首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
We have cloned and sequenced rRNA operons of Clostridium perfringens strain 13 and analyzed the sequence structure in view of the phylogenesis. The organism had ten copies of rRNA operons all of that comprised of 16S, 23S and 5S rDNAs except for one operon. The operons clustered around the origin of replication, ranging within one-third of the whole genome sequence as it is arranged in a circle. Seven operons were transcribed in clockwise direction, and the remaining three were transcribed in counter clockwise direction assuming that the gyrA was transcribed in clockwise direction. Two of the counter clockwise operons contained tRNA(Ile) genes between the 16S and 23S rDNAs, and the other had a tRNA(Ile) genes between the 16S and 23S rDNAs and a tRNA(Asn) gene in the place of the 5S rDNA. Microheterogeneity was found within the rRNA structural genes and spacer regions. The length of each 16S, 23S and 5S rDNA were almost identical among the ten operons, however, the intergenic spacer region of 16S-23S and 23S-5S were variable in the length depending on loci of the rRNA operons on the chromosome. Nucleotide sequences of the helix 19, helix 19a, helix 20 and helix 21 of 23S rDNA were divergent and the diversity appeared to be correlated with the loci of the rRNA operons on the chromosome.  相似文献   

4.
Mycoplasma arginini, M. fermentans, M. hyorhinis, M. orale, and Acholeplasma laidlawii are the members of the class Mollicutes most commonly found in contaminated cell cultures. Previous studies have shown that the published PCR primer pairs designed to detect mollicutes in cell cultures are not entirely specific. The 16S rRNA gene, the 16S-23S rRNA intergenic spacer region, and the 5' end of the 23S rRNA gene, as a whole, are promising targets for design of mollicute species-specific primer pairs. We analyzed the 16S rRNA genes, the 16S-23S rRNA intergenic spacer regions, and the 5' end of the 23S rRNA genes of these mollicutes and developed PCR methods for species identification based on these regions. Using high melting temperatures, we developed a rapid-cycle PCR for detection and identification of contaminant mollicutes. Previously published, putative mollicute-specific primers amplified DNA from 73 contaminated cell lines, but the presence of mollicutes was confirmed by species-specific PCR in only 60. Sequences of the remaining 13 amplicons were identified as those of gram-positive bacterial species. Species-specific PCR primers are needed to confirm the presence of mollicutes in specimens and for identification, if required.  相似文献   

5.
Isoleucine and alanine tRNAs are encoded tandemly within the 16S-23S intergenic spacer of some eubacterial rRNA gene clusters. Southern hybridization analysis and DNA sequence analysis demonstrated a novel gene organization for an rRNA gene cluster on the Streptococcus pneumoniae chromosome. A sequence specifying an alanine tRNA was found within the intergenic spacer, but no sequence specifying an isoleucine tRNA was found there. Southern hybridization analysis indicated that the location of the isoleucine tRNA gene was near the 5S rRNA gene in two of four rRNA gene clusters.  相似文献   

6.
Lactic acid bacteria (LAB) are beneficial for the gastrointestinal tract and reinforce immunity in human health. Recently, many functional products using the lactic acid bacteria have been developed. Among these LAB, Lactobacillus acidophilus, Lactobacillus rhamnosus, Bifidobacterium longum, and Bifidobacterium bifidum are frequently used for probiotic products. In order to monitor these LAB in commercial probiotic products, a multiplex PCR method was developed. We designed four species-specific primer pairs for multiplex PCR from the 16S rRNA, 16S-23S rRNA intergenic spacer region, and 23S rRNA genes in Lactobacillus acidophilus, Lactobacillus rhamnosus, Bifidobacterium longum, and Bifidobacterium bifidum. Using these primer pairs, 4 different LAB were detected with high specificity in functional foods. We suggest that the multiplex PCR method developed in this study would be an efficient tool for simple, rapid, and reliable identification of LAB used as probiotic strains.  相似文献   

7.
The plastid ribisomal RNA (rRNA) operon of the achlorophyllous root parasite Conopholis americana was completely sequenced. Full-length rRNA genes are retained in the gene cluster, but significant divergence has occurred in the 16S, 23S and 5S genes. Both the 16S–23S intergenic spacer and the 4.5S–5S intergenic spacer have suffered substantial deletions, including the two tRNA genes typically found in prokaryotic and plastid 16S–23S spacers.  相似文献   

8.
16S~23S RDNA间区在链球菌和流感嗜血杆菌分类中的应用   总被引:1,自引:0,他引:1  
鲁辛辛  杨持  杨宏欣 《遗传》2003,25(2):189-194
利用16S~23S rDNA间区(intergenic spacer regions,ISR)在不同细菌中拷贝数、碱基排列、序列长度及所含tRNA基因种类和数目的差异,对15株链球菌和流感嗜血杆菌进行属、种、型和株系的分类鉴定。在16S rDNA的3′端和23S rDNA的5′端的保守区中合成引物,PCR扩增16S~23S rDNA ISR序列,对多态片段切胶纯化直接测序。在GenBank上查找对应细菌的ISR序列。用DNAMAN软件进行系统进化分析。链球菌属为单拷贝16S~23Sr RNA ISR、有一个tRNAAla基因编码区、分子大小在269~446bp之间,序列分成4个保守区和4个可变区,可变区碱基排列方式和数目的不同是种分类的依据。7株链球菌的同源率在78%~88%。同种异株的差异反映在碱基的插入和缺失上。流感嗜血杆菌各生物型均为2个拷贝的ISR,小片段为514~519bp,编码1个tRNAGlu基因,有3个狭窄可变区。大片段富含A T碱基,在I、II和IV型中分别是868、848和856bp,编码一个tRNAIle基因和一个tRNAAla基因。不同生物型小分子ISR与标准菌株比较,同源性在97.3%~99.6 %之间。 ISR作为细菌分类的目的基因具有属、种、型和株特异性与灵敏性。简单的基因分离分析技术为认识病原微生物提供了更多的机会。 Abstract:To facilitate species level identification of bacteria without the requirement of presumptive identification,the paper describes a rapid identification method of bacteria by amplification and direct sequencing 16S~23S rDNA intergenic spacer regions (ISR) of the pathogens which cause the upper respiratory tract infective disease by Streptococcus and Haemophilus.Three pairs of primer targeting conserved sequences flanking the 3′ end of 16S and the 5′end of 23S rRNA were used to amplify 16S~23S rRNA ISR of 7 streptococcus strains and 8 Haemophilus strains.The PCR products were separated by 1% agarose gel electrophoresis and the polymorphisms fragments were purified with the Wizard PCR Min-Prep Kit (Promega) and Protocol-SK131(Sangon).The nucleotide sequences of ISR inserts were determined by using the XEQTM DTCS Kit——Terminator Cycle Sequencing and a CEQTM 2000XL DNA Analysis system (Backman Coulter) automatic DAN sequencer.Then those sequences were compared with known seqnences on the GenBank.The alignment of nucleotide sequence,evolutionary distances and phylogenetic tress were analyzed by software DANMAN version 4.0.The PCR products were showed polymorphism patterns with agarose gel.One band was contained in streptococcus genus.The significant variation was found among the spacer sequences of different species in Streptococcus with the lengths of the spacer varying from 269 to 446bp.All the ISR of the streptococcal species had a tRNA Ala gene in the spacer and the sequence identities varied from 78 to 88% within genera.It was found that some spacer sequence blocks were highly conserved between operons of a genome,whereas the presence of others was variable,three regions showed significant spatial variation.Most of the differences between the sequences came from several bases insertions/deletions and substitutions.There are two major bands in the Haemophilus biotypes(515 and 884bp),the small ISR amplicon contained one tDNA coding for tRNAGlu.In contrast to the large one contained two tRNA genes coding for tRANAla and tRNAIle.Two regions of repeating motifs with only A or T were present in higher copy numbers between tRANAla and tRNAIle.The phylogenetic trees varied from 97.5 to 98.8%.The PCR and direct sequencing of 16S~23S rRAN ISR were successful in the pathogen species identification.  相似文献   

9.
Bacteria of the genus Methylobacterium are widespread in the environment, but their ecological role in ecosystems, such as the plant phyllosphere, is not very well understood. To gain better insight into the distribution of different Methylobacterium species in diverse ecosystems, a rapid and specific cultivation-independent method for detection of these organisms and analysis of their community structure is needed. Therefore, 16S rRNA gene-targeted primers specific for this genus were designed and evaluated. These primers were used in PCR in combination with a reverse primer that binds to the tRNA(Ala) gene, which is located upstream of the 23S rRNA gene in the 16S-23S intergenic spacer (IGS). PCR products that were of different lengths were obtained due to the length heterogeneity of the IGS of different Methylobacterium species. This length variation allowed generation of fingerprints of Methylobacterium communities in environmental samples by automated ribosomal intergenic spacer analysis. The Methylobacterium communities on leaves of different plant species in a natural field were compared using this method. The new method allows rapid comparisons of Methylobacterium communities and is thus a useful tool to study Methylobacterium communities in different ecosystems.  相似文献   

10.
Streptomyces venezuelae ATCC 10595 harbors seven rRNA gene clusters which can be distinguished by BglII digestion. The three rRNA genes present in each set are closely linked with the general structure 16S-23S-5S. We cloned rrnA and sequenced the 16S-23S spacer region and the region downstream of the 5S rRNA gene. No tRNA gene was found in these regions.  相似文献   

11.
Vibrio parahaemolyticus contains 11 rRNA operons each including one of six 16S-23S rRNA gene intergenic spacer classes differing in size and nucleotide sequence. Some of the spacer classes may differ between isolates. We observed that the differences in the spacers between isolates are generally in two spacer classes present in single copies in the genome, one class containing tRNA(Ala) and tRNA(Glu) and the other tRNA(Glu) exclusively. Moreover, these differences are due to indels located nearby their tRNA(Glu). Comparison of the nucleotide sequence between spacer classes suggests that intragenomic nonreciprocal recombination causes the size variations observed in the spacer regions of V. parahaemolyticus strains.  相似文献   

12.
The method for DNA fingerprinting of the 16S-23S rDNA intergenic spacer region was modified to increase resolution of bacterial strains by thermal gradient gel electrophoresis (TGGE) analysis. By utilizing the high melting temperature region of the tRNA gene located in the middle of the 16S-23S rDNA intergenic spacer region as an internal clamp for TGGE, multiple melting domain problems were solved. PCR primers lacking a stretch of GC-rich sequences (GC-clamp) amplified the intergenic spacer region more efficiently than GC-clamped primers. Therefore, PCR artifacts were avoided by using low, 17-cycle, PCR. The method was successfully applied to diverse bacterial species for strain differentiation by TGGE without requiring a special PCR primer set.  相似文献   

13.
AIMS: The organization of ribosomal RNA (rrn) operons in Lactobacillus sanfranciscensis was studied in order to establish an easy-to-perform method for identification of L. sanfranciscensis strains, based on the length and sequence polymorphism of the 16S-23S rDNA intergenic spacer region (ISR). METHODS AND RESULTS: PCR amplification of the 16S-23S rDNA ISRs of L. sanfranciscensis gave three products distinguishing this micro-organism from the remaining Lactobacillus species. Sequence analysis revealed that two of the rrn operons were organized as in previously reported lactobacilli: large spacer (L-ISR), containing tRNA(Ile) and tRNA(Ala) genes; small spacer (S-ISR) without tRNA genes. The third described spacer (medium, M-ISR), original for L. sanfranciscensis, harboured a tRNA-like structure. An oligonucleotide sequence targeting the variable region between tDNA(Ile) and tDNA(Ala) of L. sanfranciscensis L-ISR was approved to be suitable in species-specific identification procedure. Analysis by pulse-field gel electrophoresis of the chromosomal digest with the enzyme I-CeuI showed the presence of seven rrn clusters. Lactobacillus sanfranciscensis genome size was estimated at c. 1.3 Mb. CONCLUSIONS: Direct amplification of 16S-23S ISRs or PCR with specific primer derived from L-ISR showed to be useful for specific typing of L. sanfranciscensis. This was due to the specific rrn operon organization of L. sanfranciscensis strains. SIGNIFICANCE AND IMPACT OF THE STUDY: In this paper, we have reported a rapid procedure for L. sanfranciscensis identification based on specific structures found in its rrn operon.  相似文献   

14.
目的16SrRNA和16S-23SrRNA间区片段是常用细菌分类鉴定靶点,本研究探讨人工神经原网络(ANN)对上述位点PCR扩增产物数据分析在细菌快速鉴定方面的价值。方法2对15SrRNA基因荧光引物和1对16S-23SrRNA区间基因引物用于扩增血液标本中分离出的317株细菌。相关毛细管电泳(CE)限制性片段长度多态性(RFLP)和单链构象多态性(SSCP)数据进行人工神经原网络分析。结果16S-23SrRNA基因的RFLP数据对未知菌鉴定的准确率高于16SrRNA基因的SSCP数据,分别为98.0%和79.6%。结论实验证明了人工神经原网络作为一种模式识别方法对于简化细菌鉴定十分有价值。  相似文献   

15.
一种弗兰克氏菌分种新方法的探讨   总被引:1,自引:0,他引:1  
弗兰克氏菌是非豆科植物共生固氮菌,目前已发现200多种。因其生长缓慢,许多传统的分类方法对它不合适,所以弗兰克氏菌的分类工作仍处于十分混乱的阶段。目前世界上公认弗兰克氏菌是放线菌的一个属,但没有确定的种名,寻找合适的分种方法十分迫切。我们选择16S-23S rRNA基因间隔区的序列作为划分弗兰克氏菌种的研究对象,现将结果简报如下。 1 材料和方法 1.1 菌种 101、114、8201,2129菌株分离自云南省西双版纳地区,101和114菌株是从木麻黄根瘤中分离到的,8201和2129菌株分别来自赤杨和杨梅根瘤。ArI_4和PtI_1菌株分别来自美国赤杨和潘尔稀根瘤。 1.2 DNA的提取  相似文献   

16.
W H Yap  Y Wang 《Gene》1999,232(1):77-85
The genome of Streptomyces nodosus contains six ribosomal RNA (rRNA) operons. Four of the rRNA operons; rrnB, rrnD, rrnE and rrnF were cloned. We have completely sequenced all four operons, including a region 750 base pairs (bp) upstream of the 16S rRNA gene. The three rRNA genes present in each operon were closely linked in the order 16S-23S-5S. A sequence comparison of the four operons showed more than 99% sequence similarity between the corresponding 16S and 23S rRNA genes, and more than 97% similarity between 5S rRNA genes. The sequence differences observed between 23S rRNA genes appeared to be localized in two specific regions. Substantial sequence differences were found in the region upstream of the 16S rRNA gene as well as in the internal transcribed spacers. No tRNA gene was found in the 16S-23S spacer regions.  相似文献   

17.
AIMS: To analyse interspecies and intraspecies differences based on the 16S-23S rRNA intergenic spacer region (ISR) sequences of the fish pathogens Edwardsiella ictaluri and Edwardsiella tarda. METHODS AND RESULTS: The 16S-23S rRNA spacer regions of 19 Edw. ictaluri and four Edw. tarda isolates from four geographical regions were amplified by PCR with primers complementary to conserved sequences within the flanking 16S-23S rRNA coding sequences. Two products were generated from all isolates, without interspecies or intraspecific size polymorphisms. Sequence analysis of the amplified fragments revealed a smaller ISR of 350 bp, which contained a gene for tRNA(Glu), and a larger ISR of 441 bp, which contained genes for tRNA(Ile) and tRNA(Ala). The sequences of the smaller ISR of different Edw. ictaluri isolates were essentially identical to each other. Partial sequences of larger ISR from several Edw. ictaluri isolates also revealed no differences from the one complete Edw. ictaluri large ISR sequence obtained. The sequences of the smaller ISR of Edw. tarda were 97% identical to the Edw. ictaluri smaller ISR and the larger ISR were 96-98% identical to the Edw. ictaluri larger ISR sequence. The Edw. tarda isolates displayed limited ISR sequence heterogeneity, with > or =97% sequence identity among isolates for both small and large ISR. CONCLUSIONS: There is a high degree of size and sequence similarity of 16S-23S ISR both among isolates within Edw. ictaluri and Edw. tarda species and between the two species. SIGNIFICANCE AND IMPACT OF THE STUDY: Our results confirm a close genetic relationship between Edw. ictaluri and Edw. tarda and the relative homogeneity of Edw. ictaluri isolates compared with Edw. tarda isolates. Because no differences were found in ISR sequences among Edw. ictaluri isolates, sequence analysis of the ISR will not be useful to distinguish isolates of Edw. ictaluri. However, we identified restriction sites that differ between ISR sequences of Edw. ictaluri and Edw. tarda, which will be useful in distinguishing the two species.  相似文献   

18.
We have developed a reverse line blot (RLB) hybridization assay to detect and identify the commonest mollicutes causing cell line contamination (Mycoplasma arginini, Mycoplasma fermentans, Mycoplasma hyorhinis, Mycoplasma orale, and Acholeplasma laidlawii) and human infection (Mycoplasma pneumoniae, Mycoplasma hominis, Mycoplasma genitalium, Ureaplasma parvum, and Ureaplasma urealyticum). We developed a nested PCR assay with "universal" primers targeting the mollicute 16S-23S rRNA intergenic spacer region. Amplified biotin-labeled PCR products were hybridized to membrane-bound species-specific oligonucleotide probes. The assay correctly identified reference strains of 10 mollicute species. Cell cultures submitted for detection of mollicute contamination, clinical specimens, and clinical isolates were initially tested by PCR assay targeting a presumed mollicute-specific sequence of the 16S rRNA gene. Any that were positive were assessed by the RLB assay, with species-specific PCR assay as the reference method. Initially, 100 clinical and 88 of 92 cell culture specimens gave concordant results, including 18 in which two or more mollicute species were detected by both methods. PCR and sequencing of the 16S-23S rRNA intergenic spacer region and subsequent retesting by species-specific PCR assay of the four cell culture specimens for which results were initially discrepant confirmed the original RLB results. Sequencing of amplicons from 12 cell culture specimens that were positive in the 16S rRNA PCR assay but negative by both the RLB and species-specific PCR assays failed to identify any mollicute species. The RLB hybridization assay is sensitive and specific and able to rapidly detect and identify mollicute species from clinical and cell line specimens.  相似文献   

19.
20.
Renibacterium salmoninarum is a genospecies that is an obligate pathogen of salmonid fish and is capable of intracellular survival. Conventional typing systems have failed to differentiate isolates of R. salmoninarum. We used two methods to assess the extent of molecular variation which was present in isolates from different geographic locations. In one analysis we investigated possible polymorphisms in a specific region of the genome, the intergenic spacer (ITS) region between the 16S and 23S rRNA genes. In the other analysis we analyzed differences throughout the genome by using randomly amplified polymorphic DNA (RAPD). We amplified the spacer region of 74 isolates by using PCR and performed a DNA sequence analysis with 14 geographically distinct samples. The results showed that the 16S-23S ribosomal DNA spacer region of R. salmoninarum is highly conserved and suggested that only a single copy of the rRNA operon is present in this slowly growing pathogen. DNA sequencing of the spacer region showed that it was the same length in all 14 isolates examined, and the same nucleotide sequence, sequevar 1, was obtained for 11 of these isolates. Two other sequevars were found. No tRNA genes were found. We found that RAPD analysis allows reproducible differentiation between isolates of R. salmoninarum obtained from different hosts and different geographic regions. By using RAPD analysis it was possible to differentiate between isolates with identical ITS sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号