首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The polymeric Ig receptor (pIgR) transcytoses its ligand, dimeric IgA (dIgA), from the basolateral to the apical surface of epithelial cells. Although the pIgR is constitutively transcytosed in the absence of ligand, binding of dIgA stimulates transcytosis of the pIgR. We recently reported that dIgA binding to the pIgR induces translocation of protein kinase C, production of inositol triphosphate, and elevation of intracellular free calcium. We now report that dIgA binding causes rapid, transient tyrosine phosphorylation of several proteins, including phosphatidyl inositol-specific phospholipase C-γl. Protein tyrosine kinase inhibitors or deletion of the last 30 amino acids of pIgR cytoplasmic tail prevents IgA-stimulated protein tyrosine kinase activation, tyrosine phosphorylation of phospholipase C-γl, production of inositol triphosphate, and the stimulation of transcytosis by dIgA. Analysis of pIgR deletion mutants reveals that the same discrete portion of the cytoplasmic domain, residues 727–736 (but not the Tyr734), controls both the ability of pIgR to cause dIgA-induced tyrosine phosphorylation of the phospholipase C-γl and to undergo dIgA-stimulated transcytosis. In addition, dIgA transcytosis can be strongly stimulated by mimicking phospholipase C-γl activation. In combination with our previous results, we conclude that the protein tyrosine kinase(s) and phospholipase C-γl that are activated upon dIgA binding to the pIgR control dIgA-stimulated pIgR transcytosis.  相似文献   

2.
《The Journal of cell biology》1996,133(5):997-1005
Many membrane traffic events that were previously thought to be constitutive recently have been found to be regulated by a variety of intracellular signaling pathways. The polymeric immunoglobulin receptor (pIgR) transcytoses dimeric IgA (dIgA) from the basolateral to the apical surface of polarized epithelial cells. Transcytosis is stimulated by binding of dIgA to the pIgR, indicating that the pIgR can transduce a signal to the cytoplasmic machinery responsible for membrane traffic. We report that dIgA binding to the pIgR causes activation of protein kinase C (PKC) and release of inositol 1,4,5- trisphosphate (IP3). The IP3 causes an elevation of intracellular Ca. Artificially activating PKC with phorbol myristate acetate or poisoning the calcium pump with thapsigargin stimulates transcytosis of pIgR, while the intracellular Ca chelator BAPTA-AM inhibits transcytosis. Our data suggest that ligand-induced signaling by the pIgR may regulate membrane traffic via well-known second messenger pathways involving PKC, IP3, and Ca. This may be a model of a general means by which membrane traffic is regulated by receptor-ligand interaction and signaling pathways.  相似文献   

3.
Polarized epithelial cells contain apical and basolateral surfaces with distinct protein compositions. To establish and maintain this asymmetry, newly made plasma membrane proteins are sorted in the trans Golgi network for delivery to apical or basolateral surfaces. Signals for basolateral sorting are generally located in the cytoplasmic domain of the protein, whereas signals for apical sorting can be in any part of the protein and can depend on N-linked glycosylation of the protein. Signals for constitutive transcytosis to the apical surface have not been reported. In this study, we used the polymeric immunoglobulin receptor (pIgR), which is biosynthetically delivered to the basolateral surface. There the pIgR can bind a ligand and, with or without bound ligand, the pIgR can then be transcytosed to the apical surface. We found that the glycosylation of the pIgR did not affect the biosynthetic transport of the pIgR. However, glycosylation had an effect on pIgR apical transcytosis. Importantly, analysis of the cytoplasmic tail of the pIgR suggested that a short peptide segment was sufficient to transcytose the pIgR or a neutral reporter from the basolateral to the apical surface. This apical transcytosis sorting signal was not involved in polarized biosynthetic traffic of the pIgR.  相似文献   

4.
Transcytosis of the polymeric immunoglobulin receptor (pIgR) is stimulated by binding of its ligand, dimeric IgA (dIgA). During this process, dIgA binding at the basolateral surface of the epithelial cell transmits a signal to the apical region of the cell, which in turn stimulates the transport of dIgA-pIgR complex from a postmicrotubule compartment to the apical surface. We have previously reported that the signal of stimulation was controlled by a protein-tyrosine kinase (PTK) activated upon dIgA binding. We now show that this signal of stimulation moves across the cell independently of pIgR movement or microtubules and acts through the tyrosine kinase activity by releasing Ca++ from inositol trisphosphate-sensitive intracellular stores. Surprisingly we have found that a second independent signal is required to achieve dIgA-stimulated transcytosis of pIgR. This second signal depends on dIgA binding to the pIgR solely at the basolateral surface and the ability of pIgR to dimerize. This enables pIgR molecules that have bound dIgA at the basolateral surface to respond to the signal of stimulation once they reach the postmicrotubule compartment. We propose that the use of two signals may be a general mechanism by which signaling receptors maintain specificity along their signaling and trafficking pathways.  相似文献   

5.
In polarized epithelial cells, sorting of proteins and lipids to the apical or basolateral domain of the plasma membrane can occur via direct or indirect (transcytotic) pathways from the trans Golgi network (TGN). The 'rafts' hypothesis postulates that the key event for direct apical sorting of some transmembrane proteins and the majority of GPI-anchored proteins depends on their association with glycosphingolipid and cholesterol enriched microdomains (rafts). However, the mechanism of indirect sorting to the apical membrane is not clear. The polyimmunoglobulin receptor (pIgR) is one of the best studied proteins that follow the transcytotic pathway. It is normally delivered from the TGN to the basolateral surface of polarized Madin–Darby Canine Kidney (MDCK) cells from where it transports dIgA or dIgM to the apical surface. We have studied the intracellular trafficking of pIgR in Fischer rat thyroid cells (FRT), and have investigated the sorting machinery involved in transcytosis of this receptor in both FRT and MDCK cells. We found that, in contrast with MDCK cells, a significant amount (∼30%) of pIgR reaches the apical surface by a direct pathway. Furthermore, in both cell lines it does not associate with Triton X-100-insoluble microdomains, suggesting that at least in these cells 'rafts' are not involved in basolateral to apical transcytosis.  相似文献   

6.
Binding of dimeric immunoglobulin (Ig)A to the polymeric Ig receptor (pIgR) stimulates transcytosis of pIgR across epithelial cells. Through the generation of a series of pIgR chimeric constructs, we have tested the ability of ligand to promote receptor dimerization and the subsequent role of receptor dimerization on its intracellular trafficking. Using the cytoplasmic domain of the T cell receptor-ζ chain as a sensitive indicator of receptor oligomerization, we show that a pIgR:ζ chimeric receptor expressed in Jurkat cells initiates a ζ-specific signal transduction cascade when exposed to dimeric or tetrameric IgA, but not when exposed to monomeric IgA. In addition, we replaced the pIgR’s transmembrane domain with that of glycophorin A to force dimerization or with a mutant glycophorin transmembrane domain to prevent dimerization. Forcing dimerization stimulated transcytosis of the chimera, whereas preventing dimerization abolished ligand-stimulated transcytosis. We conclude that binding of dimeric IgA to the pIgR induces its dimerization and that this dimerization is necessary and sufficient to stimulate pIgR transcytosis.  相似文献   

7.
The polymeric immunoglobulin receptor (pIgR) ensures the transport of dimeric immunoglobulin A (dIgA) and pentameric immunoglobulin M (pIgM) across epithelia to the mucosal layer of for example the intestines and the lungs via transcytosis. Per day the human pIgR mediates the excretion of 2 to 5 grams of dIgA into the mucosa of luminal organs. This system could prove useful for therapies aiming at excretion of compounds into the mucosa. Here we investigated the use of the variable domain of camelid derived heavy chain only antibodies, also known as VHHs or Nanobodies®, targeting the human pIgR, as a transport system across epithelial cells. We show that VHHs directed against the human pIgR are able to bind the receptor with high affinity (∼1 nM) and that they compete with the natural ligand, dIgA. In a transcytosis assay both native and phage-bound VHH were only able to get across polarized MDCK cells that express the human pIgR gene in a basolateral to apical fashion. Indicating that the VHHs are able to translocate across epithelia and to take along large particles of cargo. Furthermore, by making multivalent VHHs we were able to enhance the transport of the compounds both in a MDCK-hpIgR and Caco-2 cell system, probably by inducing receptor clustering. These results show that VHHs can be used as a carrier system to exploit the human pIgR transcytotic system and that multivalent compounds are able to significantly enhance the transport across epithelial monolayers.  相似文献   

8.
B Aroeti  K E Mostov 《The EMBO journal》1994,13(10):2297-2304
Polarized epithelial cells can sort plasma membrane proteins to the apical or basolateral domain either by direct targeting from the trans-Golgi network (TGN) or by targeting to one surface, followed by endocytosis and transcytosis to the opposite surface. In Madin-Darby canine kidney (MDCK) cells, targeting of the polymeric immunoglobulin receptor (pIgR) to the basolateral surface is controlled by a sorting signal residing in the membrane proximal 17 amino acids of the cytoplasmic domain of this receptor. We have recently found that individual mutations at any of three residues in this signal, His656, Arg657 and Val660, substantially decrease targeting from the TGN to the basolateral surface and correspondingly increase targeting from the TGN to the apical surface. Here we report that these mutations decrease the recycling of basolaterally endocytosed pIgR to that surface, and correspondingly increase its transcytosis to the apical surface. This effect occurred in mutant pIgRs that either contained the full-length cytoplasmic domain or were truncated to contain only the 17-residue basolateral targeting signal, and was independent of phosphorylation of pIgR at Ser664. Our results indicate that polarized sorting of the pIgR in the endocytotic and exocytotic pathways are controlled by the same amino acids.  相似文献   

9.
Transport of polymeric IgA onto mucosal surfaces to become secretory IgA is mediated by the polymeric Ig receptor (pIgR). To study the interaction of human dimeric IgA (dIgA) (the predominant form of IgA polymer) with the human pIgR (hpIgR), we generated recombinant wild-type dIgA1 and dIgA2m(1) and various mutant dIgA1 and analyzed their interaction with a recombinant human secretory component and membrane-expressed hpIgR. We found that wild-type dIgA1 and dIgA2m(1) bound to recombinant human secretory component with similar affinity and were transcytosed by the hpIgR to the same extent. Mutation of the IgA Calpha2 domain residue Cys311 to Ser reduced binding to hpIgR, possibly through disruption of noncovalent interactions between the Calpha2 domain and domain 5 of the receptor. Within the Calpha3 domain of IgA1, we found that combined mutation of residues Phe411, Val413, and Thr414, which lie close to residues previously implicated in hpIgR binding, abolished interaction with the receptor. Mutation of residue Lys377, located very close to this same region, perturbed receptor interaction. In addition, 4 aa (Pro440-Phe443), which lie on a loop at the domain interface and form part of the binding site for human FcalphaRI, appear to contribute to hpIgR binding. Lastly, use of a monomeric IgA1 mutant lacking the tailpiece revealed that the tailpiece does not occlude hpIgR-binding residues in IgA1 monomers. This directed mutagenesis approach has thus identified motifs lying principally across the upper surface of the Calpha3 domain (i.e., that closest to Calpha2) critical for human pIgR binding and transcytosis.  相似文献   

10.
We observed that phorbol myristate acetate (PMA) stimulates transcytosis of the polymeric immunoglobulin receptor (pIgR) in MDCK cells. Apical release of pre-endocytosed ligand (dimeric IgA) bound to the pIgR can be stimulated twofold within 7 min of addition of PMA while recycling of the ligand from the basal surface is not affected. In addition, apical surface delivery of pIgR and cleavage of its ectodomain to secretory component (SC) is also stimulated by PMA. The recycling of apically internalized ligand back to the apical surface is similarly stimulated. These results suggest that the stimulation of apical delivery is from an apical recycling compartment. The effect of PMA suggests that protein kinase C (PKC) is involved in the regulation of pIgR trafficking in MDCK cells. To test this we down regulated PKC activity by pre-treating cells with PMA for 16 h and observed that transcytosis could no longer be stimulated by PMA. Western blots show that the PKC isozymes alpha and to a lesser extent epsilon, are depleted from MDCK cells which have been pre-treated with PMA for 16 h and that treatment of MDCK cells with PMA for 5 min causes a dramatic translocation of the PKC alpha isozyme and a partial translocation of the epsilon isozyme from the cytosol to the membrane fraction of cell homogenates. This translocation suggests that the alpha and/or epsilon isozymes may be involved in PMA mediated stimulation of transcytosis. A mutant pIgR in which serines 664 and 726, the major sites of phosphorylation, are replaced by alanine is stimulated to transcytose by PMA, suggesting that phosphorylation of pIgR at these sites is not required for the effect of PMA. These results suggest that PMA-mediated stimulation of pIgR transcytosis may involve the activation of PKC alpha and/or epsilon, and that this stimulation occurs independently of the major phosphorylation sites on the pIgR. Finally, PMA stimulates transcytosis of basolaterally internalized transferrin, suggesting that PMA acts to generally stimulate delivery of endocytosed proteins to the apical surface.  相似文献   

11.
The polymeric immunoglobulin receptor (pIgR), a transmembrane protein, transports dimeric IgA (dIgA) across the epithelial cells of the mucosal surfaces into the external secretions, for example milk from the mammary glands. The pIgR is consumed during the transcytosis of dIgA and is cleaved at the apical side of the epithelial cells, regardless of the binding to its ligand (dIgA), to form secretory component (SC). We hypothesize that the expression level of the endogenous murine pIgR gene in the epithelial cells is ratelimiting for the transport of dIgA across the epithelial cells into the secretions. We address this key issue by generating transgenic mice overexpressing the pIgR gene in their mammary glands in order to examine the effect on dIgA levels in the milk. Here we report on the generation of transgenic mice and analysis of the expression level of pIgR in their mammary glands. We cloned and characterized the murine pIgR gene and constructed an expression cassette bearing the pIgR gene under the control of the regulatory sequences of the bovine s1casein gene. Four transgenic lines were made, expressing the pIgR construct at RNA and protein level only in their mammary glands. The levels of the SC protein in the milk ranged from 0.1 to 2.7mg/ml during midlactation. These levels are 10–270 times higher than wildtype SC levels (0.01mg/ml).  相似文献   

12.
Transcytosis of polymeric immunoglobulin A (pIgA) across epithelial cells is mediated by the polymeric immunoglobulin receptor (pIgR). Binding of pIgA to pIgR stimulates transcytosis of the pIgA-pIgR complex via a signal transduction pathway that is dependent on a protein tyrosine kinase (PTK) of the SRC family. Here we identify the PTK as p62yes. We demonstrate the specific physical and functional association of the pIgR with p62yes in rodent liver. Analysis of p62yes knockout mice revealed a dramatic reduction in the association of tyrosine kinase activity with the pIgR and in transcytosis of pIgA. We conclude that p62yes controls pIgA transcytosis in vivo.  相似文献   

13.
Polymeric IgA (pIgA) is transcytosed by the pIgA receptor (pIgR) across mucosal epithelial cells. After transcytosis to the apical surface, the extracellular, ligand-binding portion of the pIgR is proteolytically cleaved. A missense mutation in human pIgR, A580V, is associated with IgA nephropathy and nasopharyngeal carcinoma. We report that this mutation reduces the rate of transcytosis of pIgR and pIgA, and seemingly the rate of pIgR cleavage. We propose that the defects in pIgR trafficking caused by the A580V mutation may underlie the pathogenesis of both diseases.  相似文献   

14.
We generated mouse lacking exon 2 of polymeric Ig receptor (pIgR) gene by a gene-targeting strategy (pIgR-deficient mouse; pIgR-/- mouse) to define the physiological role of pIgR in the transcytosis of Igs. pIgR-/- mice were born at the expected ratio from a cross between pIgR+/- mice, indicating that disruption of the pIgR gene in mice is not lethal. pIgR and secretory component proteins were not detected in pIgR-/- mice by Western blot analysis. Moreover, immunohistochemical analysis showed that pIgR protein is not expressed in jejunal and colonic epithelial cells of pIgR-/- mice, whereas IgA+ cells are present in the intestinal mucosa of pIgR-/- mice as well as wild-type littermates. Disruption of the pIgR gene caused a remarkable increase in serum IgA concentration and a slight increment of serum IgG and IgE levels, leaving serum IgM level unaltered. In contrast, IgA was much reduced but not negligible in the bile, feces, and intestinal contents of pIgR-/- mice. Additionally, IgA with a molecular mass of 280 kDa preferentially accumulated in the serum of pIgR-/- mice, suggesting that transepithelial transport of dIgA is severely blocked in pIgR-/- mice. These results demonstrate that dIgA is mainly transported by pIgR on the epithelial cells of intestine and hepatocytes, but a small quantity of IgA may be secreted via other pathways.  相似文献   

15.
《The Journal of cell biology》1995,130(6):1447-1459
Certain epithelial cells synthesize the polymeric immunoglobulin receptor (pIgR) to transport immunoglobulins (Igs) A and M into external secretions. In polarized epithelia, newly synthesized receptor is first delivered to the basolateral plasma membrane and is then, after binding the Ig, transcytosed to the apical plasma membrane, where the receptor-ligand complex is released by proteolytic cleavage. In a previous work (Ikonen et al., 1993), we implied the existence of a dendro-axonal transcytotic pathway for the rabbit pIgR expressed in hippocampal neurons via the Semliki Forest Virus (SFV) expression system. By labeling surface-exposed pIgR in live neuronal cells, we now show (a) internalization of the receptor from the dendritic plasma membrane to the dendritic early endosomes, (b) redistribution of the receptor from the dendritic to the axonal domain, (c) inhibition of this movement by brefeldin A (BFA) and (d) stimulation by the activation of protein kinase C (PKC) via phorbol myristate acetate (PMA). In addition, we show that a mutant form of the receptor lacking the epithelial basolateral sorting signal is directly delivered to the axonal domain of hippocampal neurons. Although this mutant is internalized into early endosomes, no transcytosis to the dendrites could be observed. In epithelial Madin-Darby Canine Kidney (MDCK) cells, the mutant receptor could also be internalized into basolaterally derived early endosomes. These results suggest the existence of a dendro-axonal transcytotic pathway in neuronal cells which shares similarities with the basolateral to apical transcytosis in epithelial cells and constitute the basis for the future analysis of its physiological role.  相似文献   

16.
The polymeric immunoglobulin receptor (pIgR) is a type I transmembrane protein that delivers dimeric IgA (dIgA) and pentameric IgM to mucosal secretions. Here, we report the 1.9 A resolution X-ray crystal structure of the N-terminal domain of human pIgR, which binds dIgA in the absence of other pIgR domains with an equilibrium dissociation constant of 300 nM. The structure of pIgR domain 1 reveals a folding topology similar to immunoglobulin variable domains, but with differences in the counterparts of the complementarity determining regions (CDRs), including a helical turn in CDR1 and a CDR3 loop that points away from the other CDRs. The unusual CDR3 loop position prevents dimerization analogous to the pairing of antibody variable heavy and variable light domains. The pIgR domain 1 structure allows interpretation of previous mutagenesis results and structure-based comparisons between pIgR and other IgA receptors.  相似文献   

17.
Madin-Darby canine kidney (MDCK) cells deliver endogenous apical and basolateral proteins directly to the appropriate domains. We are investigating the molecular signals on a model plasma membrane hydrolase, dipeptidylpeptidase IV (DPPIV). Most newly synthesized rat liver DPPIV is delivered directly to the apical surface of transfected MDCK cells; however, about 20% is delivered first to the basolateral surface and reaches the apical surface via transcytosis (Casanova, J. E., Mishumi, Y., Ikehara, Y., Hubbard, A. L., and Mostov, K. E. (1991) J. Biol. Chem. 266, 24428-24432). A soluble form of DPPIV (solDPPIV) containing only the lumenal domain of the protein was efficiently transported and secreted by stably transfected MDCK cells. If this domain contains apical sorting information, we would expect 80% of the soluble protein to be secreted apically. Surprisingly, 95% of the secreted solDPPIV was found in the apical medium. The high efficiency of apical secretion suggested that the transmembrane domain and cytoplasmic tail of DPPIV might contain competing basolateral targeting information. To test this hypothesis, we investigated the trafficking of a chimera in which the cytoplasmic tail and transmembrane domains of DPPIV were joined to lysozyme, an exogenous protein which should not contain sorting information. This protein was delivered predominantly to the basolateral surface. Our results suggest that the lumenal domain of DPPIV carries dominant apical sorting information while the transmembrane domain and cytoplasmic tail of the molecule contains competing basolateral sorting information.  相似文献   

18.
Polymeric immunoglobulin A (pIgA) transcytosis, mediated by the polymeric immunoglobulin receptor (pIgR), is a central component of mucosal immunity and a model for regulation of polarized epithelial membrane traffic. Binding of pIgA to pIgR stimulates transcytosis in a process requiring Yes, a Src family tyrosine kinase (SFK). We show that Yes directly phosphorylates EGF receptor (EGFR) on liver endosomes. Injection of pIgA into rats induced EGFR phosphorylation. Similarly, in MDCK cells, pIgA treatment significantly increased phosphorylation of EGFR on various sites, subsequently activating extracellular signal-regulated protein kinase (ERK). Furthermore, we find that the Rab11 effector Rab11-FIP5 is a substrate of ERK. Knocking down Yes or Rab11-FIP5, or inhibition of the Yes-EGFR-ERK cascade, decreased pIgA-pIgR transcytosis. Finally, we demonstrate that Rab11-FIP5 phosphorylation by ERK controls Rab11a endosome distribution and pIgA-pIgR transcytosis. Our results reveal a novel Yes-EGFR-ERK-FIP5 signalling network for regulation of pIgA-pIgR transcytosis.  相似文献   

19.
Autosomal-dominant polycystic kidney disease (ADPKD) is a common life-threatening genetic disease that leads to renal failure. No treatment is available yet to effectively slow disease progression. Renal cyst growth is, at least in part, driven by the presence of growth factors in the lumens of renal cysts, which are enclosed spaces lacking connections to the tubular system. We have shown previously shown that IL13 in cyst fluid leads to aberrant activation of STAT6 via the IL4/13 receptor. Although antagonistic antibodies against many of the growth factors implicated in ADPKD are already available, they are IgG isotype antibodies that are not expected to gain access to renal cyst lumens. Here we demonstrate that targeting antibodies to renal cyst lumens is possible with the use of dimeric IgA (dIgA) antibodies. Using human ADPKD tissues and polycystic kidney disease mouse models, we show that the polymeric immunoglobulin receptor (pIgR) is highly expressed by renal cyst-lining cells. pIgR expression is, in part, driven by aberrant STAT6 pathway activation. pIgR actively transports dIgA from the circulation across the cyst epithelium and releases it into the cyst lumen as secretory IgA. dIgA administered by intraperitoneal injection is preferentially targeted to polycystic kidneys whereas injected IgG is not. Our results suggest that pIgR-mediated transcytosis of antagonistic antibodies in dIgA format can be exploited for targeted therapy in ADPKD.  相似文献   

20.
多聚免疫球蛋白受体(pIgR)在粘膜免疫中的重要功能   总被引:1,自引:0,他引:1  
多聚免疫球蛋白受体(pIgR)属于Ⅰ型跨膜糖蛋白,可与多聚免疫球蛋白A和多聚免疫球蛋白M特异性结合,通过穿胞转运,将它们从上皮细胞基底侧膜转运到顶膜,并最终分泌到外分泌液中去. 在此过程中,多聚免疫球蛋白受体的细胞外段被水解,释放出与多聚免疫球蛋白A或多聚免疫球蛋白M相结合的细胞外段(又称为分泌成分). 分泌成分是sIgA分子的重要组成部分,直接参与sIgA的粘膜防御功能,而且在被动粘膜免疫中也有重要作用. 多聚免疫球蛋白受体通过介导细胞内多聚免疫球蛋白的转运,可以在粘膜的腔面阻止病原体粘附,在上皮细胞内中和病毒,也可以将固有层内的抗原分泌出去. 因此,多聚免疫球蛋白受体的有效分泌是多聚免疫球蛋白发挥粘膜防御功能的必要条件. 但在某些情况下,该受体也可以介导微生物对上皮屏障的入侵. 多聚免疫球蛋白受体是高度 N -糖基化的,其分子中独特的糖链结构,可能与受体的穿胞转运、sIgA在粘膜的正确定位,以及抗原对上皮细胞的粘附有关. 多聚免疫球蛋白受体和分泌成分参与的多重分子机制,使它们在粘膜免疫中起着举足轻重的作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号