical region or a signal sequence region. The significance of this hydrophobic region was interpreted in relation to the mode of action of the enzyme especially in regard to the potential involvement of a histidine in the active site mechanism. A comparison of the chemical similarity of five known human GST complete enzyme structures, one of pi, one of mu, two of alpha, and one microsomal, gave evidence that all five enzymes have evolved by a divergent evolutionary process after gene duplication, with the microsomal enzyme representing the most divergent form. 相似文献
10.
Glutathione S-transferase pi (GSTpi) is a phase II enzyme which protects cells from death and detoxifies chemotherapeutic agents in cancer cells. Ethacrynic acid (EA) is a weak GSTpi inhibitor. Structure modifications were done to improve the ability of EA to inhibit GSTpi activity. Eighteen EA thiazole derivatives were designed and synthesized. Compounds 9a, 9b and 9c with a replacement of carboxyl group of EA by a heterocyclic thiazole exhibited improvement over EA to inhibit GSTpi activity. 相似文献
11.
P Reinemer H W Dirr R Ladenstein R Huber M Lo Bello G Federici M W Parker 《Journal of molecular biology》1992,227(1):214-226
The three-dimensional structure of human class pi glutathione S-transferase from placenta (hGSTP1-1), a homodimeric enzyme, has been solved by Patterson search methods and refined at 2.8 A resolution to a final crystallographic R-factor of 19.6% (8.0 to 2.8 A resolution). Subunit folding topology, subunit overall structure and subunit association closely resembles the structure of porcine class pi glutathione S-transferase. The binding site of a competitive inhibitor, S-hexylglutathione, is analyzed and the locations of the binding regions for glutathione (G-site) and electrophilic substrates (H-site) are determined. The specific interactions between protein and the inhibitor's glutathione peptide are the same as those observed between glutathione sulfonate and the porcine isozyme. The H-site is located adjacent to the G-site, with the hexyl moiety lying above a segment (residues 8 to 10) connecting strand beta 1 and helix alpha A where it is in hydrophobic contact with Tyr7, Phe8, Val10, Val35 and Tyr106. Catalytic models are discussed on the basis of the molecular structure. 相似文献
12.
Oxidative stress is a key factor contributing to the development of diabetes complications. Glutathione S-transferases (GSTs) protect against products of oxidative stress by conjugating glutathione to electrophilic substrates, producing compounds that are generally less reactive and more soluble. The expression and activity of GSTs during diabetes have been extensively studied, but little is known about regulation mechanisms of Pi-class GST (GSTP). The aim of the present study was to evaluate how GSTP is regulated in a Streptozotocin (STZ)-induced murine diabetes model. GST activity and GSTP expression were determined in adult male mice diabetized with STZ. Specificity protein 1 (Sp1) expression and O-glycosylation, as well as the role of AP-1 members Jun and Fos in the regulation of GSTP expression, were also assessed. The results showed that GST total activity and GSTP mRNA and protein levels were decreased in the diabetic liver, and returned to normal values after insulin administration. The insulin-mimetic drug vanadate was also able to restore GST activity, but failed to recover GSTP mRNA/protein levels. In diabetic animals, O-glycosylated Sp1 levels were increased, whereas, in insulin-treated animals, glycosylation values were similar to those of controls. After vanadate administration, Sp1 expression levels and glycosylation were lower than those of controls. Our results suggest that hyperglycemia could lead to the observed increase in Sp1 O-glycosylation, which would, in turn, lead to a decrease in the expression of Sp1-dependent GSTP in the liver of diabetic mice. 相似文献
13.
E. V. Borvinskaya L. P. Smirnov N. N. Nemova 《Russian Journal of Bioorganic Chemistry》2013,39(5):498-503
Glutathione S-transferase (GST) was isolated from the Esox lucius liver and purified to the homogenous state by SDS-PAGE and isoelectrofocusing. It was found to be a homodimer with a subunit molecular weight of 25235.36 Da (HPLC-MS/MS data) and pI of about 6.4. Its substrate specificity, thermal stability, some kinetic characteristics, and optimum pH were studied. The enzyme was identified as Alpha class GST. 相似文献
14.
Alpha-tocopherol, the most abundant form of vitamin E present in humans, is a noncompetitive inhibitor of glutathione S-transferase pi (GST pi), but its binding site had not been located. Tocopherol iodoacetate (TIA), a reactive analogue, produces a time-dependent inactivation of GST pi to a limit of 25% residual activity. The rate constant for inactivation, k(obs), exhibits a nonlinear dependence on reagent concentration, with K(I) = 19 microM and k(max) = 0.158 min(-)(1). Complete protection against inactivation is provided by tocopherol and tocopherol acetate, whereas glutathione derivatives, electrophilic substrate analogues, buffers, or nonsubstrate hydrophobic ligands have little effect on k(obs). These results indicate that TIA reacts as an affinity label of a distinguishable tocopherol binding site. Loss of activity occurs concomitant with incorporation of about 1 mol of reagent/mol of enzyme subunit when the enzyme is maximally inactivated. Isolation of the labeled peptide from the tryptic digest shows that Tyr(79) is the only enzymic amino acid modified. The Y79F, Y79S, and Y79A mutant enzymes were generated, expressed, and purified. Changing Tyr(79) to Ser or Ala, but not Phe, renders the enzyme insensitive to inhibition by either tocopherol or tocopherol acetate as demonstrated by increases of at least 49-fold in K(I) values as compared to the wild-type enzyme. These results and examination of the crystal structure of GST pi suggest that tocopherols bind at a novel site, where an aromatic residue at position 79 is essential for binding. 相似文献
15.
In this paper, we provide direct evidence that glutathione S-transferase π (GSTπ) detoxifies cisplatin (CDDP). We used human colonic cancer HCT8 cells sensitive and resistant to CDDP, the level of cisplatin-glutathione adduct (DDP-GSH) being higher in the resistant cells. There was an overexpression of GSTπ mRNA in these CDDP-resistant cells. Incubation of the cells with CDDP resulted in the formation of DDP-GSH dependent on the CDDP concentration and the incubation time. The formation of DDP-GSH was abolished when the cells were pre-treated with ethacrynic acid or ketoprofen, inhibitors of GSTπ. Purified GSTπ also catalyzed the formation of DDP-GSH in vitro, with an apparent Km of 0.23 mM for CDDP and an apparent Vmax of 4.9 nmol/min/mg protein. The increase in DDP-GSH produced by GSTπ was linear with incubation time up to 3 h and optimal of pH 7.4. A GSTπ transfectant cell line was constructed in HCT8 cells using a pcDNA3.1 (-)/Myc-His B with an expression vector containing cDNA for GSTπ. Transfection of GSTπ cDNA into HCT8 cells resulted in an increase in the expression of GSTπ by 1.4-fold in parallel with an augmentation of the formation of DDP-GSH. These results suggest that GSTπ plays a role in the formation of DDP-GSH and the acquisition of resistance to CDDP in cancer cells. 相似文献
16.
Kaźmierczak B Kuźma-Kozakiewicz M Usarek E Barańczyk-Kuźma A 《Acta biochimica Polonica》2011,58(4):621-626
Glutathione S-transferase pi (GST pi) is an enzyme involved in cell protection against toxic electrophiles and products of oxidative stress. GST pi expression was studied in transgenic mice hybrids (B6-C3H) with symptoms of neurodegeneration harboring SOD1G93A (SOD1/+), Dync1h1 (Cra1/+) and double (Cra1/SOD1) mutations, at presymptomatic and symptomatic stages (age 70, 140, 365 days) using RT-PCR and Western blotting. The main changes in GST pi expression were observed in mice with the SODG93A mutation. In SOD1/+ and Cra1/SOD1 transgenics, with the exception of cerebellum, the changes in GST pi-mRNA accompanied those in GST pi protein. In brain cortex of both groups the expression was unchanged at the presymptomatic (age 70 days) but was lower at the symptomatic stage (age 140 days) and at both stages in hippocampus and spinal cord of SOD1/+ but not of Cra1/SOD1 mice compared to age-matched wild-type controls. In cerebellum of the presymptomatic and the symptomatic SOD1/+ mice and presymptomatic Cra1/SOD1 mice, the GST pi-mRNA was drastically elevated but the protein level remained unchanged. In Cra1/+ transgenics there were no changes in GST pi expression in any CNS region both on the mRNA and on the protein level. It can be concluded that the SOD1G93A but not the Dync1h1 mutation significantly decreases detoxification efficiency of GST pi in CNS, however the Dync1h1 mutation reduces the effects caused by the SOD1G93A mutation. Despite similarities in neurological symptoms, the differences in GST pi expression between SOD1/+ and Cra1/+ transgenics indicate a distinct pathogenic entity of these two conditions. 相似文献
17.
Modesto Orozco Cristina Vega Antonio Parraga Isabel García-Sez Miquel Coll Sinead Walsh Timothy J. Mantle F. Javier Luque 《Proteins》1997,28(4):530-542
Theoretical calculations were performed to examine the ionization of the phenolic group of Tyr7 and the thiol group of glutathione in aqueous solution and in the protein class-pi glutathione S-transferase (GST-Pi). Three model systems were considered for simulations in the protein environment: the free enzyme, the complex between glutathione and the enzyme, and the complex between 1-chloro-2.4-dinitrobenzene, glutathione, and the enzyme. The structures derived from Molecular Dynamics simulations were compared with the crystallographic data available for the complex between the inhibitor S-(p-nitrobenzyl)glutathione and GST-Pi, the glutathione-bound form of GST-Pi, and the free enzyme carboxymethylated in Cys47. Free-energy perturbation techniques were used to determine the thermodynamics quantities for ionization of the phenol and thiol groups. The functional implications of Tyr7 in the activation of the glutathione thiol group are discussed in the light of present results, which in agreement with previous studies suggest that Tyr7 in un-ionized form contributes to the catalytic process of glutathione S-transferase, the thiolate anion being stabilized by hydrogen bond with Tyr7 and by interactions with hydrating water molecules. Proteins 28:530–542, 1997 © 1997 Wiley-Liss, Inc. 相似文献
18.
T Nishinaka M Fujioka H Nanjo J Nishikawa T Mizoguchi T Terada T Nishihara 《Biochemical and biophysical research communications》1991,176(3):966-971
Class Pi glutathione S-transferase was purified to homogeneity from pig lens cytosol. This enzyme was composed of two identical 22 kDa subunits and had isoelectric point of 8.5 from the results of SDS gel electrophoresis, gel filtration, amino acid sequence analysis and isoelectric focusing. Amino acid sequence of N-terminal 15 residues was almost identical to class Pi enzymes from human, rat and mouse. Antibody against the pig enzyme crossreacted to human glutathione S-transferase-pi and anti-rat glutathione S-transferase-P antibody crossreacted to pig enzyme. 相似文献
19.
20.
Polyclonal antisera to the alpha and pi isoenzymes of glutathione S-transferase have been used in immunohistochemical studies to determine the developmental expression of these isoforms in human kidney. Before 35 weeks of gestation, both isoenzymes were expressed by the collecting tubules and developing nephrons. After this time, expression of the alpha set was restricted to the proximal tubule and that of the pi set to the distal and collecting tubules and the loop of Henle. 相似文献