首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
o-Diphenoloxidase from potato tubers is inactivated in the course of the oxidation reaction of o-diphenols at the level of the enzyme-substrate complex. At 25 degrees C of the reaction mixture the enzyme inactivation rate constants (Kin) in oxidation of 10 mM solutions of the substrates were: for pyrocatechol--0.48 min-1; 3,4-dihydroxyphenylethylamine (DOP-amine)--0.52 min-1; 3,4-dihydroxyphenylalanine (DOPA)--0.17 min-1; noradrenaline--0.12 min-1; 3,4-dihydroxybenzaldehyde (DHBA)--0.032 min-1; 3,4-dihydroxybenzoic acid (DHBAc)--0.01 min-1; gallic acid--0.01 min-1. Kin of the enzyme in oxidation of pyrocatechol does not depend practically on pH, ionic strength and polarity of the medium, but rises with its temperature. For a temperature range from 20 to 40 degrees C the effective activation energy calculated in terms of the Arrhenius equation is equal to 28 kJ/mol and the preexponential value for the given preparation was 38 850 min-1. The enzyme activity is determined by the substituent nature in the substrate molecule: electron-donor groups (--CH2--) accelerate the oxidation as compared to nonsubstituted pyrocatechol and electron-acceptor groups (--COOH, --CHO) make it more difficult. If the o-diphenoloxidase activity in oxidation of a 10 mM solution of pyrocatechol is 100%, then the oxidation rate of DOP-amine taken in the same concentration would be 111, DOPA--61, noradrenaline--24, DOBA--2,7, DHBA--0.7, gallic acid--0.8%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Pyrocatechol was studied as an inhibitor of jack bean urease in 20 mM phosphate buffer, pH 7.0, 25 degrees C. The inhibition was monitored by an incubation procedure in the absence of substrate and reaction progress studies in the presence of substrate. It was found that pyrocatechol acted as a time- and concentration dependent irreversible inactivator of urease. The dependence of the residual activity of urease on the incubation time showed that the rate of inhibition increased with time until there was total loss of enzyme activity. The inactivation process followed a non-pseudo-first order reaction. The obtained reaction progress curves were found to be time-dependent. The plots showed that the rate of the enzyme reaction in the final stages reached zero. From protection experiments it appeared that thiol-compounds such as L-cysteine, 2-mercaptoethanol and dithiothreitol prevented urease from pyrocatechol inactivation as well as the substrate, urea, and the competitive inhibitor boric acid. These results proved that the urease active site was involved in the pyrocatechol inactivation.  相似文献   

3.
Pyrocatechol was studied as an inhibitor of jack bean urease in 20?mM phosphate buffer, pH 7.0, 25°C. The inhibition was monitored by an incubation procedure in the absence of substrate and reaction progress studies in the presence of substrate. It was found that pyrocatechol acted as a time- and concentration dependent irreversible inactivator of urease. The dependence of the residual activity of urease on the incubation time showed that the rate of inhibition increased with time until there was total loss of enzyme activity. The inactivation process followed a non-pseudo-first order reaction. The obtained reaction progress curves were found to be time-dependent. The plots showed that the rate of the enzyme reaction in the final stages reached zero. From protection experiments it appeared that thiol-compounds such as l-cysteine, 2-mercaptoethanol and dithiothreitol prevented urease from pyrocatechol inactivation as well as the substrate, urea, and the competitive inhibitor boric acid. These results proved that the urease active site was involved in the pyrocatechol inactivation.  相似文献   

4.
The kinetics of horseradish peroxidase (EC 1.11.1.7)-catalyzed oxidation of o-dianisidine by hydrogen peroxide in the presence of thiourea were studied. At the first, fast step of this process thiourea acts as a competitive reversible inhibitor with respect to o-dianisidine (Ki = 0.22 mM). The formation of a thiourea-peroxidase complex was determined by the increase in the absorbance at A495 and A638 of the enzyme. The dissociation constant for the peroxidase-thiourea complex is equal to 2.0-2.7 mM. Thiourea is not a specific substrate of peroxidase during the oxidation reaction by H2O2, but is an oxidase substrate (although not a very active one) of peroxidase. The irreversible inactivation of the enzyme during its incubation with thiourea was studied. The first-order inactivation rate constant (kin) was shown to increase with a fall in the enzyme concentration. The curve of the dependence of kin on the initial concentration of thiourea shows a maximum at 5-7 mM. The enzyme inactivation is due to its modification by intermediate free radical products of thiourea oxidation. The inhibitors of the free radical reactions (o-dianisidine) protect the enzyme against inactivation. The degree of inactivation depends on concentrations and ratio of thiourea and peroxidase. A possible mechanism of peroxidase interaction with thiourea is discussed.  相似文献   

5.
Inactivation of glucose 6-phosphate dehydrogenase (G6PDH) complexed with its substrate, glucose 6-phosphate (GP), and/or cofactor, NADP+, has been studied within the range 20-40 degrees C in three media: (a) 0.04 M NaOH-glycine buffer (pH 9.1); (b) Aerosol OT (AOT) reversed micelles in octane; and (c) Triton X-100 micelles in octane supplemented with 10% hexanol. The enzyme inactivation was characterized quantitatively by first order rate constants, kin (s-1). In the case of G6PDH-NADP+ complexes, the values of kin were independent of the initial concentrations of G6PDH, either in aqueous medium or AOT micelles. The values of kin for the complex G6PDH-GP were inversely related to the initial concentration of the enzyme, in both aqueous and micellar media. When inactivation of both complexes were studied in AOT micelles, minimum values of kin corresponded to the degree of hydration W0 = 16.7; at W0 > 16.7 and W0 < 16.7, kin increased. Within the range 20-40 degrees C, the values of kin measured for both complexes in aqueous medium were significantly lower than those measured in AOT micelles. Temperature dependences of kin were characterized by inflections in Arrhenius plots, which corresponded, depending on the medium, to certain temperatures from 33.6 degrees C to 40 degrees C. In all media studied, NADP+ complexes of the enzyme exhibited higher stability than their GP counterparts. The parameters of G6PDH and G6PDH-NADP+ melting, measured by differential scanning microcalorimetry (maximum temperature and half-width of the transition, enthalpy of denaturation, and van't Hoff enthalpy), provided unequivocal evidence of the higher stability of the complex as compared to that of the enzyme. In addition, this approach demonstrated that G6PDH undergoes destabilization in AOT micelles.  相似文献   

6.
Kinetic patterns of sonication-induced inactivation of bovine liver catalase (CAT) were studied in buffer solutions (pH 4-11) within the temperature range from 36 to 55 degrees C. Solutions of CAT were exposed to low-frequency (20.8 kHz) ultrasound (specific power, 48-62 W/cm2). The kinetics of CAT inactivation was characterized by effective first-order rate constants (s-1) of total inactivation (kin), thermal inactivation (*kin), and ultrasonic inactivation (kin(us)). In all cases, the following inequality was valid: kin > *kin. The value of kin(us) increased with the ultrasound power (range, 48-62 W/cm2) and exhibited a strong dependence on pH of the medium. On increasing the initial concentration of CAT (0.4-4.0 nM), kin(us) decreased. The three rate constants were minimum within the range of pH 6.5-8; their values increased considerably at pH < 6 and pH > 9. At 36-55 degrees C, temperature dependence of kin(us) was characterized by an activation energy (Eact) of 19.7 kcal/mol, whereas the value of Eact for CAT thermoinactivation was equal to 44.2 kcal/mol. Bovine serum and human serum albumins (BSA and HSA, respectively) inhibited sonication-induced CAT inactivation; complete prevention was observed at concentrations above 2.5 micrograms/ml. Dimethyl formamide (DMFA), a scavenger of hydroxyl radicals (HO.), prevented sonication-induced CAT inactivation at 10% (kin and *kin increased with the content of DMFA at concentrations in excess of 3%). The results obtained indicate that free radicals generated in the field of ultrasonic cavitation play a decisive role in the inactivation of CAT, which takes place when its solutions are exposed to low-frequency ultrasound. However, the efficiency of CAT inactivation by the radicals is determined by (1) the degree of association between the enzyme molecules in the reaction medium and (2) the composition thereof.  相似文献   

7.
Reaction conditions for the synthesis of L-tyrosine or L-dopa from DL-serine and phenol or pyrocatechol were studied with intact cells of Erwinia herbicola (ATCC 21434) containing high tyrosine phenol lyase activity. The optimum pH for this reaction was around 8.0, and the optimum temperature range was between 37~40°C for the synthesis of L-tyrosine and between 15~25°C for that of L-dopa. Sodium sulfite and EDTA were added to protect the synthesized L-dopa from decomposition. As high concentrations of phenol or pyrocatechol denatured the enzyme, each substrate was fed to maintain the optimum concentration during incubation.

The reaction mixture (100 ml) containing 4.0 g of DL-serine, 1.0 g of phenol or 0.7 g of pyrocatechol, 0.5 g of ammonium acetate and the cells, was incubated. During incubation, phenol or pyrocatechol was fed at intervals to maintain the substrate at the initial concentration. 5.35 g of L-tyrosine or 5.10 g of L-dopa was synthesized in 100 ml of the reaction mixture.  相似文献   

8.
Myeloperoxidase (donor: hydrogen-peroxide oxidoreductase, EC 1.11.1.7) was isolated from leukocytes of patients with chronic granulocyte leukemia. In the presence of H2O2 and Cl- at pH 4.0-6.6 the myeloperoxidase catalyses chlorination of taurine to monochloramine taurine and simultaneously undergoes inactivation. The myeloperoxidase inactivation rate depends on the concentration of H2O2 and Cl-: both the initial rate of chlorination and myeloperoxidase inactivation rate increase with increasing concentration of H2O2. However, an increase in concentration of Cl- results in a decrease in enzyme inactivation. At a given H2O2 concentration, myeloperoxidase inactivation is a first order reaction, which implied that the enzyme may react with a substrate a limited number of times.  相似文献   

9.
Ulva pertusa Kjellm alkaline phosphatase (EC 3.3.3.1) is a metalloenzyme, the active site of which contains a tight cluster of two zinc ions and one magnesium ion. The kinetic theory described by Tsou of the substrate reaction during irreversible inhibition of enzyme activity has been employed to study the kinetics of the course of inactivation of the enzyme by EDTA. The kinetics of the substrate reaction at different concentrations of the substrate p-nitrophenyl phosphate (PNPP) and inactivator EDTA indicated a complexing mechanism for inactivation by, and substrate competition with, EDTA at the active site. The inactivation kinetics are single phasic, showing that the initial formation of an enzyme-EDTA complex is a relative rapid reaction, following by a slow inactivation step that probably involves a conformational change of the enzyme. The presence of Zn2+ apparently stabilizes an active-site conformation required for enzyme activity.  相似文献   

10.
The dynamics of prostaglandin (PG) E2 synthesis by mouse peritoneal macrophages during the delivery of the basic substrate, arachidonic acid (AA), from different sources to the enzyme system of the cells was investigated. The dynamics of PGE2 synthesis in these cells was studied both after addition of exogenous AA and after stimulating the liberation of AA from intracellular pools with the calcium ionophore A23187. The kinetics of PGE2 synthesis when AA was supplied from intracellular and extracellular sources were absolutely different. PGE2 metabolism and the inactivation of the key enzyme of PG synthesis (PGH-synthase) during the reaction may be the regulating factors in the kinetics of PGE2 synthesis in the cells. For the different sources of AA in the cells, the rate constants of PGE2 consumption (k2) and PGH-synthase inactivation in the course of the reaction (kin) were calculated. The experimentally determined value of the apparent rate constant kin was identical to the theoretically calculated kin value for the case when AA was provided from an intracellular source. An observed deceleration in the PGE2 synthesis kinetics from exogenous AA is characterized by a 10-fold drop in the apparent kin and k2 values. The possibility of prostanoid synthesis regulation at the level of the traditional, constitutive isoenzyme PGH-synthase-1 is discussed.  相似文献   

11.
Green crab (Scylla Serrata) alkaline phosphatase (EC 3.1.3.1.) is a metalloenzyme, the each active site in which contains a tight cluster of two zinc ions and one magnesium ion. The kinetic theory of the substrate reaction during irreversible inhibition of enzyme activity previously described by Tsou has been applied to a study on the kinetics of the course of inactivation of the enzyme by ethylenediaminetetraacetic acid disodium (EDTA). The kinetics of the substrate reaction with different concentrations of the substrate p-nitrophenyl phosphate (PNPP) and inactivator EDTA suggested a complexing mechanism for inactivation by, and substrate competition with, EDTA at the active site. The inactivation kinetics are single phasic, showing the initial formation of an enzyme-EDTA complex is a relatively rapid reaction, followed a slow inactivation step that probably involves a conformational change of the enzyme. Zinc ions are finally removed from the enzyme. The presence of metal ions apparently stabilizes an active-site conformation required for enzyme activity.  相似文献   

12.
The kinetics of thermal inactivation of A. terreus alpha-rhamnosidase was studied using the substrate p-nitrophenyl alpha-L-rhamnoside between 50 degrees C and 70 degrees C. Up to 60 degrees C the inactivation of the purified enzyme was completely reversible, but samples of crude or partially purified enzyme showed partial reversibility. The presence of the product rhamnose, the substrate naringin, and other additives reduced the reversible inactivation, maintaining in some cases full enzyme activity at 60 degrees C. A mechanism for the inactivation process, which permitted the reproduction of experimental results, was proposed. The products rhamnose (inhibition constant, 2.1 mM) and prunin (2.6 mM) competitively inhibited the enzyme reaction. The maximum hydrolysis of supersaturated naringin solution, without enzyme inactivation, was observed at 60 degrees C. Hydrolysis of naringin reached 99% with 1% naringin solution, although the hydrolysis degree of naringin was only 40% due to products inhibition when the initial concentration of flavonoid was 10%. The experimental results fitted an equation based on the integrated Michaelis-Menten's, including competitive inhibition by products satisfactorily.  相似文献   

13.
Potato tuber o-diphenoloxidase is found to exist in heterogenous mixture of forms differing from each other in their molecular weight, electrophoretic mobility, substrate specificity. A method is proposed which permits to isolate several molecular forms of the enzyme in a relatively homogenous state. Conditions are studied, in which interconversion of o-diphenoloxidase molecular forms takes place.  相似文献   

14.
本文将邹氏的在酶的活性修饰剂存在下的底物反应动力学理论应用于氨基酰化酶被金属螯合剂PAR脱锌而失活的动力学研究。通过对不同浓度的PAR存在下底物反应过程和含有PAR的不同浓度的底物中酶促反应的分析,讨论了PAR对氨基酰化酶的脱锌机制。这一过程很可能按如下机制进行:首先,PAR与酶分子活性部位的锌结合,形成一复合物,这一步是较快的反应,然后发生一个可逆的构象变化,最后是不可逆的去锌步骤。锌的存在显然稳定了酶活性部位的构象,而这正是酶活性所必需的。  相似文献   

15.
Inactivation kinetics of mushroom tyrosinase by cetylpyridinium chloride   总被引:1,自引:0,他引:1  
Cetylpyridinium chloride (CPC) was found to inactivate tyrosinase from mushroom (Agaricus bisporus). CPC can bind to the enzyme molecule and induce the enzyme conformation changes. The fluorescence intensity (at 338.4 nm) of the enzyme decreased distinctly with increasing CPC concentrations, and a new little fluorescence emission peak appeared near 372 nm. The inactivation of the enzyme by CPC had first been studied by using the kinetic method of the substrate reaction described by Tsou. The results showed that the enzyme was inactivated by a complex mechanism that had not been previously identified. The enzyme first quickly binds with CPC reversibly and then undergoes a slow irreversible inactivation. The inactivation reaction is a single molecule reaction and the apparent inactivation rate constant is a saturated trend being independent of CPC concentration if the concentration is sufficiently high. The micro rate constants of inactivation and the association constant were determined.  相似文献   

16.
The reactor choice is crucial when designing a process where inactivation of the biocatalyst is a problem. The main bottleneck for the chemo-enzymatic epoxidation has been found to be enzyme inactivation by the hydrogen peroxide, H(2) O(2) , substrate. In the work reported here, the effect of reaction parameters on the reaction performance have been investigated and used to establish suitable operating strategies to minimize the inactivation of the enzyme, using rapeseed methyl ester (RME) as a substrate in a solvent-free system. The use of a controlled fed-batch reactor for maintaining H(2) O(2) concentration at 1.5 M resulted in increased productivity, up to 76 grams of product per gram of biocatalyst with higher retention of enzyme activity. Further investigation included a multistage design that separated the enzymatic reaction and the saturation of the RME substrate with H(2) O(2) into different vessels. This setup showed that the reaction rate as well as enzyme inactivation is strongly dependent on the H(2) O(2) concentration. A 20-fold improvement in enzymatic efficiency is required for reaching an economically feasible process. This will require a combination of enzyme modification and careful process design.  相似文献   

17.
1. The enzyme which splits threonine to acetaldehyde and glycine has been partially purified from rat liver (five- to sixfold purification) and the name threonine aldolase proposed for it. 2. The general properties of threonine aldolase have been studied. The enzyme is unstable to a pH below 5. The pH optimum of the enzyme reaction is at 7.5-7.7. The initial rate of production of acetaldehyde is proportional to the enzyme concentration, and when the enzyme concentration is constant, the production of acetaldehyde is proportional to the time, provided that the substrate is in excess. The enzyme is inhibited by the carbonyl group reagent, hydroxylamine. Attempts to demonstrate that pyridoxal phosphate is a cofactor were unsuccessful. 3. The enzyme splits only L-allothreonine and L-threonine and is inactive against the D-forms of these amino acids. 4. The enzyme reaction on DL-allothreonine follows first order kinetics. From the first order velocity constants and the initial rates of the rates of the reaction at various substrate concentrations the Michaelis constant, Ks, for this substrate has been evaluated. Michaelis constants have also been determined for threonine. 5. The optimum temperature for the enzymatic breakdown of DL-allothreonine at pH 7.65 was found to be 50 degrees C. in phosphate buffer and 48 degrees C. in tris-maleate buffer. The rate of thermal inactivation of the enzyme threonine aldolase obeys a first order reaction. The heat of thermal inactivation was calculated by the aid of the van't Hoff-Arrhenius equation to be 43,000 cal. per mole for the temperature range 41.2-46.6 degrees C. 6. Equivalent amounts of acetaldehyde and glycine were formed from DL-allothreonine and the enzymatic breakdown of DL-allothreonine was found to be irreversible.  相似文献   

18.
Summary Escherichia intermedia cells were immobilized by entrapment in a polyacrylamide gel and used for l-dopa synthesis from pyrocatechol, pyruvate and ammonia. An immobilized cell preparation containing 75 mg cells/g gel retained 45%–50% of the activity of free cells. The effect of temperature, pH and substrate concentration of the initial rate of l-dopa synthesis was very similar for free and immobilized cells. Substrate inhibition was observed for pyrocatechol, pyruvate and ammonia. In a batch reactor, 5.4 g·l-1 l-dopa was obtained, with 100% conversion yield of pyrocatechol and l-dopa productivity of 0.18 g·l-1·h-1. The use of a pyrocatechol-borate complex decreased by-product formation and catalyst inactivation.  相似文献   

19.
The stability of immobilized maltotetraose (G(4))-forming amylase (1,4-alpha-D-glucan maltoteraohydrolase, EC 3.2.1.60) from Pseudomonas stutzeri was investigated in both batch and continous processes. The inactivation process of the immobilized enzyme seemed to obey first-order kinetics, and the immobilized enzyme became more stable when coexisting with 20-30 wt % substrate and calcium ions. From intensive studies on the operational stability in the continuous process, the apparent half-life of G(4) productivity in a constant-flow system was mainly affected by the reaction temperature, substrate concentration, and initial immobilized enzyme activity. A new factor, immobilized enzyme stability factor f(s), was proposed to evaluate the half-life of the immobilized enzyme system.  相似文献   

20.
The influence of micelle hydration degree (w0) and AOT concentration on fluorescence, circular dichroism (CD), catalytic activity, and stability of catalase in Aerosol OT (AOT) reversed micelles in heptane was investigated. The quantitative parameters--differential fluorescence of catalase (DeltaI), protein molar ellipticity ([theta]lambda), initial rate of catalytic reaction, catalase efficiency (kcat/Km), and rate constant of enzyme inactivation (kin, sec-1)--decreased with increasing AOT concentration in micellar systems, reflecting the interaction of solubilized catalase with the AOT micellar aggregates in heptane. The dependences of all these parameters on increasing hydration degree of micelles (w0) were characterized by the appearance of maxima at w0 of 8, 15-18, and 26-30. These maxima are suggested to reflect three different states of catalase in the micellar system, distinguished by their conformations and catalytic activity, which is determined by the micellar microenvironment of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号