首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Freeze-drying and gamma irradiation are the techniques widely use in tissue banking for preservation and sterilization of tissue grafts respectively. However, the effect of these techniques on biomechanical properties of bovine pericardium is poorly known. A total of 300 strips of bovine pericardium each measured 4 cm × 1 cm were used in this study to evaluate the effect of freeze-drying on biomechanical properties of fresh bovine pericardium and the effect of gamma irradiation on biomechanical properties of freeze-dried bovine pericardium. The strips were divided into three equal groups, which consist of 100 strips each group. The three groups were fresh bovine pericardium, freeze-dried bovine pericardium and irradiated freeze-dried bovine pericardium. The biomechanical properties of the pericardial strips were measured by a computer controlled instron tensiometer while the strips thickness was measured by Mitutoyo thickness gauge. The results of the study revealed that freeze-drying has no significant (p > 0.05) effect on the tensile strength, Youngs modulus (stiffness) and elongation rate of fresh bovine pericardium. Irradiation with 25 kGy gamma rays caused significant decreased in the tensile strength, Youngs modulus and elongation rate of the freeze-dried pericardium. However, gamma irradiation has no significant effect on the thickness of freeze-dried bovine pericardium, while freeze-drying caused significant decreased in the thickness of the fresh bovine pericardium. The outcome of this study demonstrated that freeze-drying has no significant effect on the biomechanical properties of fresh bovine pericardium, and gamma irradiation caused significant effect on the biomechanical properties of freeze-dried bovine pericardium.  相似文献   

2.
Functional analysis of bioprosthetic heart valves   总被引:2,自引:0,他引:2  
Glutaraldehyde-treated bovine pericardium is used successfully as bioprosthetic material in the manufacturing of heart valves leaflets. The mechanical properties of bovine pericardial aortic valve leaflets seem to influence its mechanical behaviour and the failure mechanisms. In this study the effect of orthotropy on tricuspid bioprosthetic aortic valve was analysed, using a three-dimensional finite element model, during the entire cardiac cycle. Multiaxial tensile tests were also performed to determine the anisotropy of pericardium. Seven different models of the same valve were analysed using different values of mechanical characteristics from one leaflet to another, considering pericardium as an orthotropic material. The results showed that even a small difference between values along the two axes of orthotropy can negatively influence leaflets performance as regard both displacement and stress distribution. Leaflets of bovine pericardium bioprostheses could be manufactured to be similar to natural human heart valves reproducing their well-known anisotropy. In this way it could be possible to improve the manufacturing process, durability and function of pericardial bioprosthetic valves.  相似文献   

3.
We previously demonstrated that lactoferrin inhibits adherence of enteropathogenic Escherichia coli to HEp-2 cells and decreases invasiveness of Shigella flexneri in HeLa cells by disruption of the type III secretory system (TTSS) of both enteropathogens. To determine whether these effects were specific to the TTSS, we assessed the activity of bovine lactoferrin on enteroaggregative E. coli (EAEC), enteropathogens whose virulence is not TTSS dependent. Bovine lactoferrin at a concentration of 1.0 and 0.1 mg/mL inhibited EAEC growth. Saturation with iron reversed the bacteriostatic effect. Lactoferrin under nonbacteriostatic conditions decreased EAEC adherence to HEp-2 cells as evaluated by microscopy and CFUs; this effect was not iron dependent. Lactoferrin inhibited EAEC biofilm formation and increased autoagglutination. Lactoferrin blocks EAEC adherence by inducing release and degradation of aggregative adherence fimbria, a key element of EAEC pathogenesis. We hypothesized that lactoferrin binding to lipid A of lipopolysaccharide disrupts the virulence proteins anchored to the bacterial outermembrane. These data suggest that the effect of lactoferrin on surface proteins is not restricted to organisms having a TTSS.  相似文献   

4.
Abraham S  So A  Unsworth LD 《Biomacromolecules》2011,12(10):3567-3580
Nonfouling polymer architectures are considered important to the successful implementation of many biomaterials. It is thought that how these polymers induce conformational changes in proteins upon adsorption may dictate the fate of the device being utilized. Herein, oxidized silicon nanoparticles (SiNP) were modified with various forms of poly(carboxybetaine methacrylamide) (PCBMA) for the express purpose of understanding how polymer chemistry affects film hydration, adsorbed protein conformation, and clot formation kinetics. To this end, carboxybetaine monomers differing in intercharge separating spacer groups were synthesized, and nitroxide-mediated free radical polymerization (NMP) was conducted using alkoxyamine initiators with hydrophobic (TEMPO) and hydrophilic (β-phosphonate) terminal groups. The physical properties (surface composition, thickness, grafting density, etc.) of the resulting polymer-SiNP conjugates were quantified using several techniques, including Fourier transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS), and thermogravimetric analysis (TGA). The effect of spacer group on the surface charge density was determined using zeta potential measurements. Three proteins, viz., lysozyme, bovine α-lactalbumin, and human serum albumin, were used to evaluate the effect film properties (charge, hydration, end-group) have on adsorbed protein conformation, as determined by circular dichroism (CD), fluorescence spectroscopy, and fluorescence quenching techniques. Hemocompatibility of these surfaces was observed by measuring clot formation kinetics using the plasma recalcification time assay. It was found that chain chemistry, as opposed to end-group chemistry, was a major determiner for water structure, adsorbed protein conformation, and clotting kinetics. It is thought that the systematic evaluation of how both chain (internal) and end-group (external) polymer properties affect film hydration, protein conformation, and clot formation will provide valuable insight that can be applied to all engineered surfaces for biomedical applications.  相似文献   

5.
The adherence of peripheral blood monocytes to adult bovine endothelial cells grown to confluence in the microplates was studied. The microplates were coated with different proteins or used without special treatment. It was shown that endothelial cells seeded on immobilized glycosylated proteins (serum albumin or skin gelatin) adhered more monocytes than the cells grown on non-modified proteins. Endothelial cells grown in lipoprotein(a) coated wells bound more monocytes than the cells grown in non-treated microplates or in wells coated with low density lipoproteins (LDL). The effect of lipoprotein(a) coating could not be reproduced by treating the plates with plasminogen (as a homolog of apo(a)) or with a mixture of LDL and plasminogen. These results indicate that the composition of extracellular substrata has a profound effect on adhesive properties of cultured endothelial cells. The implications of these findings for atherogenesis and for the general aspects of regulation of cell adhesion are discussed.  相似文献   

6.
R. R. Dubreuil  G. B. Bouck 《Protoplasma》1988,143(2-3):150-164
Summary Surface isolates or membrane skeletons from surface isolates can maintain the cell and surface form characteristic of euglenoids. We now report that the plasma membrane alone obtained by trypsin or urea digestion of surface isolates can also maintain surface form, but the membrane skeleton is able to produce striking changes in membrane organization. Trypsin digests microtubules, the membrane skeleton and partially digests the major integral membrane protein from surface isolates but does not alter the paracrystalline plasma membrane interior. Extraction of surface isolates with 4M urea leaves an insoluble plasma membrane and a subset of proteins arranged perpendicularly to the membrane surface. To resolve further the relationship between the plasma membrane and the membrane skeleton we have perturbed membrane organization by extraction of surface isolates with NaOH and find that readdition of the extract followed by neutralization restored important features of the membrane skeleton and caused patching of the membrane interior. Biochemically, the reassembled membrane skeleton consisted of 80 and 86 kD polypeptides and other less abundant proteins, and structurally the reassembled membrane skeleton was about the same thickness as the native membrane skeleton. Reassembly of the membrane skeleton appeared to be saturatable in that addition of an excess of extract had no effect on the thickness of the membrane skeletal layer. When the 80 kD protein was depleted from the reassembly mixture by affinity chromatography using Sepharose-bound monoclonal antibodies, the amount of 86 kD protein bound was significantly reduced, suggesting a dependance of 86 kD protein on 80 kD binding. A urea soluble fraction enriched in the 80 and 86 kD proteins was added to alkali-stripped membranes and 170 Å filaments were formed perpendicularly to the membrane surface. From the sum of these experiments we suggest that a) the native amorphous membrane skeleton ofEuglena may consist of a framework of 80 and 86 kD filaments arranged in a brush-like layer, b) the framework can direct plasma membrane organization, but once determined, membrane form remains stable to urea and trypsin but not to alkali, and c) new surface growth can in theory occur as an expansion of the brush-like layer by direct intercalation of filaments enriched in or consisting wholly of 80 and 86 kD proteins.Abbreviations BSA bovine serum albumin - ELISA enzyme linked immunosorbant assay - EF ectoplasmic fracture face - IMPs intramembrane particles - PF protoplasmic fracture face This work was supported by a University of Illinois Fellowship to RRD and NSF grant DCB-8602793 to GBB.  相似文献   

7.
Binding proteins that have high affinities for mammalian plasma proteins that are expressed on the surface of bacteria have proven valuable for the purification and detection of several biologically important molecules from human and animal plasma or serum. In this study, we have isolated a high affinity albumin-binding molecule from a group G streptococcal isolate of bovine origin and have demonstrated that the isolated protein can be biotinylated without loss of binding activity and can be used as a tracer for quantification of human serum albumin (HSA). The binding protein can be immobilized and used as a selective capture reagent in a competitive ELISA format using a biotinylated HSA tracer. In this assay format, the sensitivity of detection for 50% inhibition of binding of HSA was less than 1 μg/ml. When attached to the bacterial surface, this binding protein can be used to deplete albumin from human plasma, as analyzed by surface-enhanced laser desorption ionization time of flight mass spectrometry.  相似文献   

8.
The cell surface hydrophobicities of a variety of aquatic and terrestrial gliding bacteria were measured by an assay of bacterial adherence to hydrocarbons (BATH), hydrophobic interaction chromatography, and the salt aggregation test. The bacteria demonstrated a broad range of hydrophobicities. Results among the three hydrophobicity assays performed on very hydrophilic strains were quite consistent. Bacterial adhesion to glass did not correlate with any particular measure of surface hydrophobicity. Several adhesion-defective mutants of Cytophaga sp. strain U67 were found to be more hydrophilic than the wild type, particularly by the BATH assay and hydrophobic interaction chromatography. The very limited adhesion of these mutants correlated well with hydrophilicity as determined by the BATH assay. The hydrophobicities of several adhesion-competent revertants ranged between those of the wild type and the mutants. As measured by the BATH assay, starvation increased hydrophobicity of both the wild type and an adhesion-defective mutant. During filament fragmentation of Flexibacter sp. strain FS-1, marked changes in hydrophobicity and adhesion were accompanied by changes in the arrays of surface-exposed proteins as detected by an immobilized radioiodination procedure.  相似文献   

9.
Staphylococcus epidermidis is the leading cause of device-related infections. These infections require an initial colonization step in which S. epidermidis adheres to the implanted material. This process is usually mediated by specific bacterial surface proteins and host factors coating the foreign device. Some of these surface proteins belong to the serine-aspartate repeat (Sdr) family, which includes adhesins from Staphyloccus aureus and S. epidermidis. Using a heterologous expression system in Lactococcus lactis to overcome possible staphylococcal adherence redundancy we observed that one of these Sdr proteins, SdrF, mediates binding to type I collagen when present on the lactococcal cell surface. We used lactococcal recombinant strains, a protein-protein interaction assay and Western ligand blot analysis to demonstrate that this process occurs via the B domain of SdrF and both the alpha1 and alpha2 chains of type I collagen. It was also found that a single B domain repeat of S. epidermidis 9491 retains the capacity to bind to type I collagen. We demonstrated that the putative ligand binding N-terminal A domain does not bind to collagen which suggests that SdrF might be a multiligand adhesin. Antibodies directed against the B domain significantly reduce in vitro adherence of S. epidermidis to immobilized collagen.  相似文献   

10.
The distribution of surface proteins during phagocytosis by rabbit peritoneal polymorphonuclear leukocytes was studied to determine whether the proteins of the phagocytic vesicles of these differentiated cells were representative of the entire set of plasma membrane proteins. Phagocytosis of bovine serum albumin-diisodecylphthalate emulsion by lactoperoxidase-iodinated rabbit neutrophils was linear over 15-20 min at a rate of 96 microgram oil/min/mg cell protein. This rate was similar to that of unlabeled cells. Incorporation of cell-associated free iodine by endogenous myeloperoxidase during phagocytosis was inhibited by 1 mM cyanide, which had no effect on the rate of particle uptake. The surface of intact neutrophils contained at least 13 iodinated proteins distinguishable by polyacrylamide gel electrophoresis followed by autoradiography. Isolated phagosomes were deficient in six of these proteins. The plasma membrane fraction of these cells was missing five of these same proteins which, however, were enriched in a dense surface fraction (Willinger, M., and F. R. Frankel. J. Cell Biol. 82: 32-44). When experimental conditions were reversed, and the PMNs were labeled after phagocytosis, these five proteins remained on the cell surface, while at least three of the major proteins found on resting cells were depleted. Incubating the cells with colchicine, which has been shown to affect the distribution of some plasma membrane constituents during phagocytosis, had no effect on the distribution of surface proteins in our system. These results indicate that a nonrandom interiorization of lactoperoxidase-labeled surface proteins of polymorphonuclear leukocytes occurs during phagocytosis.  相似文献   

11.
《IRBM》2008,29(4):223-230
Versatile use of bovine pericardium in clinical cardiovascular surgery requires processing, especially cross-linking, to make the tissue non antigenic and mechanically strong. Forty-nine bovine pericardia were made acellular and then cross-linked by two different methods, group A (20) with formalin and group B (29) with heparin and subsequently, as a final measure, five of group B pericardia were gamma-ray sterilized with stipulated dose of 25 kGy and classified as group C. The surface property of thrombogenesis and haemolysis were compared in these three groups to identify a suitable method of processing so that it could be used in the vascular system without any thromboembolic complication. Extensive microscopical examination, mechanical testing and other physical property for biocompatibility studies were conducted on these three different groups with key focus on in vitro thrombogenicity studies. Heparin treated group B bovine pericardium appeared to be the best method of processing among these three by the above studies and was confirmed by laser confocal microscopy. Heparin cross-linked and heparin sodium treated processing had gained the higher tensile strength, and appeared to be nonthrombogenic, noncalcifiable (by animal experiments), biocompatible biomaterial, which can be used clinically.  相似文献   

12.
Actin-binding proteins in bovine neutrophil plasma membranes were identified using blot overlays with 125I-labeled F-actin. Along with surface-biotinylated proteins, membranes were enriched in major actin-binding polypeptides of 78, 81, and 205 kDa. Binding was specific for F-actin because G-actin did not bind. Further, unlabeled F-actin blocked the binding of 125I-labeled F-actin whereas other acidic biopolymers were relatively ineffective. Binding also was specifically inhibited by myosin subfragment 1, but not by CapZ or plasma gelsolin, suggesting that the membrane proteins, like myosin, bind along the sides of the actin filaments. The 78- and 81-kDa polypeptides were identified as moesin and ezrin, respectively, by co-migration on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoprecipitation with antibodies specific for moesin and ezrin. Although not present in detectable amounts in bovine neutrophils, radixin (a third and closely related member of this gene family) also bound 125I-labeled F-actin on blot overlays. Experiments with full-length and truncated bacterial fusion proteins localized the actin-binding site in moesin to the extreme carboxy terminus, a highly conserved sequence. Immunofluorescence micrographs of permeabilized cells and cell "footprints" showed moesin co-localization with actin at the cytoplasmic surface of the plasma membrane, consistent with a role as a membrane-actin-linking protein.  相似文献   

13.
Factors involved in adherence of lactobacilli to human Caco-2 cells.   总被引:30,自引:11,他引:19       下载免费PDF全文
A quantitative assay performed with bacterial cells labelled with [3H]thymidine was used to investigate factors involved in the adherence of human isolates Lactobacillus acidophilus BG2FO4 and NCFM/N2 and Lactobacillus gasseri ADH to human Caco-2 intestinal cells. For all three strains, adherence was concentration dependent, greater at acidic pH values, and significantly greater than adherence of a control dairy isolate, Lactobacillus delbrueckii subsp. bulgaricus 1489. Adherence of L. acidophilus BG2FO4 and NCFM/N2 was decreased by protease treatment of the bacterial cells, whereas adherence of L. gasseri ADH either was not affected or was enhanced by protease treatment. Putative surface layer proteins were identified on L. acidophilus BG2FO4 and NCFM/N2 cells but were not involved in adherence. Periodate oxidation of bacterial cell surface carbohydrates significantly reduced adherence of L. gasseri ADH, moderately reduced adherence of L. acidophilus BG2FO4, and had no effect on adherence of L. acidophilus NCFM/N2. These results indicate that Lactobacillus species adhere to human intestinal cells via mechanisms which involve different combinations of carbohydrate and protein factors on the bacterial cell surface. The involvement of a secreted bridging protein, which has been proposed as the primary mediator of adherence of L. acidophilus BG2FO4 in spent culture supernatant (M.-H. Coconnier, T. R. Klaenhammer, S. Kernéis, M.-F. Bernet, and A. L. Servin, Appl. Environ. Microbiol. 58:2034-2039, 1992), was not confirmed in this study. Rather, a pH effect on Caco-2 cells contributed significantly to the adherence of this strain in spent culture supernatant.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Streptococcus suis serotype 2 binding to extracellular matrix proteins   总被引:4,自引:0,他引:4  
Streptococcus suis serotype 2 is a major swine and human pathogen that causes septicemia and meningitis. The ability of S. suis serotype 2 to bind to different extracellular matrix (ECM) proteins was evaluated by ELISA. All 23 strains tested bound to plasma and cellular fibronectin and collagen types I, III, and V, some to fibrin, vitronectin, and laminin, and none to the other ECM proteins tested. An unencapsulated isogenic mutant bound to ECM proteins better than its parental encapsulated strain, suggesting that the polysaccharide capsule interfered with binding. Cross-inhibition was observed between soluble plasma fibronectin and collagens in the ECM adherence assay, indicating that binding domains for both proteins exist on the same or nearby bacterial surface molecules. On the other hand, pre-incubation with plasma fibronectin increased binding to collagen IV, suggesting that S. suis might use fibronectin as a bridging molecule. The results of heat treatment and proteolytic digestion suggest that adhesins for these ECM proteins are proteinaceous in nature.  相似文献   

15.
1. Species specific problems complicating the measurement of prorenin and renin concentrations were studied in bovine, hog and horse plasma. 2. In contrast to horse renin, bovine and hog renin reacted with rat angiotensinogen, allowing measurement of the plasma renin concentration in cattle and hog with rat angiotensinogen as exogenous substrate. 3. Trypsin treatment of plasma in order to activate prorenin generated an interfering angiotensin I immunoreactive material in all three species, most extensively in horse plasma. 4. This material could be removed in bovine and hog plasma by a cation-exchange resin, allowing an assay of the plasma prorenin concentration to be constructed in these species. 5. Another strategy has to be followed in order to measure prorenin and renin concentrations in horse plasma.  相似文献   

16.
Saccharomyces cerevisiae transformed with Candida albicans ALA1/ALS5 exhibits adherence properties similar to C. albicans. Adherence of the fungi to immobilized proteins involves hydrogen bonds, is stable to shear forces, and is resistant to competition from various biological molecules. The specificity determinants of target recognition in Ala1/Als5p-mediated adherence are not known. To determine features of target recognition, proteins and small peptides were covalently coupled at the N-terminus to the surface of carboxylate-modified magnetic beads. C. albicans yeast cells, germ tubes and pseudohyphae and S. cerevisiae expressing the adhesin, Ala1/Als5p, adhered to beads coated with fibronectin, laminin, type IV collagen, bovine serum albumin, and casein. No adherence to beads was observed if a single amino acid was coupled to the beads. However, 10-mer homopolymers of threonine, serine, and alanine served as ligands for adherence. The presence of a minimum of four contiguous threonine residues in a peptide was required for maximal adherence. Coupling of 10-mer peptides from fibronectin and Ala1/Als5p each possessing 5-7 threonine or serine residues also initiated adherence. On the other hand, a collagen and a fibronectin 10-mer peptide with few threonine and serine residues and lysine at the C-terminus did not serve as adherence ligands. Both of them are converted to adherence ligands by adding threonine or serine residues at the C-terminus or removing the lysine residue and adding threonine residues anywhere in the peptide. The presence of lysine at the C-terminus may have resulted in coupling of the peptides at both the N- and C-termini, thus making the threonine residues inaccessible for adherence. Thus, Ala1/Als5p recognizes patches of certain amino acids, which must be accessible before adherence will occur.  相似文献   

17.
The seminal plasma in sperm suspensions from boar, bull, rabbit, ram and stallion was replaced with simple defined media as completely as possible by a combination of centrifugation through Ficoll and dilution. After this process, motility declined and the cells showed a tendency to agglutinate and/or stick to glass. Varying the ionic strength of the medium had little effect upon these parameters but sperm motility was preserved better in the presence of serum albumin. When a number of purified proteins and other macromolecules were tested individually in this way for their motility-preserving ability, bovine or human serum albumin was consistently the most effective. Defatting the albumin or altering its nature by mild reduction, oxidation or alkylation had little detectable effect on its motility-preserving ability; the protein did not appear to be acting as a chelator of metal ions, for it could not be replaced by EDTA. The response of the spermatozoa to replacemrnt of seminal plasma varied between species: bull spermatozoa were particularly sensitive and serum albumin had little effect upon their subsequent motility.  相似文献   

18.
Chitosan blends with synthetic biodegradable polymers have been proposed for various biomedical applications due to their versatile mechanical properties and easier processing. However, details regarding the main surface characteristics that may benefit from the blending of these two types of materials are still missing. Hence, this work aims at investigating the surface properties of chitosan-based blends, illustrating the way these properties determine the material-proteins interactions and ultimately the behavior of osteoblast-like cells. The surface characteristics of modified and nonmodified blends were assessed using complimentary techniques such as optical microscopy, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR-ATR), X-ray photoelectron spectroscopy (XPS), contact angle measurements and surface energy calculations. The adsorption of human serum albumin (HSA) and human plasma fibronectin (HFN) onto the different surfaces was quantified by association of an indirect method with a colorimetric assay. It was found that the presence of chitosan on the surface promoted the adsorption of proteins. Moreover, a preferential adsorption of albumin over fibronectin was registered. The in vitro biological performance of the studied materials was further investigated by a direct contact assay with an osteoblastic-like cell line (SaOs-2). A synergistic effect of the two components of the blend was observed. While the synthetic polyester promoted the adhesion of SaOs-2, the presence of chitosan significantly enhanced the osteoblastic activity of these cells. This work further confirmed the interest in designing polymeric blends with natural polymers as a successful strategy to enhance the biological performance of a biomaterial.  相似文献   

19.
Determination of the cell-surface hydrophobicity of group B streptococci by hydrophobic interaction chromatography on phenyl-Sepharose revealed that human and bovine group B streptococcal isolates with protein surface antigens, either alone or in combination with polysaccharide antigens, were mainly hydrophobic, whereas those with polysaccharide antigens alone were mainly hydrophilic. Removal of capsular neuraminic acid enhanced, and pronase treatment reduced, surface hydrophobicity. The hydrophobic surface proteins, solubilized by mutanolysin treatment of the bacteria and isolated by hydrophobic interaction chromatography, appeared in SDS-PAGE as numerous protein bands. Staphylococcal carrier cells loaded with antibodies produced against hydrophobic surface proteins agglutinated specifically with hydrophobic group B streptococci. No agglutination reaction was observed with hydrophilic cultures. Hydrophobic group B streptococci adhered to buccal epithelial cells in significantly higher numbers than did hydrophilic cultures. The adherence of group B streptococci to epithelial cells was inhibited in the presence of isolated hydrophobic proteins and in the presence of specific antibodies produced against hydrophobic proteins. The results of this study demonstrate a close relation between the occurrence of type-specific antigens, surface hydrophobicity and the adherence of group B streptococci to epithelial cells.  相似文献   

20.
The ability of M line strain Biomphalaria glabrata hemocytes to adhere to mother sporocysts (MS) of PR1 Schistosoma mansoni or to MS or daughter rediae (DR) of Echinostoma paraensei was studied using an in vitro hemocyte adherence assay. Hemocytes were significantly more likely to bind to S. mansoni MS than to E. paraensei MS or DR. Hemocyte adherence to E. paraensei MS or DR was significantly increased if glutaraldehyde-fixed larvae were used as targets. Also, E. paraensei MS pretreated with the lectin concanavalin A (Con A) were more likely to be bound by hemocytes than MS pretreated with Con A in the presence of the competing sugar, alpha-methyl mannoside. Pretreatment of hemocytes with Con A increased their ability to bind E. paraensei sporocysts, but the effect was small compared to that achieved by pretreatment of MS with Con A. The lectin probably did not function as a bridging molecule between hemocytes and MS but, rather, altered the MS surface in a way that facilitated adherence. Similarly, adherence to E. paraensei MS was significantly increased if the MS were pretreated with cell-free M line plasma prior to use in adherence assays. Our results indicate that the two parasites provoke fundamentally different responses from M line hemocytes in vitro and that the living tegument can be modified by host humoral factors and by lectins such that hemocyte binding is significantly increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号