首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We previously described the identification of the 3'end of an unknown gene CDK7 using differential display which appeared to be up-regulated in diabetic kidneys [R.A. Page, C.A. Morris, J.D. Williams, C.J. von Ruhland, A.N. Malik, Isolation of diabetes-associated kidney genes using differential display, Biochem. Biophys. Res. Commun. 232 (1997) 49-53]. Here we show that CDK7 is a putative thiol related gene which is regulated by glucose in human and rat renal cells. CDK7 mRNA increased by >threefold in cultured human mesangial cells grown in high glucose for 4 days. In the kidneys of the GK rat, a model of type II diabetes, CDK7 showed a steady age-related increase in mRNA, increasing to >sixfold in 40 week GK rats compared to normoglycemic age-matched Wistar rat kidneys, this increase correlates with progressive hyperglycemia. CDK7 mRNA is widely expressed, showing particularly high levels of expression in rat and human liver, and encodes a putative 338 amino acids highly conserved peptide with several conserved domains, including a cys-pro-arg-cys domain conserved in 15 diverse species which is similar to the catalytic centre of thioredoxin, suggesting a role in oxidative stress.  相似文献   

2.
We previously showed that beta-defensin-1 (BD-1), an anti-microbial peptide, is up-regulated during progressive hyperglycemia in the kidneys of the GK rat [R.A. Page, C.A. Morris, J.D. Williams, C.J. von Ruhland, A.N. Malik, Isolation of diabetes-associated kidney genes using differential display, Biochem. Biophys. Res. Commun. 232 (1997) 49-53, R.A. Page, A.N. Malik, Elevated levels of beta-defensin-1 mRNA in diabetic kidneys of GK rats, Biochem. Biophys. Res. Commun. 310 (2003) 513-521]. In this paper, we show that human beta-defensin-1 (hBD-1) mRNA is directly up-regulated by glucose in cultured human renal cells. hBD-1 mRNA levels increased by approximately 7-fold and approximately 4-fold in human embryonic kidney (HEK) cells and human mesangial cells (HMC) grown in 25mM glucose for four days, as determined by quantitative real-time PCR. Immunofluorescence showed that the hBD1 protein is located in the cytoplasm of HEK cells and transfected HMCs. The highest levels of hBD-1 mRNA were found in the kidney compared with 21 other human tissues. The increased expression of hBD-1 mRNA in cultured HMCs in high glucose suggests a role for hBD-1 in the molecular pathways induced during hyperglycemia.  相似文献   

3.
目的运用高热量高蛋白饮食诱导GK大鼠2型糖尿病肾病模型的建立,并探讨其可能的作用机制。方法 28周龄GK大鼠24只,随机分成对照组、模型组,每组各12只,模型组给予高热量高蛋白饮食,对照组给予正常饮食,共8周。于第0、4、8周观察24 h尿微量白蛋白、24 h尿蛋白、尿肌酐、尿微量白蛋白/尿肌酐比值水平;于第0、8周观察空腹血糖和血清肌酐、尿素氮、总胆固醇、甘油三脂、一氧化氮水平;实验结束时取双肾称重并计算肾肥大指数,取肾组织观察病理形态学变化,检测肾组织钠钾ATP酶活性。结果与对照组比,模型组大鼠24 h尿微量白蛋白、24 h尿蛋白、尿微量白蛋白/尿肌酐比值、空腹血糖、总胆固醇、甘油三脂、一氧化氮、肾肥大指数水平和肾组织钠钾ATP酶活性显著提高,模型组肾小球体积增大,系膜基质增生,基底膜增厚明显。结论运用高热量高蛋白饮食诱导GK大鼠可成功建立2型糖尿病肾病模型。血糖血脂的上升是糖尿病肾病形成的重要因素,同时钠钾ATP酶活性增强进一步损伤肾小管功能,一氧化氮升高促使肾小球高灌注、高滤过,也是加速GK大鼠肾病形成的原因。  相似文献   

4.
目的检测大鼠β防御素(ratβ-defensin,rBD)在分泌性中耳炎大鼠咽鼓管鼓室的表达,探讨β防御素在分泌性中耳炎发病机制中的作用。方法排除中耳感染的清洁级SD大鼠48只,随机分为4组,前3组36只行颈部切口经右侧听泡注入脂多糖(lipopolysaccharide,LPS)溶液(1mg/mL)30μL制作分泌性中耳炎动物模型,造模后分别于第1、3、7天断头取咽鼓管鼓室黏膜;对照组12只右侧听泡注入生理盐水30μL,左侧听泡作为正常组,3d后断头取咽鼓管鼓室黏膜。逆转录聚合酶链反应(RT-PCR)检测咽鼓管鼓室rBD-1mRNA和rBD-2mRNA的表达。结果正常大鼠咽鼓管鼓室存在rBD-1和rBD-2的表达,且rBD-1的表达较rBD-2强,差异有统计学意义;造模后第1、3、7天,rBD-1表达变化不明显;rBD-2则在造模后第1、3天明显增加,差异有统计学意义,第7天渐回复到正常水平。结论在大鼠,rBD-1可能参与正常咽鼓管鼓室的防御功能,造模后rBD-2的表达增加可能与病原体入侵后的清除相关。  相似文献   

5.
INTRODUCTION It is well known that arachidonic acid (AA) exists ex- tensively in eukaryotic cells and it is metabolized by cycloxygenases and lipoxygenases to produce prostag- landins (PGs) and hydroperoxyeicosatetraenoic acid(HPETE) [1-3]. In the 1980’s…  相似文献   

6.
The innate immunity, utilizes a battery of broad-spectrum antibacterial cationic polypeptides (3-5 kDa) named alpha- and beta-defensins. Several beta-defensins have been isolated and shown to play a role in the defense of various tissues. Herein, we report the expression pattern of two rat beta-defensins, rBD-1 and rBD-2, in liver, kidney, lung, spleen, and brain using RT-PCR. To study polymorphism and verify gene identity, all cDNA products were sequenced. rBD-1 was expressed in the kidney, lung, brain, but not in spleen or liver, whereas rBD-2 was expressed in the lung, but not in the kidney or spleen. In addition, rBD-2 was expressed in the brain and liver. No polymorphism was found in the genes encoding rat beta-defensins. These findings demonstrate a different expression pattern for rBD-2 than what has been reported. We conclude that the rat may be a useful model to investigate the function and contribution of beta-defensins to host defense.  相似文献   

7.
8.
During a search for glucose-regulated abundant mRNAs in the diabetic rat kidney, we cloned thyroid hormone binding protein (THBP), also known as μ-crystallin or CRYM. The aim of this study was to investigate the effect of hyperglycemia/high glucose on the expression of THBP. THBP mRNA copy numbers were determined in kidneys and hearts of diabetic GK rats vs normoglycemic Wistar rats, and in human mesangial cells (HMCs) exposed to high glucose using real-time qPCR, and THBP protein levels were measured by Western blotting and immunofluorescence. Intracellular ROS was measured in THBP transfected cells using DCF fluorescence. Hyperglycemia significantly increased THBP mRNA in GK rat kidneys (326 ± 50 vs 147 ± 54, p < 0.05), and hearts (1583 ± 277 vs 191 ± 63, p < 0.05). Moreover, the levels of THBP mRNA increased with age and hyperglycemia in GK rat kidneys, whereas in normoglycemic Wistar rat kidneys there was a decline with age. High glucose significantly increased THBP mRNA (92 ± 37 vs 18 ± 4, p < 0.005), and protein in HMCs. The expression of THBP as a fusion protein in transfected HMCs resulted in reduction of glucose-induced intracellular ROS. We have shown that THBP mRNA is increased in diabetic kidney and heart, is regulated by high glucose in renal cells, and appears to attenuate glucose-induced intracellular ROS. These data suggest that THBP may be involved in the cellular pathways activated in response to glucose. This is the first report linking hyperglycemia with THBP and suggests that the role of THBP in diabetic complications should be further investigated.  相似文献   

9.
Three cDNA clones of rat renal dipeptidase (rrDP) were isolated from rat renal and pulmonary cDNA libraries using a DNA fragment of human renal DP cDNA clone, MDP4, as a probe. The complete amino acid sequence deduced from the cDNA contains 410 amino acid residues, beginning with a signal peptide of 16 amino acid residues. RNA blot hybridization analysis showed that 1.6 and 2.2 kb mRNAs were expressed in lung and kidney, however, only 1.6 kb mRNA was detected in small intestine. COS-1 cells transfected with the cDNA expressed enzymatically active rrDP.  相似文献   

10.
11.
12.
13.
Previous studies have demonstrated that experimental type 1 diabetes induced by streptozotocin causes alterations in the biochemical and functional properties of several receptor systems in the rat bladder. However, the exact mechanism involved in the pathophysiology of voiding dysfunction in type 2 diabetic patients is unknown. Because the GK rat is a widely accepted genetically determined rodent model for human type 2 diabetes, we investigated diabetes-induced changes in the bladder smooth muscle of the GK rats at several time points. Male GK rats and age-matched Wistar rats, as controls, were maintained for 4, 8, 16, and 32 weeks. Contractile responses to KCl, carbachol, ATP, and electrical field stimulation (EFS) were measured by using the isolated muscle bath techniques. Acetylcholine (ACh) release induced by EFS from bladder muscle strips was measured by using high-performance liquid chromatography coupled with a microdialysis procedure. Maximum contractile responses to carbachol and ATP, the release of ACh, and tissue sorbitol levels were similar in bladders from GK and control rats until 8 weeks of age. At 16 weeks of age, however, the contractile responses to carbachol and ATP, and tissue sorbitol levels were increased, and the EFS-induced ACh release was decreased in GK rats compared with controls. Although the maximum contractile responses to EFS were unchanged until 16 weeks of age, they were decreased in 32-week-old GK rats, compared with controls. Our data indicate the presence of age-related alterations in the biochemical and functional properties of the bladder in type 2 diabetic GK rats.  相似文献   

14.
Previous studies have demonstrated that experimental type 1 diabetes induced by streptozotocin causes alterations in the biochemical and functional properties of several receptor systems in the rat bladder. However, the exact mechanism involved in the pathophysiology of voiding dysfunction in type 2 diabetic patients is unknown. Because the GK rat is a widely accepted genetically determined rodent model for human type 2 diabetes, we investigated diabetes-induced changes in the bladder smooth muscle of the GK rats at several time points. Male GK rats and age-matched Wistar rats, as controls, were maintained for 4, 8, 16, and 32 weeks. Contractile responses to KCl, carbachol, ATP, and electrical field stimulation (EFS) were measured by using the isolated muscle bath techniques. Acetylcholine (ACh) release induced by EFS from bladder muscle strips was measured by using high-performance liquid chromatography coupled with a microdialysis procedure. Maximum contractile responses to carbachol and ATP, the release of ACh, and tissue sorbitol levels were similar in bladders from GK and control rats until 8 weeks of age. At 16 weeks of age, however, the contractile responses to carbachol and ATP, and tissue sorbitol levels were increased, and the EFS-induced ACh release was decreased in GK rats compared with controls. Although the maximum contractile responses to EFS were unchanged until 16 weeks of age, they were decreased in 32-week-old GK rats, compared with controls. Our data indicate the presence of age-related alterations in the biochemical and functional properties of the bladder in type 2 diabetic GK rats.  相似文献   

15.
Patients with diabetes are under a hypercoagulable state leading to generation of thrombin. It is not known whether thrombin plays a role in the progression of diabetic nephropathy. We analyzed gene expression of two thrombin receptors, protease-activated receptor-1 (PAR-1) and PAR-4 in the kidney of diabetic db/db mice. Mice developed hyperglycemia from 7 to 10 weeks of age and showed renal abnormalities such as mesangial expansion and urinary albumin excretion at 10 weeks of age. PAR-1 mRNA was up-regulated in isolated glomeruli in db/db mice compared with age-matched db/m littermates, but PAR-4 mRNA was not. In situ hybridization studies showed that PAR-1 mRNA was detected mainly at the glomerulus, and that intensive signals were observed in mesangial cells and podocytes. The up-regulation of PAR-1 in glomeruli in diabetic mice may play a role in the progression of glomerulosclerosis and abnormal urinary albumin excretion in diabetic nephropathy.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号