首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
俞昌喜  王庆平 《生理学报》1990,42(4):331-339
本文应用受体阻断、高效液相,6-OHDA 化学损毁神经末梢和放射自显影等多学科技术方法,探讨脊髓苯环立啶受体的心血管效应与去甲肾上腺素能神经系统的关系。结果表明,哌唑嗪、育亨宾均可对抗 ith PCP 的降压和减慢心率作用,ith PCP 产生降压和减慢心率作用时,脊髓脑脊液内 MHPG 的含量升高;用6-OHDA 损毁脊髓 NA 能神经末梢后,ith PCP的降压和减慢心率作用大为减弱,脊髓 PCP 受体密度亦同时大为降低。可以认为,脊髓内有 PCP 受体分布于 NA 能神经末梢上,促进 NA 释放或抑制 NA 重摄取,可能是脊髓 PCP 受体产生心血管抑制效应的重要机理。  相似文献   

2.
给戊巴比妥钠麻醉大鼠脊髓蛛网膜下腔注射(1)~δ受体激动剂[D-丙~2)-甲硫脑啡肽酰胺(40,80nmo1),[D-丙~2]-亮脑啡肽(50,100nmol),[D-丙~2,D-亮~5]-脑啡肽酰胺(2.5,10,40nmol)均可使大鼠动脉血压下降,心率减慢,具有剂量-效应关系,并可为阿片受体阻断剂纳洛酮所对抗。(2)k 受体激动剂乙基环唑新(100,500nmol)及中等剂量强啡肽(5nmol)对心血管活动无明显影响,大剂量强啡肽(10nmol)使血压下降,心率无明显改变。(3)μ受体激动剂吗啡(150nmol)和双氢埃托菲(0.1,0.5nmol)对血压和心率均无明显作用。以上结果提示在脊髓水平,内源性阿片样物质的心血管作用主要是通过δ受体实现的,激动δ受体对心血管活动产生抑制性影响。  相似文献   

3.
清醒大鼠侧脑室注射(icv)甲八肽酰胺(MET)可引起明显的降压和减慢心率作用。用小剂量纳洛酮(0.4mg/kg,ip)预处理可明显拮抗MET的减慢心率作用,但仅部分拮抗其降压作用。大剂量纳洛酮(10mg/kg,ip)才能翻转MET的降压作用。纳洛肼(30μg,icv)不能拮抗MET的减慢心率作用。icv强啡肽1—8可引起降压效应,但对心率无明显影响。此外,家兔icv MET引起降压作用的同时,血浆NA水平明显降低。阿托品可明显拮抗MET的减慢心率作用,但对其降压作用无明显影响。 以上结果提示,MET的减慢心率作用可能由mu 2亚型参与,mu 1亚型则否;而降压作用则由kappa和mu亚型共同参与调节。外周交感活动与MET的降压作用有关,外周迷走神经活动参与MET的减慢心率作用。  相似文献   

4.
大鼠侧脑室注射(icv)可乐宁和去甲肾上腺素(NE)引起血压降低和心率减慢。此效应可被α受体阻断剂酚妥拉明对抗。icvβ-内啡肽抗体、强啡肽抗体或大剂量阿片受体阻断剂纳洛酮也可防止可乐宁和 NE 降压效应的出现;而甲啡肽抗体、亮啡肽抗体或小剂量纳洛酮均无拮抗作用。以上结果表明,内源性β-内啡肽和强啡肽参与可乐宁和 NE 脑室注射所引起的降压效应。  相似文献   

5.
将乙酰胆碱(ACh)注入麻醉家兔脊髓蛛网膜下腔,观察其对心血管活动的影响。结果表明:(1)脊髓蛛网膜下腔注射50~100μg ACh可使血压下降,心率减慢;(2)预先由脊髓蛛网膜下腔注射阿托品,可阻断ACh引起的降压和降心率作用;(3)脊髓蛛网膜下腔注射六甲双铵、酚妥拉明或心得安均不能阻断上述ACh的心血管反应;(4)切断两侧颈部迷走神经,ACh不再使心率减慢,但其降低血压的作用不受到任何影响。 脊髓中ACh水平升高可通过激活胆碱能M-受体引起血压下降和心率减慢。ACh的这种降压作用既没有中枢肾上腺素能受体活动参与,也不是通过迷走神经实现的,可能是由于脊髓交感血管中枢紧张性降低所造成的。  相似文献   

6.
给大鼠脊髓蛛网膜下腔注射γ-氨基丁酸(GABA)受体激动剂异鹅羔胺(0.125—0.25μg)能显著降低动物的动脉血压和心率。这种作用可被 GABA 受体阻断剂氯甲基荷包牡丹碱(1.0μg)所翻转,且具有剂量-效应关系。另一种 GABA 受体激动剂 THIP(5μg)以及GABA(500μg)也同样具有降低血压和心率的作用。说明激活脊髓内 GABA 受体具有降低血压和减慢心率的作用。肾上腺素α受体阻断剂育亨宾(30μg)能翻转可乐宁(0.25μg)的降压作用,但不能对抗异鹅羔胺的作用;GABA 受体阻断剂氯甲基荷包牡丹碱可翻转异鹅羔胺的作用,对可乐宁则无效。说明脊髓内异鹅羔胺和可乐宁降血压和减慢心率的作用没有相互的依存关系。  相似文献   

7.
梅林  韩济生 《生理学报》1991,43(2):156-163
过去的工作已经证明八肽胆囊收缩素(CCK-8)能够对抗阿片肽的镇痛作用,本工作探讨CCK-8是否能够对抗阿片肽的心血管抑制作用。给戊巴比妥钠麻醉大鼠脊髓蛛网膜下腔(ith)注射 CCK-8可以对抗 ith 注射 mu(μ)型阿片受体激动剂[NMePhe~3,D-Pro~4]Morphiceptin(PL017)(5μg)、delta(δ)型受体激动剂[D-Ala~2,D-Leu~5]Enkephalin(DADLE)(25μg)和 Kappa(K)型受体激动剂[N-Me Tyr,N-Me Arg~7,D-Leu~8]Dynorphin 1-8 ethyla-mide(66A-078)(1μg)引起的降低血压和减慢心率作用。在 MAP 的表现上,CCK-8的拮抗作用(10μg及以下剂量)具有量-效关系,并可被 CCK 受体阻断剂丙谷胺(Proglumide)(100μg)翻转。在 HR 的表现上,上述剂量的 CCK-8也显示了一定的拮抗作用,但量-效关系不如 MAP 表现得明显。单纯将 CCK-8或 Proglumide ith 注射,可见大剂量(50μg)CCK-8可以引起明显的降血压作用和短时的降心率作用,小剂量(0.05μg)CCK-8则表现出明显的降心率作用;ith 注射 Proglumide 100μg,30 min 后也表现出减慢心率的作用。以上结果提示:在脊髓水平,一定剂量范围内的 CCK-8能够对抗阿片肽的心血管抑制效应,此对抗作用是通过 CCK 受体实现的。本工作的结果支持关于 CCK-8是一种抗阿片物质的设想。  相似文献   

8.
本文对乌拉坦麻醉大鼠采用电刺激伏核和脑内微量注射等方法,观察伏核对血压、心率的影响:(1)电刺激伏核具有明显的血压降低和心率减慢作用。(2)红藻氨酸微量注入伏核可消除上述反应。(3)伏核内注射纳洛酮可阻断电刺激伏核的心血管抑制反应(简称电刺激效应);μ受体激动剂DAGO微量注入伏核也能引起血压降低和心率减慢,减少幅度与电刺激效应相似,而κ受体激动剂U-50无此作用。(4)电刺激伏核时于蓝斑内记录到抑制性自发电活动,频率减慢,波幅交大、变宽。(5)切除颈部双侧迷走神经消除了电刺激伏核的心率变化,但降压反应依然存在。以上结果提示:伏核内某些神经元与心血管活动有关,并且至少涉及阿片肽能神经元及μ阿片受体。蓝斑和迷走神经可能参与上述心血管抑制反应。  相似文献   

9.
大鼠脊髓蛛网膜下腔注射α激动剂可乐宁1μg,引起血压降低、心率减慢及腹腔神经节后交感神经干放电抑制。应用α阻断剂酚妥拉明阻断脊髓内源性 NE的作用,可部分抑制血压升高时反射性的心率减慢和交感神经放电抑制反应,使压力感受器反射的敏感性降低。在颈动脉放血造成不可逆性失血性休克的动物,脊髓蛛网膜下腔注射酚妥拉明可使动脉血压有一定程度的回升。以上结果表明,由脊髓α受体调制的心血管抑制效应参与减压反射以及失血性休克的发病机制。  相似文献   

10.
有效的雄激素受体(androgen receptor,AR)激动剂与拮抗剂,可上调或下调雄激素受体刺激反应,起到治疗相关疾病的作用。高通量细胞筛选模型的建立,可扩大AR激动剂与拮抗剂筛选范围,加快筛选速度。本研究通过构建人雄激素受体表达重组质粒pcDNA 3.1-h AR,并与受雄激素效应元件调控的报告基因质粒MMTV-LTR-Luc F-R共转染人胚胎肾细胞293T,构建基于双荧光素酶报告基因的AR激动剂与拮抗剂筛选高通量细胞模型。AR激动剂5α-双氢睾酮可诱导该细胞模型荧光素酶的产生,AR拮抗剂尼鲁他明可拮抗5α-DHT的刺激作用,糖皮质激素受体激动剂地塞米松对细胞模型荧光素酶的产生无作用。  相似文献   

11.
The study was designed to determine the cardiovascular effects of histamine administered intracerebroventricularly (icv) in a rat model of volume-controlled haemorrhagic shock. The withdrawal of approximately 50% of total blood volume resulted in the death of all control saline icv treated animals within 30 min. Icv injection of histamine produced a prompt dose-dependent (0.1-100 nmol) and long-lasting (10-100 nmol) increase in mean arterial pressure (MAP), pulse pressure (PP) and heart rate (HR), with a 100% survival of 2h after treatment (100 nmol). The increase in MAP and HR after histamine administration in bled rats in comparison to the normovolaemic animals was 2.7-3.3- and 1.3-3.6-fold higher, respectively. Pretreatment with chlorpheniramine (50 nmol icv), H1 receptor antagonist, inhibited the increase in MAP, PP, HR and survival rate produced by histamine, while chlorpheniramine given alone had no effect. Neither ranitidine (50 nmol icv), H2 histamine receptor antagonist, nor thioperamide (50 nmol icv), H3 receptor blocker, influenced the histamine action, however, when given alone, both evoked the pressor effect with elongation of survival time. It can be concluded that histamine administered icv reverses the haemorrhagic shock conditions, and histamine H1 receptors are involved.  相似文献   

12.
Hydrogen sulfide (H(2)S), an endogenous "gasotransmitter", exists in the central nervous system. However, the central cardiovascular effects of endogenous H(2)S are not fully determined. The present study was designed to investigate the central cardiovascular effects and its possible mechanism in anesthetized rats. Intracerebroventricular (icv) injection of NaHS (0.17~17 microg) produced a significant and dose-dependent decrease in blood pressure (BP) and heart rate (HR) (P < 0.05) compared to control. The higher dose of NaHS (17 microg, n = 6) decreased BP and HR quickly of rats and 2 of them died of respiratory paralyse. Icv injection of the cystathionine beta-synthetase (CBS) activator s-adenosyl-L-methionine (SAM, 26 microg) also produced a significant hypotension and bradycardia, which were similar to the results of icv injection of NaHS. Furthermore, the hypotension and bradycardia induced by icv NaHS were effectively attenuated by pretreatment with the K(ATP) channel blocker glibenclamide but not with the CBS inhibitor hydroxylamine. The present study suggests that icv injection of NaHS produces hypotension and bradycardia, which is dependent on the K(ATP) channel activation.  相似文献   

13.
Summary The effects of intracerebroventricular (icv) injections of angiotensin II (ANG II) on water intake, blood pressure, heart rate, and plasma arginine-vasopressin (AVP) concentration were studied in chronically instrumented adult male Syrian golden hamsters (Mesocricetus auratus). Furthermore, the effects of pharmacological ganglionic blockade, and of vascular AVP receptor blockade, on central ANG II-induced cardiovascular responses were investigated. ANG II (1, 10, and 100 ng, icv) elicited dose-dependent increases in water intake and arterial blood pressure. Heart rate showed a biphasic response with a short initial non dose-dependent tachycardic and a subsequent longer lasting bradycardic phase. Plasma AVP concentration was increased two and a half fold with 100 ng ANG II icv. Both ganglionic blockade and vascular AVP receptor blockade significantly attenuated the central ANG II-induced pressor response. The tachycardic phase of the heart rate response was abolished by ganglionic blockade and the bradycardic phase was significantly diminished by AVP receptor blockade. The results support the hypothesis that brain ANG II may participate in the central control of body fluid volume and in central cardiovascular regulation in conscious hamsters.  相似文献   

14.
Mu-opioid receptor activation increases body temperature and affects cardiovascular function. In the present study, fentanyl was administered intravenously [100 mug/kg (300 nmol/kg) iv] and intracerebroventricularly [3.4 mug (10 nmol) in 10 microl icv] in urethane-chloralose-anesthetized, artificially ventilated rats. Increases in brown adipose tissue (BAT) sympathetic nerve activity (SNA) (peak, +326% of control), BAT temperature (peak, +0.8 degrees C), renal SNA (peak, +146% of control), and heart rate (HR; peak, +32 beats/min) produced by intravenous fentanyl were abolished by premamillary transection of the neuraxis but were mimicked by intracerebroventricular administration of fentanyl, which also increased arterial pressure (AP; peak, +12 mmHg). Pretreatment with the opioid antagonist naloxone (100 nmol in 10 microl icv) eliminated the intracerebroventricular fentanyl-evoked responses. Microinjection of glycine (0.5 M, 60 nl) to inhibit local neurons in the rostral raphe pallidus (RPa) selectively reversed the intracerebroventricular fentanyl-evoked increases in BAT SNA and HR, while the fentanyl-evoked excitation in RSNA, the pressor responses, and the tachycardic responses were reversed by inhibition of neurons in the rostral ventrolateral medulla (RVLM). Prior inhibition of neurons in the dorsomedial hypothalamus eliminated the intracerebroventricular fentanyl-evoked increases in BAT SNA, BAT temperature, and HR, but not those in RSNA or AP. These results indicate that activation of central mu-opioid receptors with fentanyl can elicit BAT thermogenesis and cardiovascular stimulation through excitation of the sympathetic outflows to BAT, kidney, and heart. Activation of neurons in the rostral RPa and RVLM are essential for the increases in BAT thermogenesis and renal sympathoexcitation, respectively, induced by activation of central mu-opioid receptors. BAT thermogenesis could contribute to fentanyl-evoked hyperthermia, particularly in infants where BAT plays a significant role in thermoregulation.  相似文献   

15.
The depressor and sympathoinhibitory effect of the imidazoline drug clonidine is reported to be associated with functional states of the central glutamate receptors. The rostral ventrolateral medulla (RVLM) has been recognized as a specific target area for mediating the central depressor mechanism of clonidine. The objective of this study was to determine the role of the glutamate receptor subtype alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate receptor within the RVLM in clonidine-induced depressor and sympathoinhibitory action in anesthetized normotensive rats. Unilateral microinjection of 200 pmol of 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), a potent AMPA/kainate receptor antagonist, into the RVLM completely abolished the pressor action evoked by AMPA (5 pmol) without affecting the pressor action of N-methyl-D-aspartate (20 pmol). Pretreatment with intra-RVLM injection of CNQX (20 and 200 pmol) dose dependently attenuated the reduction in blood pressure (BP), heart rate (HR), and renal sympathetic nerve activity (RSNA) elicited by intra-RVLM clonidine (5 nmol) or intravenous clonidine (10 microg/kg), while 2 pmol of CNQX did not alter clonidine-induced cardiovascular action. Furthermore, the decreases in BP, HR, and RSNA evoked by intravenous clonidine (10 microg/kg) or intra-RVLM clonidine (5 nmol) were reversed when CNQX (20 and 200 pmol) was subsequently injected into the RVLM. In conclusion, these data show that blockade of AMPA/kainate receptors in the RVLM significantly antagonizes decreases in BP, HR, and sympathetic activity induced by clonidine, suggesting that the AMPA/kainate receptors within the RVLM contribute to the depressor and sympathoinhibitory effect of clonidine.  相似文献   

16.
Stresscopin (SCP or urocortin III), a member of the corticotropin-releasing factor (CRF) neuropeptide family, is a high-affinity ligand for the type 2 CRF receptor (CRF(2)). When administered peripherally, SCP suppresses food intake, delays gastric emptying and decreases heat-induced edema. Central administration of CRF produces marked hypertension and increased plasma catecholamine. However, the effects of SCP on the cardiovascular system are unknown. Thus, the present study compared the effects of intracerebroventricular (i.c.v.) administration of CRF and SCP on cardiovascular function. Central administration of SCP (0.05 or 0.5 nmol) elicited transient increases in mean arterial blood pressure (MABP) and heart rate (HR), and the higher dose of SCP (0.5 nmol) resulted in increased plasma epinephrine. In contrast, central administration of CRF provoked long-lasting increases in MABP, HR and plasma catecholamine levels (norepinephrine and epinephrine). Intravenously administered CRF and SCP (0.5 nmol) did not elicit significant changes in MABP and HR. Therefore, these data suggest that centrally administered SCP modulates cardiovascular function, likely through the sympatho-adrenal-medullary (SAM) system.  相似文献   

17.
Porter JP  Phillips A  Rich J  Wright D 《Life sciences》2004,75(13):1595-1607
There is increasing evidence that early life stressors may program blood pressure control mechanisms such that the risk for cardiovascular disease in later life is increased. In the present investigation, the effect of repeated restraint/heat stress during the two-week period immediately after weaning on baroreflex function was determined and the contribution of brain angiotensin II (ANG II) to the changes was assessed in young, conscious, freely moving Sprague Dawley rats. In rats two weeks post weaning, basal MAP was significantly higher and basal HR significantly lower than rats tested immediately after weaning. This change in the operating point of HR was not accompanied by any changes in baroreflex function. Treatment with chronic icv infusion of losartan, an AT1 receptor antagonist, during the two-week period prevented the changes in basal MAP and HR. Chronic stress during the two weeks post weaning, whether due to surgical implantation of icv cannulae or due to restraint/heat stress, significantly shifted the set-point of the baroreflex function to a higher pressure. Chronic icv infusion of losartan during the period prevented these effects (at least in the case of stress due to the presence of icv cannulae) suggesting a role for brain ANG II in the change. Changes in the expression of CRH mRNA in the paraventricular nucleus could not explain the stress-related change in baroreflex function. If the rightward shift in the baroreflex persists into adulthood, it could increase the susceptibility to cardiovascular diseases such as hypertension.  相似文献   

18.
Previous studies demonstrated that intracerebroventricular (icv) injection of a kappa opioid receptor agonist decreased, and a mu agonist increased, body temperature (Tb) in rats. A dose-response study with the selective kappa antagonist nor-binaltorphimine (nor-BNI) showed that a low dose (1.25 nmol, icv) alone had no effect, although a high dose (25 nmol, icv) increased Tb. It was hypothesized that the hyperthermia induced by nor-BNI was the result of the antagonist blocking the kappa opioid receptor and releasing its inhibition of mu opioid receptor activity. To determine whether the Tb increase caused by nor-BNI was a mu receptor-mediated effect, we administered the selective mu antagonist CTAP (1.25 nmol, icv) 15 min after nor-BNI (25 nmol, icv) and measured rectal Tb in unrestrained rats. CTAP significantly antagonized the Tb increase induced by icv injection of nor-BNI. Injection of 5 or 10 nmol of CTAP alone significantly decreased the Tb, and 1.25 nmol of nor-BNI blocked that effect, indicating that the CTAP-induced hypothermia was kappa-mediated. The findings strongly suggest that mu antagonists, in blocking the basal hyperthermia mediated by mu receptors, can unmask the endogenous kappa receptor-mediated hypothermia, and that there is a tonic balance between mu and kappa opioid receptors that serves as a homeostatic mechanism for maintaining Tb.  相似文献   

19.
The effects of intracerebroventricular (icv) administration of a corticotropin-releasing factor (CRF) receptor antagonist, alpha-helical CRF, on systemic and regional hemodynamic adjustments to exercise were studied in conscious rats. On consecutive days, rats received saline icv, alpha-helical CRF icv, and no treatment 30 min before treadmill exercise (TMX). Increases in heart rate (HR) and mean arterial pressure (MAP) in response to TMX (16.1-28.6 m/min) were similar after icv administration of saline or no treatment. In rats receiving saline icv or no treatment, estimated vascular resistance increased in the mesenteric and renal regions and declined in the iliac (hindlimb) region. After icv administration of alpha-helical CRF9-41, HR and MAP responses during TMX were significantly attenuated. In addition, TMX-induced elevations of estimated mesenteric vascular resistance and iliac blood flow velocity were blunted after CRF receptor blockade. These altered cardiovascular and hemodynamic responses were ultimately reflected in the animals' compromised ability to run. The results suggest that the central nervous system actions of endogenous CRF are necessary for the full expression of the cardiovascular adjustments to TMX in the conscious rat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号