首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The combination of cryo-electron microscopy to study large biological assemblies at low resolution with crystallography to determine near atomic structures of assembly fragments is quickly expanding the horizon of structural biology. This technique can be used to advantage in the study of large structures that cannot be crystallized, to follow dynamic processes, and to "purify" samples by visual selection of particles. Factors affecting the quality of cryo-electron microscopy maps and limits of accuracy in fitting known structural fragments are discussed.  相似文献   

2.
While X-ray crystallography provides atomic resolution structures of proteins and small viruses, electron microscopy provides complementary structural information on the organization of larger assemblies at lower resolution. A novel combination of these two techniques has bridged this resolution gap and revealed the various structural components forming the capsid of human type 2 adenovirus. An image reconstruction of the intact virus, derived from cryo-electron micrographs, was deconvolved with an approximate contrast transfer function to mitigate microscope distortions. A model capsid was calculated from 240 copies of the crystallographic structure of the major capsid protein and filtered to the correct resolution. Subtraction of the calculated capsid from the corrected reconstruction gave a three-dimensional difference map revealing the minor proteins that stabilize the virion. Elongated density penetrating the hexon capsid at the facet edges was ascribed to polypeptide IIIa, a component required for virion assembly. Density on the inner surface of the capsid, connecting the ring of peripentonal hexons, was assigned as polypeptide VI, a component that binds DNA. Identification of the regions of hexon that contact the penton base suggests a structural mechanism for previously proposed events during cell entry.  相似文献   

3.
4.
The decameric human erythrocyte protein torin is identical to the thiol-specific antioxidant protein-II (TSA-II), also termed peroxiredoxin-II (Prx-II). Single particle analysis from electron micrographs of Prx-II molecules homogeneously orientated across holes in the presence of a thin film of ammonium molybdate and trehalose has facilitated the production of a >/=20 A 3-D reconstruction by angular reconstitution that emphasises the D5 symmetry of the ring-like decamer. The X-ray structure for Prx-II was fitted into the transmission electron microscopic reconstruction by molecular replacement. The surface-rendered transmission electron microscopy (TEM) reconstruction correlates well with the solvent-excluded surface of the X-ray structure of the Prx-II molecule. This provides confirmation that transmission electron microscopy of negatively stained specimens, despite limited resolution, has the potential to reveal a valid representation of surface features of protein molecules. 2-D crystallisation of the Prx-II protein on mica as part of a TEM study resulted in the formation of a p2 crystal form with parallel linear arrays of stacked rings. This latter 2-D form correlates well with that observed from the 2.7 A X-ray structure of Prx-II solved from a new orthorhombic 3-D crystal form.  相似文献   

5.
The large extracellular glycoprotein reelin directs neuronal migration during brain development and plays a fundamental role in layer formation. It is composed of eight tandem repeats of an approximately 380-residue unit, termed the reelin repeat, which has a central epidermal growth factor (EGF) module flanked by two homologous subrepeats with no obvious sequence similarity to proteins of known structure. The 2.05 A crystal structure of the mouse reelin repeat 3 reveals that the subrepeat assumes a beta-jelly-roll fold with unexpected structural similarity to carbohydrate-binding domains. Despite the interruption by the EGF module, the two subdomains make direct contact, resulting in a compact overall structure. Electron micrographs of a four-domain fragment encompassing repeats 3-6, which is capable of inducing Disabled-1 phosphorylation in neurons, show a rod-like shape. Furthermore, a three-dimensional molecular envelope of the fragment obtained by single-particle tomography can be fitted with four concatenated repeat 3 atomic structures, providing the first glimpse of the structural unit for this important signaling molecule.  相似文献   

6.
A structural model for the channel in the mitochondrial outer membrane is presented, derived from electron microscopic studies of two-dimensional crystals and inferences from the primary structure of the 30-kDa polypeptide which forms the channel. The channel is represented as a cylindrical beta-barrel, with a carbon backbone diameter of 3.8 nm. The axial projection of the cylinder is divided radially into four sectors by four interchannel contact points. These sectors are characterized in terms of their interactions with lipid and macromolecular ligands, and in terms of the presence or absence of exposed basic amino acids.  相似文献   

7.
8.
Advances in structural biology are opening greater opportunities for understanding biological structures from the cellular to the atomic level. Particularly promising are the links that can be established between the information provided by electron microscopy and the atomic structures derived from X-ray crystallography and nuclear magnetic resonance spectroscopy. Combining such different kinds of structural data can result in novel biological information on the interaction of biomolecules in large supramolecular assemblies. As a consequence, the need to develop new databases in the field of structural biology that allow for an integrated access to data from all the experimental techniques is becoming critical. Pilot studies performed in recent years have already established a solid background as far as the basic information that an integrated macromolecular structure database should contain, as well as the basic principles for integration. These efforts started in the context of the BioImage project, and resulted in a first complete database prototype that provided a versatile platform for the linking of atomic models or X-ray diffraction data with electron microscopy information. Analysis of the requirements needed to combine data at different levels of resolution have resulted in sets of specifications that make possible the integration of all these different types in the context of a web environment. The case of a structural study linking electron microscopy and X-ray data, which is already contained within the BioImage data base and in the Protein Data Bank, is used here to illustrate the current approach, while a general discussion highlights the urgent need for integrated databases. Received: 26 January 2000 / Revised version: 15 May 2000 / Accepted: 15 May 2000  相似文献   

9.
Particles of adenovirus type 2 (ad2), when disassembled, consistently yield groups-of-nine (GON) hexons, which are the major virion shell component. The location of a minor component (6%) of the GON has been determined using a novel combination of electron microscopy and X-ray crystallography. The Brookhaven Scanning Transmission Electron Microscope (STEM) was used to estimate the distribution of protein in the GON to a resolution of 15-18 A. The relative hexon positions then were determined to within 1 A using a model of the hexon derived from the X-ray crystal structure to search the STEM image. The difference image between the STEM image and a model hexon group reveals individual monomers of polypeptide IX extending along the hexon--hexon interfaces. The distribution confirms our earlier proposal that four trimers of polypeptide IX are embedded in the large cavities in the upper surface of the GON to cement hexons into a highly-stable assembly.  相似文献   

10.
P Schultz  H Clia  M Riva  A Sentenac    P Oudet 《The EMBO journal》1993,12(7):2601-2607
Two-dimensional crystals of yeast RNA polymerase I dimers were obtained upon interaction with positively charged lipid layers. A three-dimensional surface model of the enzyme was determined by analyzing tilted crystalline areas and by taking advantage of the non-crystallographic internal symmetry of the dimer to correct for the missing viewing directions. The structure shows, at approximately 3 nm resolution, an irregularly shaped molecule 11 nm x 11 nm x 15 nm in size characterized by a 3 nm wide and 10 nm long groove which constitutes a putative DNA binding site. The overall structure is similar to the Escherichia coli holo enzyme and the yeast RNA polymerase II delta 4/7 structures. The most remarkable structural feature is a finger-shaped stalk which partially occludes the entrance of the groove and forms a 2.5 nm wide channel. We discuss the possible location of the catalytic centre and of the carboxy-terminal region of the beta-like subunit in the channel. The interference of different DNA fragments with RNA polymerase dimerization and crystallization indicates the orientation of the template in the putative DNA binding groove.  相似文献   

11.
Molecular water channels (aquaporins) allow living cells to adapt to osmotic variations by rapid and specific diffusion of water molecules. Aquaporins are present in animals, plants, algae, fungi and bacteria. Here we present an electron microscopic analysis of the most ancient water channel described so far: the aquaporin Z (AqpZ) of Escherichia coli. A recombinant AqpZ with a poly(histidine) tag at the N terminus has been constructed, overexpressed and purified to homogeneity. Solubilized with octylglucoside, the purified AqpZ remains associated as a homotetramer, and assembles into highly ordered two-dimensional tetragonal crystals with unit cell dimensions a = b = 95 A, gamma = 90 degrees when reconstituted by dialysis in the presence of lipids. Three-dimensional reconstruction of negatively stained lattices revealed the p42(1)2 packing arrangement that is also observed with the human erythrocyte water channel (AQP1). The 8 A projection map of the AqpZ tetramer in frozen hydrated samples is similar to that of AQP1, consistent with the high sequence homology between these proteins.  相似文献   

12.
A recent model for the structure of microtubules is used to interpret X-ray fiber diffraction patterns from microtubules, obtained under various conditions. The results suggest that tubulin may undergo conformational changes under conditions of reduced water-activity. Such changes could account for some of the differences in the structure of tubulin as determined by electron microscopy and X-ray diffraction.  相似文献   

13.
The structure of the Photosystem I (PS I) complex from the thermophilic cyanobacterium Synechococcus sp. has been investigated by electron microscopy and image analysis of two-dimensional crystals. Crystals were obtained from isolated PS I by removal of detergents with Bio-Beads. After negative staining, either single layers or two superimposed layers with a rotational different orientation were observed. The layers have a rectangular unit cell of 16.0 x 15.0 nm, which contains two PS I monomers. The monomers are arranged alternating up and down in each layer. For double-layer crystals, the images of the two layers could be separately processed by a combination of Fourier-peak-filtering and correlation averaging. Features in the two-dimensional plane can be seen with a resolution up to 1.5-1.8 nm. A model for the PS I structure was obtained by combining three-dimensional reconstructions from three tilt-series. The model shows an asymmetric PS I complex. On one side (presumably the stromal side) there is a 3 nm high ridge. This is most likely comprised of the psaC, psaD and psaE subunits. The other side (presumably the lumenal side) is rather flat, but in the center there is a 3 nm deep indentation, which possibly separates partly the two large subunits psaA and psaB.  相似文献   

14.
The inclusion of protein contaminants into crystals of turkey egg white lysozyme (TEWL) was investigated by electrospray mass spectrometry of the dissolved crystals. The results show that significant amounts of the structurally related contaminant hen egg white lysozyme (HEWL) are included in the crystals of TEWL. The structurally unrelated contaminant RNAse A, on the other hand, is not included. The X-ray diffraction data statistics of a hybrid TEWL/HEWL crystal and an uncontaminated TEWL crystal were of similar quality. This indicates that, even though the crystals contain much higher levels of the contaminant than one would have expected after a recrystallization experiment, they are still suitable for X-ray diffraction experiments. However, attempts to detect the presence of the contaminant in the crystal by crystallographic structure refinement did not yield conclusive results.  相似文献   

15.
Using a series of transient expression plasmids and adenovirus-specific DNA replication assays for both initiation and elongation, we measured the relative activities of mutant polypeptides of the precursor to the terminal protein (pTP) in vitro. Mutations that removed two to six amino acids of the amino terminus gradually decreased pTP activity; a deletion of 18 amino acids was completely inactive. Replacement of cysteine at residue 8 with a serine had little effect on pTP activity. Two amino-terminal in-frame linker insertion mutant polypeptides previously characterized in vivo as either replication defective or temperature sensitive had considerable activity at the permissive temperature in vitro. For one mutant pTP with a temperature-sensitive phenotype in vivo, elongation activity was decreased more than initiation in vitro, suggesting a role for this protein after the initiation step. Replacement mutations of serine 580, the site of covalent attachment of dCTP, completely abolished pTP function for both initiation and elongation.  相似文献   

16.
The DNA-terminal proteins from adenovirus type 12, type 3, and type 5 were analyzed after labeling in vitro with 125I by the chloramine T method, and were shown to be serotype specific. We also studied the kinetics of cleavage by alkali of the terminal protein-DNA linkage and showed that the half-time of cleavage with either 0.1 M NaOH or 0.5 M piperidine at 37 degree C is about 15 to 30 min. The substitution of the volatile base piperidine for NaOH in this procedure provided a useful tool for rapid analysis of the labeled protein.  相似文献   

17.
X-ray fibre diffraction and scanning transmission electron microscopy have been used to investigate the structure of an intracellular complex between circular single-stranded viral DNA and a viral DNA-binding protein. This complex is an intermediate between replication and assembly of the filamentous bacteriophage Pf1. By scanning transmission electron microscopy, the complex has a length of 1.00 μm and Mr = 29.6 × 106. It consists of 1770 protein subunits, each of 15,400 Mr, and one viral DNA molecule of 2.3 × 106Mr: there are 4.2 ± 0.5 nucleotides per subunit. The structure is flexible in solution, but in oriented dry fibres it forms a regular helix of 45 Å pitch having 6.0 dimeric protein subunits per turn, with an axial spacing of 7.5 Å between dimers and 1.9 Å between adjacent nucleotides. Model calculations suggest that the protein dimers may be oriented in a direction approximately perpendicular to the 45 Å helix, so that each dimer spans the two anti-parallel DNA chains. The results imply that conformational changes are required of the DNA as it is transferred from the double-stranded form to the replication-assembly complex, and subsequently to the virion.  相似文献   

18.
The structure of the vacuolar ATPase from bovine brain clathrin-coated vesicles has been determined by electron microscopy of negatively stained, detergent-solubilized enzyme molecules. Preparations of both lipid-containing and delipidated enzyme have been analyzed. The complex is organized in two major domains, a V(1) and V(0), with overall dimensions of 28 x 14 x 14 nm. The V(1) is a more or less spherical molecule with a central cavity. The V(0) has the shape of a flattened sphere or doughnut with a radius of about 100 A. The V(1) and V(0) are joined by a 60-A long and 40-A wide central stalk, consisting of several individual protein densities. Two kinds of smaller densities are visible at the top periphery of the V(1), and one of these seems to extend all the way down to the stalk domain in some averages. Images of both the lipid-containing and the delipidated complex show a 30-50-kDa protein density on the lumenal side of the complex, opposite the central stalk, centered in the ring of c subunits. A large trans-membrane mass, probably the C-terminal domain of the 100-kDa subunit a, is seen at the periphery of the c subunit ring in some projections. This large mass has both a lumenal and a cytosolic domain, and it is the cytosolic domain that interacts with the central stalk. Two to three additional protein densities can be seen in the V(1)-V(0) interface, all connected to the central stalk. Overall, the structure of the V-ATPase is similar to the structure of the related F(1)F(0)-ATP synthase, confirming their common origin.  相似文献   

19.
The regulation of striated muscle contraction involves changes in the interactions of troponin and tropomyosin with actin thin filaments. In resting muscle, myosin-binding sites on actin are thought to be blocked by the coiled-coil protein tropomyosin. During muscle activation, Ca2+ binding to troponin alters the tropomyosin position on actin, resulting in cyclic actin-myosin interactions that accompany muscle contraction. Evidence for this steric regulation by troponin-tropomyosin comes from X-ray data [Haselgrove, J.C., 1972. X-ray evidence for a conformational change in the actin-containing filaments of verterbrate striated muscle. Cold Spring Habor Symp. Quant. Biol. 37, 341-352; Huxley, H.E., 1972. Structural changes in actin and myosin-containing filaments during contraction. Cold Spring Habor Symp. Quant. Biol. 37, 361-376; Parry, D.A., Squire, J.M., 1973. Structural role of tropomyosin in muscle regulation: analysis of the X-ray diffraction patterns from relaxed and contracting muscles. J. Mol. Biol. 75, 33-55] and electron microscope (EM) data [Spudich, J.A., Huxley, H.E., Finch, J., 1972. Regulation of skeletal muscle contraction. II. Structural studies of the interaction of the tropomyosin-troponin complex with actin. J. Mol. Biol. 72, 619-632; O'Brien, E.J., Gillis, J.M., Couch, J., 1975. Symmetry and molecular arrangement in paracrystals of reconstituted muscle thin filaments. J. Mol. Biol. 99, 461-475; Lehman, W., Craig, R., Vibert, P., 1994. Ca2+-induced tropomyosin movement in Limulus thin filaments revealed by three-dimensional reconstruction. Nature 368, 65-67] each with its own particular strengths and limitations. Here we bring together some of the latest information from EM analysis of single thin filaments from Pirani et al. [Pirani, A., Xu, C., Hatch, V., Craig, R., Tobacman, L.S., Lehman, W. (2005). Single particle analysis of relaxed and activated muscle thin filaments. J. Mol. Biol. 346, 761-772], with synchrotron X-ray data from non-overlapped muscle fibres to refine the models of the striated muscle thin filament. This was done by incorporating current atomic-resolution structures of actin, tropomyosin, troponin and myosin subfragment-1. Fitting these atomic coordinates to EM reconstructions, we present atomic models of the thin filament that are entirely consistent with a steric regulatory mechanism. Furthermore, fitting the atomic models against diffraction data from skinned muscle fibres, stretched to non-overlap to preclude crossbridge binding, produced very similar results, including a large Ca2+-induced shift in tropomyosin azimuthal location but little change in the actin structure or apparent alteration in troponin position.  相似文献   

20.
Structural and functional information of membrane proteins at ever-increasing resolution is being obtained by electron crystallography. While a large amount of work on the development of methods for electron microscopy and image processing has resulted in tremendous advances in terms of speed of data collection and resolution, general guidelines for crystallization are first starting to emerge. Yet two-dimensional crystallization itself will always remain the limiting factor of this powerful approach in structural biology. Two-dimensional crystallization through detergent removal by dialysis is the most widely used technique. Four main factors need to be considered for the dialysis method: the protein preparation, the detergent, the lipid added as well as any constituent lipid, and the buffer conditions. Equally important is proper and careful screening to identify two-dimensional crystals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号