首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this paper is twofold. Firstly, we investigate whether contact times, as recorded by pedobarographic systems during quadrupedal and bipedal walking of bonobos, can be used to reliably calculate actual velocities, by applying formulae based on lateral-view video recordings. Secondly, we investigate the effect of speed on peak plantar pressures during bipedal and quadrupedal walking of the bonobo. Data were obtained from 4 individuals from a group of bonobos at the Animal Park Planckendael. From our study, we can conclude that both walking speeds calculated from contact times and lower leg length or simply from recorded contact times are good estimators for walking speed, when direct observation of the latter is impossible. Further, it was found that effects of speed on peak plantar pressures and vertical forces are absent or at least subtle in comparison to a large variation in pressure patterns. In bonobos, the same pressure patterns are used at all walking speeds, and, in consequence, we do not expect major changes in foot function.  相似文献   

2.
The function of a below-knee suction socket in establishing and maintaining negative pressures in the limb-socket cavity for suspension during swing phase is examined. An hypothesis of function. pertinent factors. and variables are established in the development of a model used as a basis of experimental investigation of such a prosthesis in ten tests of nine subjects. Model predictions indicate that carity suction necessary for static suspension may vary from −3 to −52 mm Hg depending upon the shape and dimensions of limb stump and on the coefficient of friction between limb and interface material. Experimental data reveals that cavity suction is increased by calf muscle contraction to a level of −200 mm Hg. The cyclic pumping action in walking increases it further to about −350 mm Hg. It is shown that leakage time exceeds wwing phase period if adequate sealing is established by limb socket normal pressures at calf level.  相似文献   

3.
《Journal of biomechanics》2013,46(14):2539-2545
The alignment of a lower-limb prosthesis is critical to the successful prosthetic fitting and utilization by the wearer. Loads generated by the socket applied to the residual limb while walking are thought to be different in transfemoral and knee-disarticulation prostheses. The aim of this case series was to compare the socket reaction moments between transfemoral and knee-disarticulation prostheses and to investigate the effect of alignment changes on them. Two amputees, one with a transfemoral prosthesis and another with a knee-disarticulation prosthesis, participated in this study. A Smart Pyramid™ was used to measure socket reaction moments while walking under 9 selected alignment conditions; including nominally aligned, angle malalignments of 6° (flexion, extension, abduction and adduction) and translation malalignments of 15 mm (anterior, posterior, medial and lateral) of the socket relative to the foot. This study found that the pattern of the socket reaction moments was similar between transfemoral and knee-disarticulation prostheses. An extension moment in the sagittal plane and a varus moment in the coronal plane were dominant during stance under the nominally aligned condition. This study also demonstrated that alignment changes might have consistent effects on the socket reaction moments in transfemoral and knee-disarticulation prostheses. Extension and posterior translation of the socket resulted in increases in an extension moment, while abduction and lateral translation of the socket resulted in increases in a varus moment. The socket reaction moments may potentially serve as useful biomechanical parameters to evaluate alignment in transfemoral and knee-disarticulation prostheses.  相似文献   

4.
During walking the anterior tibial compartment pressure was measured continuously using a new technique. The test subjects were made to walk on a treadmill at the standardised walking spees fo 3, 6, and 8 km/h. Documentation of intrafascial pressure was obtained continously, while gait-analysis and pressure changes were simultaneously documented on video-tape. Readily reproductible pressure curves were obtained. The increase in walking speed correlated to increase in intracompartmental pressure, and the varying pressure was accurately correlated to gait phases. Minimum pressure was recorded in the phase immediately prior to initial heel contact (IC). During "mid-stand" (MST) the pressure remained constant. "Terminal-stand" (TSZ) and pre-swing (PS) are associated with peak pressure. The method described is suitable for continuous and reproducible measurement during walking.  相似文献   

5.
The effects of inertial loads on the interface stresses between trans-tibial residual limb and prosthetic socket were investigated. The motion of the limb and prosthesis was monitored using a Vicon motion analysis system and the ground reaction force was measured by a force platform. Equivalent loads at the knee joint during walking were calculated in two cases with and without consideration of the material inertia. A 3D nonlinear finite element (FE) model based on the actual geometry of residual limb, internal bones and socket liner was developed to study the mechanical interaction between socket and residual limb during walking. To simulate the friction/slip boundary conditions between the skin and liner, automated surface-to-surface contact was used. The prediction results indicated that interface pressure and shear stress had the similar double-peaked waveform shape in stance phase. The average difference in interface stresses between the two cases with and without consideration of inertial forces was 8.4% in stance phase and 20.1% in swing phase. The maximum difference during stance phase is up to 19%. This suggests that it is preferable to consider the material inertia effect in a fully dynamic FE model.  相似文献   

6.
Many amputees who wear a leg prosthesis develop significant skin wounds on their residual limb. The exact cause of these wounds is unclear as little work has studied the interface between the prosthetic device and user. Our research objective was to develop a quantitative method for assessing displacement patterns of the gel liner during walking for patients with transtibial amputation. Using a reflective marker system and a custom clear socket, evaluations were conducted with a clear transparent test socket mounted over a plaster limb model and a deformable limb model. Distances between markers placed on the limb were measured with a digital caliper and then compared with data from the motion capture system. Additionally, the rigid plaster set-up was moved in the capture volume to simulate walking and evaluate if inter-marker distances changed in comparison to static data. Dynamic displacement trials were then collected to measure changes in inter-marker distance due to vertical elongation of the gel liner. Static and dynamic inter-marker distances within day and across days confirmed the ability to accurately capture displacements using this new approach. These results encourage this novel method to be applied to a sample of amputee patients during walking to assess displacements and the distribution of the liner deformation within the socket. The ability to capture changes in deformation of the gel liner will provide new data that will enable clinicians and researchers to improve design and fit of the prosthesis so the incidence of pressure ulcers can be reduced.  相似文献   

7.
The alignment of a lower limb prosthesis affects the way load is transferred to the residual limb through the socket, and this load is critically important for the comfort and function of the prosthesis. Both magnitude and duration of the moment are important factors that may affect the residual limb health. Moment impulse is a well-accepted measurement that incorporates both factors via moment–time integrals. The aim of this study was to investigate the effect of alignment changes on the socket reaction moment impulse in transtibial prostheses. Ten amputees with transtibial prostheses participated in this study. The socket reaction moment impulse was measured at a self-selected walking speed using a Smart Pyramid™ in 25 alignment conditions, including a nominal alignment (clinically aligned by a prosthetist), as well as angle malalignments of 2°, 4° and 6° (abduction, adduction, extension and flexion) and translation malalignments of 5 mm, 10 mm and 15 mm (lateral, medial, anterior and posterior). The socket reaction moment impulse of the nominal alignment was compared for each condition. The relationship between the alignment and the socket reaction moment impulse was clearly observed in the coronal angle, coronal translation and sagittal translation alignment changes. However, this relationship was not evident in the sagittal angle alignment changes. The results of this study suggested that the socket reaction moment impulse could potentially serve as a valuable parameter to assist the alignment tuning process for transtibial prostheses. Further study is needed to investigate the influence of the socket reaction moment impulse on the residual limb health.  相似文献   

8.
Various foot structures are thought to influence forefoot plantar pressures during walking. High peak plantar pressures (PPP) during walking in people with diabetes mellitus (DM) and peripheral neuropathy (PN) can cause skin breakdown. The question addressed by this study is "What are the primary forefoot structural factors that predict regional PPP during walking in groups of people with and without DM and PN?" Twenty people with DM and PN (mean age 55+/-9 years, 6 female, 14 male, BMI=33+/-8) and 20 people without DM, matched for gender, age, and BMI were tested. Measures of foot structure were taken from three-dimensional images constructed from spiral X-ray computed tomography. Peak plantar pressure data were recorded during walking. Hierarchical multiple regression analysis was used to predict regional PPP at the great toe and five metatarsal heads from selected structural and walking variables. Metatarsal phalangeal joint angle (hammer toe deformity) was the most important variable predicting pressure, accounting for 19-45% of the PPP variance at five of the six locations in the DM group. Soft tissue thickness, hallux valgus, and forefoot arthropathy were the most important predictors of PPP in the control group. Combinations of structural and walking variables accounted for 47-71% of the variance in the DM group and 52-83% of the variance of PPP during walking in the control group. These structural variables, especially hammer toe deformity, should be considered in attempts to develop strategies to reduce excessive forefoot PPP that may contribute to skin breakdown or other injury.  相似文献   

9.
10.
Disorders of the first ray of the foot (defined as the hard and soft tissues of the first metatarsal, the sesamoids, and the phalanges of the great toe) are common, and therapeutic interventions to address these problems range from alterations in footwear to orthopedic surgery. Experimental verification of these procedures is often lacking, and thus, a computational modeling approach could provide a means to explore different interventional strategies. A three-dimensional finite element model of the first ray was developed for this purpose. A hexahedral mesh was constructed from magnetic resonance images of the right foot of a male subject. The soft tissue was assumed to be incompressible and hyperelastic, and the bones were modeled as rigid. Contact with friction between the foot and the floor or footwear was defined, and forces were applied to the base of the first metatarsal. Vertical force was extracted from experimental data, and a posterior force of 0.18 times the vertical force was assumed to represent loading at peak forefoot force in the late-stance phase of walking. The orientation of the model and joint configuration at that instant were obtained by minimizing the difference between model predicted and experimentally measured barefoot plantar pressures. The model were then oriented in a series of postures representative of push-off, and forces and joint moments were decreased to zero simultaneously. The pressure distribution underneath the first ray was obtained for each posture to illustrate changes under three case studies representing hallux limitus, surgical arthrodesis of the first ray, and a footwear intervention. Hallux limitus simulations showed that restriction of metatarsophalangeal joint dorsiflexion was directly related to increase and early occurrence of hallux pressures with severe immobility increasing the hallux pressures by as much as 223%. Modeling arthrodesis illustrated elevated hallux pressures when compared to barefoot and was dependent on fixation angles. One degree change in dorsiflexion and valgus fixation angles introduced approximate changes in peak hallux pressure by 95 and 22 kPa, respectively. Footwear simulations using flat insoles showed that using the given set of materials, reductions of at least 18% and 43% under metatarsal head and hallux, respectively, were possible.  相似文献   

11.
This paper describes the initial test results obtained from a newly developed computer-aided socket design (CASD) and manufacturing (CASM) process for above-knee amputees. Anthropometric measures taken from an amputee provided input information to a CASD system. Using these measurements, data from a reference shape library stored in the computer were selected and modified to create a unique socket shape reflecting the particular characteristics of the amputation stump. The resultant shape was produced as a ‘primitive’ test socket by a CASM process. Numerical shape data were then transferred to a CNC milling machine to construct a negative cast, from which the primitive socket was produced by a vacuum-forming procedure. The resultant primitive socket shape was fitted and the amputee was able to load the socket without discomfort. Some shape discrepancies were identified and the shape data were modified interactively by the CASD system to create a final socket shape. The final socket shape was manufactured and worn by the amputee during a 35 min walking trial. Subjective evaluation was that the socket provided comfort and control comparable with that of the conventional socket, and proved to be acceptable to the amputee. This was followed by a 2-month home trial which was also successful. The CASD socket shapes were compared numerically in area, shape and volume with data taken from the original socket worn by the amputee, a new socket made by conventional methods and a topographic model of the amputation stump. The final CASD socket shape compared favourably with that of a socket manufactured by conventional methods. Results indicated that by the use of the CASD/CASM process, it was possible to produce an above-knee prosthetic socket which provided comfort and control for the amputee.  相似文献   

12.
This study investigates whether walking or running prevents the formation of edema in the lower leg. In 18 volunteers changes in calf volume were measured using strain gauge plethysmography during slow (3 km/h) and fast (6 km/h) walking or running (10 km/h) on a treadmill for 20 min each. Venous pressure was measured in a superficial vein near the ankle. Low-pass filtering removed motion artifacts from the signals. Slow walking reduced the calf volume in a biphasic manner: a rapid decrease was followed by a slow decline, lasting from about minute 2 to minute 20, its mean rate being -0.073%/min. Besides a rapid initial decrease, no significant change was observed during fast walking. During running, the calf volume first increased within 7 min to a maximum of 2.5% and subsequently decreased with a mean rate of -0.096%/min. The medians of venous pressure were 84.0, 23.5, 30.4, and 29.5 mmHg during quiet standing, slow and fast walking, and running, respectively. The experimental results prove the hypothesis that walking prevents dependent edema formation. This effect, however, cannot be fully explained by the lowered venous pressures.  相似文献   

13.
A major goal of therapeutic footwear in patients with pain or those at risk for skin injury is to relieve focal loading under prominent metatarsal heads. One frequent approach is to place plugs of compliant material into the midsole of the shoe. This study investigated 36 plug designs, a combination of three materials, six geometries, and two placements using a two-dimensional (2D) finite element model. Realistic loading conditions were obtained from plantar pressures (PP) recorded during walking in five subjects who wore control midsoles manufactured using Microcell Puff. Measured peak pressures underneath the second metatarsal head were similar to the results of the control model. PP obtained from simulations with the plugs built into a firm midsole were compared to the simulation results of the control midsole. Large plugs (e.g. 40 mm width), made out of Microcell Puff Lite or Plastazote Medium, placed at peak pressure sites, resulted in highest reductions in peak pressures (18-28%). Smaller plugs benefited from tapering when placed at high pressure areas. Case studies were completed on a healthy male subject and a diabetic female patient to address the efficacy of a plug design favored by our simulations (pressure based placement, 40 x 20 mm, Plastazote Medium). Successful reductions of second metatarsal head pressures were observed with a mediolateral load redistribution that was not represented by our model. 2D computer simulations allowed systematic investigation of plug properties without the need for high volume experimentation on human subjects and established basic guidelines for plug selection. In particular, plugs that are placed based on plantar pressure measurements were proven to be more effective when compared to those positioned according to the projection of the bony landmark on the foot-shoe plantar contact area.  相似文献   

14.
The mechanical environment during stair climbing has been associated with patellofemoral pain, but the contribution of loading to this condition is not clearly understood. It was hypothesized that the loading conditions during stair climbing induce higher patellofemoral pressures, a more lateral force distribution on the trochlea and a more lateral shift and tilt of the patella compared to walking at early knee flexion. Optical markers for kinematic measurements were attached to eight cadaveric knees, which were loaded with muscle forces at instances of walking and stair climbing cycles at 12° and 30° knee flexion. Contact mechanics were determined using a pressure sensitive film. At 12° knee flexion, stair climbing loads resulted in higher peak pressure (p=0.012) than walking, more lateral force distribution (p=0.012) and more lateral tilt (p=0.012), whilst mean pressure (p=0.069) and contact area (p=0.123) were not significantly different. At 30° knee flexion, although stair climbing compared to walking loads resulted in significantly higher patellofemoral mean (p=0.012) and peak pressures (p=0.012), contact area (p=0.025), as well as tilt (p=0.017), the medial–lateral force distribution (p=0.674) was not significantly different. No significant differences were observed in patellar shift between walking and stair climbing at either 12° (p=0.093) or 30° (p=0.575) knee flexion. Stair climbing thus leads to more challenging patellofemoral contact mechanics and kinematics than level walking at early knee flexion. The increase in patellofemoral pressure, lateral force distribution and lateral tilt during stair climbing provides a possible biomechanical explanation for the patellofemoral pain frequently experienced during this activity.  相似文献   

15.
Hydrolysis of β-lactoglobulin with thermolysin and pepsin at pressures ranging between 0.1 and 350 MPa showed a significant increase of cleavage rates. Pressure-induced changes of susceptibility to hydrolysis of β-lactoglobulin proteolytic sites were also observed. The pressure, raised to 200 MPa, accelerates the hydrolysis of β-lactoglobulin by thermolysin and changes obtained peptide profiles. Initially, higher pressure makes the N-terminal, and to a smaller extent, C-terminal peptide fragments of β-lactoglobulin molecule, more susceptible to removal by thermolysin. This indicates combined influence of pressure-induced thermolysin activation and partial unfolding of β-lactoglobulin by compression at neutral pHs. The rates of hydrolysis of β-lactoglobulin by pepsin (negligible at 0.1 MPa) are increased considerably with pressure up to 300 MPa. The Susceptibility of β-lactoglobulin proteolytic sites to peptic cleavage remains constant over all the studied pressure range. The lack of significant qualitative changes in the peptic peptide profiles produced at different pressures and at clearly pressure-dependent rates points to negative reaction volume changes as the major factor in peptic hydrolysis of β-lactoglobulin under high pressure. Thus the β-lactoglobulin molecule resists pressure-induced unfolding in acid pHs and yields to it in neutral pHs. © 1995 John Wiley & Sons, Inc.  相似文献   

16.
It is well known that mechanical forces acting within the soft tissues of the foot can contribute to the formation of neuropathic ulcers in people with diabetes. Presently, only surface measurements of plantar pressure are used clinically to estimate risk status due to mechanical loading. It is currently not known how surface measurements relate to the three-dimensional (3-D) internal stress/strain state of the foot. This article describes the development of a foot-loading device that allows for the direct observation of the internal deformation of foot tissues under known forces. Ground reaction forces and plantar pressure distributions during normal walking were measured in ten healthy young adults. One instant in the gait cycle, when pressure under the metatarsal heads reached a peak, was extracted for simulation in an MR imager. T1-weighted 3-D gradient echo MRI sets were collected as the simulated walking ground reaction force was incrementally applied to the foot by the novel foot-loading device. The sub-metatarsal head soft-tissue thickness decreased rapidly at first and then reached a plateau. Peak plantar pressure measurements collected within the loading device (161+/-75kPa) were lower in magnitude and less focal than pressures measured during walking (492+/-91kPa). This finding implies that although the device successfully applied full peak walking ground reaction forces to the foot, they were not distributed in the same manner as during walking. Although not representative of gait, the data collected from this in vivo mechanical test are suitable for determination of foot tissue material properties or, when combined with finite element modeling, to examine the relationship between surface loading and internal stress.  相似文献   

17.
Considerable attention has been given to hand morphology and function associated with knuckle‐walking in the African apes because of the implications they have for the evolution of bipedalism in early hominins. Knuckle‐walking is associated with a unique suite of musculoskeletal features of the wrist and hand, and numerous studies have hypothesized that these anatomical features are associated with the dynamics of load distribution across the digits during knuckle‐walking. We collected dynamic digital pressures on two chimpanzees during terrestrial and simulated arboreal locomotion. Comparisons were made across substrates, limb positions, hand positions, and age categories. Peak digital pressures were similar on the pole and on the ground but were distributed differently across the digits on each substrate. In young animals, pressure was equally high on digits 2–4 on the ground but higher on digits 3 and 4 on the pole. Older animals experience higher pressures on digits 2 and 3 on the ground. Hand posture (palm‐in vs. palm‐back) influenced the distribution and timing of peak pressures. Age‐related increases in body mass also result in higher overall pressures and increased variation across the digital row. In chimpanzees, digit 5 typically bears relatively little load regardless of hand position or substrate. These are the first quantitative data on digital pressures during knuckle‐walking in hominoids, and they afford the opportunity to develop hypotheses about variation among hominoids and biomechanical models of wrist and forearm loading. Am J Phys Anthropol 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
The effect of pressure, at elevated temperatures, is reported on the activity and stability of a thermophilic endo‐β‐glucanase from the filamentous fungus Talaromyces emersonii. The production of reduced sugars after treatment at different temperatures and pressures is used as a measure of the activity and stability of the enzyme. The activity of the enzyme is maintained to higher temperatures with increasing pressure. For example, the relative activity of endo‐β‐glucanase decreases to 30% after 4 h at 75°C and 1 bar, whereas it is preserved at 100% after 6 h at 75°C and 230 bar. High‐pressure dynamic light scattering is used to characterize the hydrodynamic radius of the enzyme as a function of pressure, temperature, and time. At higher temperature the hydrodynamic radius increases with time, whereas increasing pressure suppresses this effect. Changes in the hydrodynamic radius are correlated with the activity measurements obtained at elevated pressures, since the changes in the hydrodynamic radius indicate structural changes of the enzyme, which cause the deactivation. Biotechnol. Bioeng. 2013; 110: 1674–1680. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
Since elastic and flow-resistive respiratory work are volume dependent, changes in lung volume during immersion affect respiratory effort. This investigation examined changes in lung volume with air delivery pressure modifications during upright immersion. Static pressure-volume relaxation relationships and lung volumes were obtained from ten immersed subjects breathing air at four delivery pressures: mouth pressure, lung centroid pressure (PLC), and 0.98 kPa above and below PLC. The PLC is the static lung pressure which returns the respiratory relaxation volume (VR) to normal and was previously determined to be +1.33 kPa relative to pressure at the sternal notch. Lung volume changes observed when breathing air at mouth pressure were reversed when air was supplied at PLC. The expiratory reserve volume (ERV) and VR were reduced by 58% and 87%, respectively, during uncompensated immersion. These differences indicated an active defence of ERV and implied that additional static respiratory work was required to overcome transrespiratory pressure gradients.  相似文献   

20.
This study investigates the relation between walking speed and the distribution of peak plantar pressure and compares a traditional ten-region subsampling (10RS) technique with a new technique: pedobarographic statistical parametric mapping (pSPM). Adapted from cerebral fMRI methodology, pSPM is a digital image processing technique that registers foot pressure images such that homologous structures optimally overlap, thereby enabling statistical tests to be conducted at the pixel level. Following previous experimental protocols, we collected pedobarographic records from 10 subjects walking at three different speeds: slow, normal, and fast. Walking speed was recorded and correlated with the peak pressures extracted from the 10 regions, and subsequently with the peak pixel data extracted after pSPM preprocessing. Both methods revealed significant positive correlation between peak plantar pressure and walking speed over the rearfoot and distal forefoot after Bonferroni correction for multiple comparisons. The 10RS analysis found positive correlation in the midfoot and medial proximal forefoot, but the pixel data exhibited significant negative correlation throughout these regions (p<5x10(-5)). Comparing the statistical maps from the two approaches shows that subsampling may conflate pressure differences evident in pixel-level data, obscuring or even reversing statistical trends. The negative correlation observed in the midfoot implies reduced longitudinal arch collapse with higher walking speeds. We infer that this results from pre- or early-stance phase muscle activity and speculate that preferred walking speed reflects, in part, a balance between the energy required to tighten the longitudinal arch and the apparent propulsive benefits of the stiffened arch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号