首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
Five, highly flocculeng strains of Saccharomyces cerevisiae, isolated from wine, were immobilized in calcium alginate beads to optimize primary must fermentation. Three cell-recycle batch fermentations (CRBF) of grape musts were performed with the biocatalyst and the results compared with those obtained with free cells. During the CRBF process, the entrapped strains showed some variability in the formation of secondary products of fermentation, particularly acetic acid and acetaldehyde. Recycling beads of immobilized flocculent cells is a good approach in the development and application of the CRBF system in the wine industry.  相似文献   

2.
A natural zeolite, easily vitrified and blown at 1300 °C with a high porosity and diam. of 5–100 m, was used to immobilize Saccharomyces cerevisiae at 3.6 × 108 cells ml–1 carrier. When the abilities of natural zeolite carrier were compared with glass beads, the capacity for immobilization and alcohol fermentation activity were, respectively, 2-fold higher and 1.2-fold higher than that of glass beads. Continuous alcohol fermentation was stable for over 21 d without breakage of the carrier.  相似文献   

3.
Yeast viability can be accurately quantified using BacLight, a kit which so far has been used only for bacterial analysis. Upon staining, viable cells can be differentiated from non-viable ones by either confocal laser scanning microscopy (CLSM), epifluorescence microscopy, or flow cytometry. Using Saccharomyces cerevisiae as a model, viabilities quantified by CLSM deviated an average of 1.7% from the actual data, and those determined by flow-cytometry by 1.4%.  相似文献   

4.
Summary Saccharomyces cerevisiae in the form of baker's yeast, cells cultivated on a yeast extract-peptone-glucose medium, as well as cells immobilized in 18% (w/v) polyacrylamide gel showed the ability to hydrolyze 1.727 mM sodium phytate solution at 45°C, pH 4.6, in a stirred tank reactor. Seventy percent yield of dephosphorylation was observed after 2 h using a baker's yeast concentration of 5.8 g dry matter per 100 ml. Hydrolytic activity at 1.8–2.0 M Pi min–1 was observed between 1st and 3rd h of the reaction in cells cultured 24 or 48 h. No inhibition by the substrate was found at sodium phytate concentrations of 0.587–1.727 mM. After 1.5 h of hydrolysis a single, well distinguished peak ofmyo-inositol-triphosphate was the main product found. By means of immobilization the stability of the biocatalyst was enhanced 3.3-fold and reached its half-life at 64 ninety-minute runs.  相似文献   

5.
M.M. Gharieb  G.M. Gadd 《Biometals》2004,17(2):183-188
Cellular glutathione (GSH) was implicated in tolerance to potentially toxic metal(loid)s using two strains of Saccharomyces cerevisiae, a wild-type (sigma 1278b) and a GSH-deficient mutant strain (gshA-2). Both yeast strains exhibited no significant difference in tolerance to tellurite, zinc, cobalt, copper, manganese, nickel and chromate. There was no marked influence of glutathione on the accumulation of Te, Co, Cu, and Mn, although the absence of cellular glutathione significantly increased the cellular content of Zn and Ni, but greatly decreased Cr content without significant alteration of tolerance. These results indicated the independence of cellular glutathione activity from tolerance to Te, Zn, Co, Cu, Mn, Ni, and Cr. However, involvement of glutathione in Zn, Ni and Cr uptake is possible. The glutathione-deficient strain displayed a high sensitivity to selenite and cadmium in comparison to the wild-type strain of S. cerevisiae. The minimum inhibitory concentrations of Se and Cd for the glutathione-deficient strain were 980 +/- 13 and 32 +/- 4 microM, respectively, whereas the wild strain tolerated up to 4080 +/- 198 microM Se and 148 +/- 5 microM Cd. A relationship between tolerance and reduced cellular content of both Se and Cd was also shown: the mutant strain accumulated approximately three-fold more Se and two-fold more Cd than that accumulated by the wild-type strain. This suggests an influence of GSH on cellular uptake of Se and Cd, and also directly confirms the protective action of such a cellular thiol compound against Se and Cd toxicity.  相似文献   

6.
Invertase liberation from Saccharomyces cerevisiae was detected after application of series of rectangular millisecond electric pulses. Maximal yield (60% from the activity in crude extract) was achieved within 8 h after pulsation. As shown by staining SDS-PAGE for invertase activity, the main part of liberated enzyme is a high molecular weight periplasmic invertase.  相似文献   

7.
8.
Saccharomyces cerevisiae which cannot utilize lysine as a sole nitrogen source is shown to metabolize a Lysine 3 Cr3+ (1:1) complex synthesized, as a combined nitrogen and carbon source. It induces rapid uptake of lysine and prevents loss of viability, in contrast with free lysine. That complexation with trivalent chromium has the effect of profoundly influencing intracellular distribution and metabolism of the liganded amino acid is demonstrated.  相似文献   

9.
Saccharomyces cerevisiae is an ascomycetous yeast, that is traditionally used in wine bread and beer production. Vaginitis caused by S. cerevisiae is rare.The aim of this study was to evaluate the frequency of S. cerevisiae isolation from the vagina in two groups of women and determined the in vitro susceptibility of this fungus.

Subjects and methods

Vaginal samples were collected from a total of262 (asymptomaticandsymptomatic) women with vaginitis attending the centre of family planning of General hospital ofPiraeus. All blastomycetes that isolated from the vaginal samples were examined for microscopic morphological tests and identified by conventional methods: By API 20 C AUX and ID 32 C (Biomerieux). Antifungal susceptility testing for amphotericin B,fluconazole itraconazole,voriconazole, posaconazole and caspofungin was performed by E -test (Ab BIODIKS SWEDEN) against S. cerevisiae.

Results

A total of 16 isolates of S. cerevisiae derived from vaginal sample of the referred women, average 6.10%. Susceptibility of 16 isolates of S. cerevisiae to a variety of antimycotic agents were obtained. So all isolates of S. cerevisiae were resistant to fluconazole, posaconazole and intraconazole, but they were sensitive to voriconazole caspofungin and Amphotericin B which were found sensitive (except 1/16 strains). None of the 16 patients had a history of occupational domestic use of baker’s yeast.

Conclusions

Vaginitis caused by S. cerevisiae occur, is rising and cannot be ignored. Treatment of Saccharomyces vaginitis constitutes a major challenge and may require selected and often prolonged therapy.  相似文献   

10.
Copper-induced metallothionein (MT) synthesis in Saccharomyces cerevisiae was investigated in order to associate this exclusively with Cu2+ in vivo, when cultured in nutrient medium containing other heavy metal ions. Expression of the CUP1 promoter/lacZ fusion gene was inhibited by all heavy metal ions tested, especially Cd2+ and Mn2+. By adding Cd2+ and Mn2+ at 10 M concentration, the -galactosidase activity decreased by about 80% and 50% of the maximum induction observed with 1 mM CuSO4, respectively. Furthermore, cell growth was markedly inhibited by combinations of 1 mM-Cu2+ and 1 M-Cd2+. Therefore, the yeast S. cerevisiae could not rely on MT synthesis as one of the copper-resistance mechanisms, when grown in a Cd2+ environment. In contrast, the presence of Mn2+ in the nutrient medium showed alleviation rather than growth inhibition by high concentrations of Cu2+. The recovery from growth inhibition by Mn2+ was due to decreased Cu2+ accumulation. Inhibitory concentrations of Co2+, Ni2+ and Zn2+ on expression of the CUP1p/lacZ fusion gene were at least one order of magnitude higher than that of Cd2+ and Mn2+. These results are discussed in relation to Cu2+ transport and Cu-induced MT synthesis in the copper-resistance mechanism of the yeast S. cerevisiae.  相似文献   

11.
Although suggested in some studies, the mutagenic effect of freezing has not been proved by induction and isolation of mutants. Using a well-defined genetic model, we supply in this communication evidence for the mutagenic effect of freezing on mitochondrial DNA (mtDNA) of the yeast Saccharomyces cerevisiae. The cooling for 2 h at +4 degrees C, followed by freezing for 1 h at -10 degrees C and 16 h at -20 degrees C resulted in induction of respiratory mutations. The immediate freezing in liquid nitrogen was without mutagenic effect. The study of the stepwise procedure showed that the induction of respiratory mutants takes place during the freezing at -10 and -20 degrees C of cells pre-cooled at +4 degrees C. The genetic crosses of freeze-induced mutants evidenced their mitochondrial rho- origin. The freeze-induced rho- mutants are most likely free of simultaneous nuclear mutations. The extracellular presence of cryoprotectants did not prevent the mutagenic effect of freezing while accumulation of cryoprotectors inside cells completely escaped mtDNA from cryodamage. Although the results obtained favor the notion that the mutagenic effect of freezing on yeast mtDNA is due to formation and growth of intracellular ice crystals, other reasons, such as impairment of mtDNA replication or elevated levels of ROS production are discussed as possible explanations of the mutagenic effect of freezing. It is concluded that: (i) freezing can be used as a method for isolation of mitochondrial mutants in S. cerevisiae and (ii) given the substantial development in cryopreservation of cells and tissues, special precautions should be made to avoid mtDNA damage during the cryopreservation procedures.  相似文献   

12.
In fungi, cellular resistance to heavy metal cytotoxicity is mediated either by binding of metal ions to proteins of the metallothionein type or by chelation to phytochelatin-peptides of the general formula (-Glu-Cys)n-Gly. Hitherto, only one fungus, Candida glabrata has been shown to contain both metal inactivating systems. Here we show by unambiguous FAB-MS analysis that both a metallothionein-free mutant of Saccharomyces cerevisiae as well as a wildtype strain synthesize phytochelatin (PC2) upon exposure to 250 M Cd2+ ions. The presence of Zn and/or Cu ions in the nutrient broth also induces PC2 synthesis in this organism. By 109Cd exchange and subsequent monobromobimane fluorescence HPLC, it could be shown that the presence of Cd2+ in the growth medium also induces phytochelatin synthesis in Neurospora crassa, which contains metallothioneins.  相似文献   

13.
The activity of chitin synthase extracted from whole cells of Saccharomyces cerevisiae shows reproducible changes during the course of batch cultivation. During exponential growth 5–10% of the enzyme occurs in the active form, whereas in the stationary phase no active enzyme can be detected. Of three yeast proteinases, A, B and C, only B is able to activate pre-chitin synthase and inactivate chitin synthase. A new model of the regulation is presented which accounts for the specific location as well as for termination of chitin synthesis during the budding cycle.These results were reported at the 4th International Symposium on Yeasts in Vienna, July 1974, and are part of doctoral thesis by A.H., University Freiburg (1974).  相似文献   

14.
We have quantified yeast carbon and oxygen consumption fluxes and estimated anabolic fluxes through glyoxylate and gluconeogenic pathways under various conditions of sporulation on acetate. The percentage of sporulation reached a maximum of 55% to 60% after 48 h in sporulation medium, for cells harvested from logarithmic growth in acetate minimal medium. When cells were harvested in the stationary phase of growth before transfer to sporulation medium, the maximum percentage of sporulation decreased to 40% along with the occurrence of meiosis as could be judged by counting of bi- and tetra-nucleated cells. In both experiments, the rates of acetate and oxygen consumption decreased as a function of time when exposed to sporulation medium. Apparently, the decrease of metabolic rates was not due to alkalinization. By systematically varying the cell concentration in sporulation medium from 1.4×107 to 20×107 cell ml-1, the percentage of sporulating cells was found to decrease in parallel with the rate of acetate consumption. When the sporulation efficiency attained under the different experimental conditions was plotted as a function of the rate of acetate consumption, a linear correlation was found. Anabolic fluxes estimation revealed a decrease of the rate through gluconeogenic and glyoxylate pathways occurring during sporulation progression. The pattern of metabolic fluxes progressively evolved toward a predominance of more oxidative catabolic fluxes than those exhibited under growth conditions. The results obtained are discussed in terms of a characteristic pattern of metabolic fluxes and energetics, associated to the development of yeast sporulation.Abbreviations DAPI 4,6-diamidino-2-phenylindole - dw dry weight - OD540 optical density at 540 nm - SEM standard error of the mean - RQ respiratory quotient  相似文献   

15.
Summary A DNA fragment conferring resistance to zinc and cadmium ions in the yeast Saccharomyces cerevisiae was isolated from a library of yeast genomic DNA. Its nucleotide sequence revealed the presence of a single open reading frame (ORF; 1326 bp) having the potential to encode a protein of 442 amino acid residues (molecular mass of 48.3 kDa). A frameshift mutation introduced within the ORF abolished resistance to heavy metal ions, indicating the ORF is required for resistance. Therefore, we termed it the ZRC1 (zinc resistance conferring) gene. The deduced amino acid sequence of the gene product predicts a rather hydrophobic protein with six possible membrane-spanning regions. While multiple copies of the ZRC1 gene enable yeast cells to grow in the presence of 40 mM Zn2+, a level at which wild-type cells cannot survive, the disruption of the chromosomal ZRC1 locus, though not a lethal event, makes cells more sensitive to zinc ions than are wild-type cells.  相似文献   

16.
Sex-specific agglutinins from the cell surface of haploid cells of Saccharomyces cerevisiae (X2180, mta and mt) were purified and analysed. The constitutive agglutinin from mta cells was extractable with 3 mM dithiothreitol. It was shown to be a glycoprotein (3% mannose) with an apparent Mr of 43,000 based on gel filtration, but in SDS-PAGE it behaved as a much smaller molecule (Mr between 18,000 and 26,000). About one in three amino acids was a hydroxyamino acid. Its biological activity was resistant to boiling for 1 h, but sensitive to pronase. Intact mt cells retained their agglutinability in the presence of dithiothreitol but limited trypsinizing released a biologically active agglutinin fragment. It had an apparent Mr of 320,000 (gel filtration). When analysed by SDS-PAGE, a single diffuse band with an apparent Mr of 225,000 was observed. The protein was 94% (w/w) mannose with a trace of N-acetyl glucosamine. Its biological activity was almost completely lost after boiling for 1 h. Both agglutinins behaved as monovalent molecules and specifically inhibited the biological activity of both noninduced and pheromone-induced cells. Pheromone treatment of mta cells resulted in an apparent 32-fold increase in agglutinin activity at the cell surface, whereas pheromone treatment of mt cells only doubled the apparent agglutinin activity.Abbreviations mt mating type - DTT dithiothreitol - SDS-PAGE sodium dodecyl sulphate polyacrylamide gel electrophoresis - YPG yeast-peptone-glucose - PAS periodic-acid-Schiff reagent  相似文献   

17.
The tolerance of sol-gel immobilised and free Saccharomyces cerevisiae to ethanol was studied. The effects of ethanol preincubation time showed that the specific death velocity decreased from 2×105 c.f.u. min–1 for free cells to 2×104 c.f.u. min–1 for immobilised cells thus indicating that immobilised yeast was far less sensitive to the ethanol damage. The specific glucose consumption of immobilised and free cells on a per cell basis was 3×10–12 g cell–1 h–1 and 9×10–12 g cell–1 h–1, respectively.  相似文献   

18.
Temperature dependency of sexual agglutination in Saccharomyces cerevisiae was found. Of 31 strains tested, which showed normal agglutination when cultured at 25°C, 29 strains lost their sexual agglutinability when they were grown at 37°C.  相似文献   

19.
The response of Saccharomyces cerevisiae to different concentrations of Pb2+ was investigated. The results demonstrated that the growth of S. cerevisiae in the presence of Pb2+ showed a lag phase much longer than that in the absence of Pb2+. The inhibition was dependent upon Pb2+ concentrations. The Pb2+ at a concentration of 5 μM inhibited the microbial growth by approximately 30% with regard to control, whereas Pb2+ at concentration of 2 μM did not have a significant effect on the microbial growth. The existence of Pb2+ did not perturb cell-protein synthesis and there was a good correlation between dry cell weights and total protein content (R 2 = 0.98). The RNA/DNA ratio in the microbial cells varied with Pb2+ concentration and there was a significant positive correlation between Pb2+ concentration and the RNA/DNA ratio. The microbial assimilation of ammonium ion was inhibited by the presence of Pb2+ in the medium; when Pb2+ concentration was 10 μM, the microbial ammonium assimilation was inhibited about 50%, in comparison with the control experiment.  相似文献   

20.
Phosphoenolpyruvate carboxykinase showed high activity in Saccharomyces cerevisiae grown on gluconeogenic carbon sources. Addition of glucose to such cultures caused a rapid loss of the phosphoenolpyruvate carboxykinase activity. Fructose or mannose had the same effect as glucose, while 2-deoxyglucose or galactose were without effect. The inactivation was an irreversible process, since the regain of the activity was dependent of de novo protein synthesis. Cycloheximide did not prevent inactivation. All strains of the genus Saccharomyces tested showed inactivation of their phosphoenolpyruvate carboxykinase upon addition of glucose; this behaviour was not restricted to this genus.Non-Standard Abbreviations FbPase fructose bisphosphatase [EC 3.1.3.11 fructose-1,6-bisphosphate hydrolase] - PEPCK phosphoenolpyruvate carboxykinase [EC 4.1.49 ATP: oxalacetate carboxylase (transphosphorylating)] - YPE yeast-peptone-ethanol A preliminary account of these results was presented at the Fourth International Symposium on Yeasts, Vienna, Austria, July 1974  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号