首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prototype temperature-sensitive (ts) mutants of a coxsackievirus B3 parent virus capable of replication to similar levels at 34 or 39.5 degrees C were examined for the nature of the temperature-sensitive event restricting replication in HeLa cells at 39.5 degrees C. The ts mutant prototypes represented three different non-overlapping complementation groups. The ts1 mutant (complementation group III) synthesized less than 1% of the infectious genomic RNA synthesized by the coxsackievirus B3 parent virus at 39.5 degrees C and was designated an RNA- mutant. Agarose gel analysis of glyoxal-treated RNA from cells inoculated with ts1 virus revealed that cell RNA synthesis continued in the presence of synthesis of the small amount of viral RNA. This mutant was comparatively ineffective in inducing cell cytopathology and in directing synthesis of viral polypeptides, likely due to the paucity of nascent genomes for translation. The ts5 mutant (complementation group II) directed synthesis of appreciable quantities of both viral genomes (RNA+) and capsid polypeptides; however, assembly of these products into virions occurred at a low frequency, and virions assembled at 39.5 degrees C were highly unstable at that temperature. Shift-down experiments with ts5-inoculated cells showed that capsid precursor materials synthesized at 39.5 degrees C can, after shift to 34 degrees C, be incorporated into ts5 virions. We suggest that the temperature-sensitive defect in this prototype is in the synthesis of one of the capsid polypeptides that cannot renature into the correct configuration required for stability in the capsid at 39.5 degrees C. The ts11 mutant (complementation group I) also synthesized appreciable amounts of viral genomes (RNA+) and viral polypeptides at 39.5 degrees C. Assembly of ts11 virions at 39.5 degrees C occurred at a low frequency, and the stability of these virions at 39.5 degrees C was similar to that of the parent coxsackievirus B3 virions. The temperature-sensitive defect in the ts11 prototype is apparently in assembly. The differences in biochemical properties of the three prototype ts mutants at temperatures above 34 degrees C may ultimately offer insight into the differences in pathogenicity observed in neonatal mice for the three prototype ts mutants.  相似文献   

2.
We characterized seven temperature-sensitive capsid cleavage (cleavage-defective) mutants of encephalomyocarditis virus. Our experimental approach was to monitor in vitro proteolysis reactions of either wild-type or cleavage-defective mutant capsid precursors mixed with cell-free translation products (containing the viral protease) of either wild-type or mutant viral RNA. The cell-free translation reactions and in vitro proteolysis reactions were done at 38 degrees C, because at this temperature cleavage of the capsid precursors was restricted in reactions containing cleavage-defective mutant viral RNA as the message, relative to those reactions containing wild-type viral RNA as the message. Wild-type or cleavage-defective mutant capsid precursors were prepared by adding cycloheximide to cell-free translation reactions primed with wild-type or mutant viral RNA, respectively, 12 min after the initiation of translation. In vitro proteolysis of wild-type capsid precursors with cell-free translation products of either wild-type or cleavage-defective mutant viral RNA led to similar products at 38 degrees C, indicating that the cleavage-defective mutant viral protease was not temperature sensitive. As a corollary to this, at 38 degrees C cleavage-defective mutant capsid precursors were not cleaved as completely as were wild-type capsid precursors by products of cell-free translation of wild-type viral RNA. The results from these in vitro proteolysis experiments indicate that all seven of the cleavage-defective mutants have capsid precursors with a temperature-sensitive configuration.  相似文献   

3.
Thirty temperature-sensitive mutants of encephalomyocarditis virus have been isolated and partially characterized. Fifteen of these mutants are phenotypically RNA+ thirteen are RNA-, and two are RNA +/-. Six RNA + mutants, one RNA- mutants, and one RNA +/- mutant have virions which are more thermosensitive at 56 degree C than the wild-type virions. Hela cells infected at the nonpermissive temperature with any of the RNA+ mutants produced neither infective nor noninfective viral particles. The cleavage of the precursor polypeptides in cells infected with 11 of the RNA+ mutants was defective at the nonpermissive temperature. This defect in cleavage occurred only in those precursor polypeptides leading to capsid proteins.  相似文献   

4.
Simian virus 40 capsid proteins VP-1, VP-2, and VP-3 have been synthesized in wheat germ and reticulocyte cell-free systems in response to either poly(A)-containing mRNA from the cytoplasm of infected cells or viral RNA purified by hybridization to simian virus 40 DNA linked to Sepharose. All three viral polypeptides synthesized in vitro are specifically immunoprecipitated with anti-simian virus 40 capsid serum. VP-2 and VP-3 are related by tryptic peptide mapping to each other but not to VP-1. The most abundant class of L-strand-specific viral mRNA, the 16S species, codes for the major capsid protein. The relatively minor 19S class directs the cell-free synthesis of VP-1, VP-2, and VP-3. Whether the 19S RNA represents more than one distinct species of mRNA is not yet clear. VP-1 mRNA can be isolated from the cytoplasm, detergent-washed nuclei, and the nuclear wash fraction. The mRNA from the nuclear wash fraction is enriched for VP-2 mRNA when compared to other viral or cellular polypeptides.  相似文献   

5.
The ability of a temperature-sensitive (ts) mutant of reovirus, ts261-b, to synthesize virus-specific RNAs and proteins during infection at the nonpermissive temperature (37 degrees C) was investigated. The relative amounts of the mutant virus-specific single-stranded (ss) RNA''s and double-stranded (ds) RNA''s synthesized in cells at 37 degrees C were 20 to 25% as much as those synthesized in the wild-type virus-infected cells. The 10 segments of the mutant ds RNAs and the three size classes of the ss RNAs were synthesized in the usual proportions. The methylation of the mutant viral mRNA''s (ss RNAs) was not blocked at 37 degrees C in infected cells. A striking temperature-sensitive restricted function of the ts261-b mutant was expressed in the synthesis of the viral proteins. This study, which uses an in vitro protein-synthesizing system reconstituted with an endogenous polysomal fraction and a postribosomal supernatant from reovirus-infected cells, has demonstrated that the endogenous polysomes obtained from ts261-b mutant-infected cells at 37 degrees C are not active in the synthesis of the viral polypeptides of known molecular weights, and the amounts of the mutant viral polypeptides synthesized in vitro by these polysomes are 5 to 9% of those synthesized by the corresponding fraction from wild-type-infected cells. The impaired protein-synthesizing capacity of the mutant virus-specific polysomes can be restored during maintenance of the infected cells at 30 degrees C after shift-down from 37 degrees C. The in vitro synthesis of viral polypeptides of known size by the active endogenous polysomes derived from cells infected at the permissive temperature is accelerated by the addition of the postribosomal supernatant obtained from cells infected at the permissive temperature. The postribosomal supernatant from mutant-infected cells at 37 degrees C did not have a stimulatory effect, but rather, it inhibited in vitro viral protein synthesis.  相似文献   

6.
It was previously shown that a temperature-sensitive mutant of Sendai virus, ts-23, readily establishes persistent infection in Vero cells at 37 C, a permissive temperature for growth of the mutant. In the present study, it was demonstrated that the virus yield from ts-23-infected Vero cells at 37 C began to decrease 48 to 72 hr postinfection, after an initial phase of high virus production. Before the decrease in virus production, the formation of viral nucleoprotein declined, although synthesis of all species of viral protein continued. It was suggested that the limited formation of viral nucleoprotein and the decrease in virus production were due to the restriction of viral RNA synthesis which began to occur early after infection in ts-23-infected cells at 37 C. The mutant has a temperature-sensitive defect in RNA polymerase activity and the temperature 37 C, used for establishment of persistent infection, would be a semi-permissive temperature for the RNA polymerase activity of the mutant. The ts-23 mutant interfered with the replication of the parental wild virus in Vero cells at 37 C.  相似文献   

7.
Studies of the synthesis of viral ribonucleates and polypeptides in cells infected with two RNA- ts mutants of Mengo virus (ts 135 and ts 520) have shown that when ts 135 infected cells are shifted from the permissive (33 degrees C) to the nonpermissive (39 degrees C) temperature: (i) the synthesis of all three species of viral RNA (single stranded, replicative form, and replicative intermediate) is inhibited to about the same extent, and (ii) the posttranslational cleavage of structural polypeptide precursors A and B is partially blocked. Investigations of the in vivo and in vitro stability of the viral RNA replicase suggest that the RNA- phentotype reflects a temperature-sensitive defect in the enzyme. The second defect does not appear to result from the inhibition of viral RNA synthesis at 39 degrees C, since normal cleavage of polypeptides A and B occurs in wt Mengo-infected cells in which viral RNA synthesis is blocked by cordycepin, and at the nonpermissive temperature in ts 520 infected cells. Considered in toto, the evidence suggests that ts 135 is a double mutant. Subviral (53S) particles have been shown to accumulate in ts 520 (but not ts 135) infected cells when cultures are shifted from 33 to 39 degrees C. This observation provides supporting evidence for the proposal that this recently discovered particle is an intermediate in the assembly pathway of Mengo virions.  相似文献   

8.
9.
We report on the properties of a temperature-sensitive mutant produced by transfection of cells with intact DNA and a specific DNA fragment mutagenized with low levels of hydroxylamine. The plating efficiency of the mutant at 39 degrees C relative to that at 33.5 degrees C was 5 X 10(-6). The pattern of polypeptides produced at the nonpermissive temperature was similar to that seen with wild-type virus in infected cells treated with inhibitory concentrations of phosphonoacetic acid in that alpha and beta polypeptides were produced, whereas most gamma polypeptides were either reduced or absent. Consistently, the mutant did not make viral DNA, although temperature sensitivity of the viral DNA polymerase could not be demonstrated. Marker rescue studies with herpes simplex virus type 2 (HSV-2) DNA mapped the mutant in the L component within map positions 0.385 and 0.402 in the prototype (P) arrangement of the HSV-1 genome. Analysis of the recombinants permitted the mapping of the genes specifying infected cell polypeptides 36, 35, 37, 19.5, 11, 8, 2, 43, and 44, but only the infected cell polypeptide 8 of HSV-2 was consistently made by all recombinants containing demonstrable HSV-2 sequences. Marker rescue studies with cloned HSV-1 DNA fragments mapped the temperature-sensitive lesion within less than 10(3) base pairs between 0.383 and 0.388 map units. Translation of the RNA hybridizing to cloned HSV-1 DNA, encompassing the smallest region containing the mutation, revealed polypeptide 8 (128,000 molecular weight), which was previously identified as a beta polypeptide with high affinity for viral DNA, and a polypeptide (25,000 molecular weight) not previously identified in lysates of labeled cells.  相似文献   

10.
Previous work has shown that translation of the encephalomyocarditis (EMC) viral ribonucleic acid (RNA) generates at least three primary products, polypeptides A, F, and C. The A and C polypeptides then undergo post-translational cleavages to complete the production of the stable viral polypeptides (delta, beta, gamma, alpha, G, I, F, H, and E). In this communication we show that A, F, and C are produced in equimolar amounts giving further support to the theory that the RNA of picornaviruses has only a single site for the initiation of protein synthesis. The biosynthesis of viral proteins in EMC virus-infected HeLa cells was studied in the presence of pactamycin at concentrations which preferentially inhibit the initiation of protein synthesis. The amount of each polypeptide formed during the residual period of protein synthesis observed after the addition of pactamycin was used as a criterion for ordering the genes on the viral RNA. The results obtained indicate that the primary gene products are ordered on the EMC viral RNA 5' --> 3' A-F-C and that the stable products are ordered delta-beta-gamma-alpha-G-I-F-H-E. Moreover, the intermediate chains B and epsilon map in the capsid region, whereas the intermediate chain D maps in the E region. This order is largely consistent with previously established relationships of the viral polypeptides and thus indicates that pactamycin is a valid tool for "genetic" mapping of polycistronic RNA molecules with single initiation sites.  相似文献   

11.
Translation of encephalomyocarditis virus RNA in a cell-free system from uninfected Krebs ascites cells results in the synthesis of a major polypeptide product with a molecular weight of approximately 112,000. In contrast, when the viral RNA is translated in a cell-free system from virus-infected cells, this polypeptide is absent and the largest polypeptide produced has a molecular weight of about 100,000. This latter polypeptide comigrates on sodium dodecyl sulfate-gels with in vivo virus capsid precursor A, and the two have identical patterns of CNBr-generated peptides. A polypeptide having a molecular weight of 12,500 is also a major translation product in the system from infected cells (but not from uninfected cells). This polypeptide appears to be generated by cleavage of the NH-2-terminal portion of the viral RNA-dependent polypeptides by a proteolytic activity present in the infected cell-free system. This proteolytic activity copurifies with the 23,000-molecular weight viral capsid protein gamma, found in infected cells, through chromatography on DEAE-cellulose and cellulose phosphate. This suggests that gamma is itself a proteolytic enzyme involved in maturation of the viral capsid precursor.  相似文献   

12.
Protein cleavage in virus-infected cells   总被引:2,自引:0,他引:2  
A variety of proteins, including viral precursor polypeptides, were bound to a solid support and used in a sensitive assay for proteolytic enzymes in HeLa cells. A trypsin-like endoprotease, present on ribosomes of HeLa cells, loses activity after picornavirus infection. The decline follows synthesis and processing of a viral protein. Inhibition of cellfree activity of HeLa protease occurs when protein trypsin inhibitors or double-stranded RNA are added. After the mid-point of infection, protease activity with enhanced specificity for viral substrates is detected. The new protease has a pH optimum and heat stability different from endogenous host enzymes, and is synthesized following infection. A viral mutant was isolated which produces a temperature-sensitive protease. The results indicate that a poliovirus gene product participates enzymatically in the final cleavages of some polioviral proteins. A model for the regulation of poliovirus replication based on specific proteolysis is presented.  相似文献   

13.
Chicken embryo fibroblasts infected with an RNA- temperature-sensitive mutant (ts24) of Sindbis virus accumulated a large-molecular-weight protein (p200) when cells were shifted from the permissive to nonpermissive temperature. Appearance of p200 was accompanied by a decrease in the synthesis of viral structural proteins, but [35S]methionine tryptic peptides from p200 were different from those derived from a 140,000-molecular-weight polypeptide that contains the amino acid sequences of viral structural proteins. Among three other RNA- ts mutants that were tested for p200 formation, only one (ts21) produced this protein. The accumulation of p200 in ts24- and ts21-infected cells could be correlated with a shift in the formation of 42S and 26S viral RNA that led to an increase in the relative amounts of 42S RNA. These data indicate that p200 is translated from the nonstructural genes of the virion 42S RNA and further suggest that this RNA does not function effectively in vivo as an mRNA for the Sindbis virus structural proteins.  相似文献   

14.
Twenty-four temperature-sensitive mutants of mengovirus were characterized physiologically with respect to phenotype. The mutants were separated into four classes on the basis of viral RNA synthesis. L-67-S cells infected with five of the mutants synthesized little viral RNA at 39.5 C. These mutants are designated RNA-. One mutant is designated RNA* since its RNA synthesis is altered at both 39.5 and 31.5 C. The other mutants were divided into two groups, RNA plus or minus (25 TO 49% of wild-type RNA synthesis) and RNA plus (50 to 100% of wild-type RNA synthesis). The time of expression of the mutation in the RNA- mutants was estimated from the results of reciprocal temperature-shift experiments. The mutatation in ts12 appears to be expressed at the time RNA synthesis normally begins. The defect in three of the mutants was expressed 1 to 2 h before RNA synthesis is normally detectable. Protein synthesis is required before RNA synthesis begins when the cells are shifted from 39.5 to 31.5 C. The RNA polymerase synthesized by cells infected with these RNA- mutants at 31.5 C was stable and fully active when assayed at 39.5 C in vitro. The sedimentation profiles of the viral RNA synthesized by cells infected with RNA plus and RNA plus or minus mutants are similar to wild-type profiles with the exception of ts148. Cells infected with this RNA plus or minus mutant synthesize RNA that sediments in a sucrose gradient like replicative-intermediate RNA, but little mature viral RNA is evident. The results of step-up experiments indicate that the temperature-sensitive period for the majority of the RNA plus and RNA plus and minus mutants extends through most of the replicative cycle. The temperature-sensitive defect of four of the mutants, however, was expressed in the first hour, suggesting that some undefined early function is required for the eventual maturation of mengovirus. The virions of three of the RNA- mutants were more thermolabile than wild-type virions. Five of the RNA plus and RNA plus or minus mutants were also thermolabile. Genetic complementation at a significant level was not detectable in mixed infections of the mutants described.  相似文献   

15.
16.
The properties of a naturally occurring temperature-sensitive (ts) mutant of human adenovirus type 7 (Ad7) were studied. Mutant Ad7 (19), or E46-, was the nonhybrid adenovirus component derived from the defective simian virus 40 (SV40)-Ad7 hybrid (PARA). Growth of the mutant was restricted at 40.5 degrees C, and the ratios of virus yields in KB cells at 40.5 and 33 degrees C were 10(-2) to 10(-3). Viral DNA synthesis and the synthesis of adenovirus-specific antigens (tumor, capsid, hexon, and penton antigens) appeared normal at the restrictive temperature. The assembly of virus particles was aberrant, as determined by thin-section of infected cells. The infectivity of mutant virions was heat labile at 50 degrees C, suggesting a ts defect in a structural component of the viron. Analysis by polyacrylamide gel electrophoresis of [35S]methionine-labeled polypeptides synthesized in mutant-infected cells suggested that at least the major virion polypeptides were synthesized at the restrictive temperature. A lack of inhibition of host protein synthesis late in mutant infections, as compared with wild-type (WT) infections at both the permissive and nonpermissive temperatures, made quantitation of infected-cell polypeptides difficult. Analysis of the assembly of capsomeres from cytoplasmic extracts of infected cells on sucrose gradients and by non-dissociating polyacrylamide gel electrophoresis suggested that hexon capsomeres were made at 40.5 degrees C. The hexon capsomeres made by the mutant at either 33 or 40.5 degrees C displayed a decreased migration in the non-dissociating gels compared with the WT hexon capsomeres. The molecular weights of the mutant and WT hexon polypeptides were identical. These results suggest that the ts lesion of this group B human Ad7 mutant may be reflected in altered hexons. The mutant Ad7 interfered with the replication of adenovirus types 2 and 21 at the elevated temperature.  相似文献   

17.
A chimeric poliovirus type 1 (PV1) genome was constructed in which the 3D RNA polymerase (3D(pol)) coding sequences were replaced with those from coxsackievirus B3 (CVB3). No infectious virus was produced from HeLa cells transfected with the chimeric RNA. Processing of the PV1 capsid protein precursor was incomplete, presumably due to inefficient recognition of the P1 protein substrate by the chimeric 3CD proteinase containing CVB3 3D sequences. The ability of the chimeric RNA to replicate in the absence of capsid formation was measured after replacement of the P1 region with a luciferase reporter gene. No RNA synthesis was detected, despite efficient production of enzymatically active 3D(pol) from the 3D portion of the chimeric 3CD. The chimeric 3CD protein was unable to efficiently bind to the cloverleaf-like structure (CL) at the 5' end of PV1 RNA, which has been demonstrated previously to be required for viral RNA synthesis. The CVB3 3CD protein bound the PV1 CL as well as PV1 3CD. An additional chimeric PV1 RNA that contained CVB3 3CD sequences also failed to produce virus after transfection. Since processing of PV1 capsid protein precursors by the CVB3 3CD was again incomplete, a luciferase-containing replicon was also analyzed for RNA replication. The 3CD chimera replicated at 33 degrees C, but not at 37 degrees C. Replacement of the PV1 5'-terminal CL with that of CVB3 did not rescue the temperature-sensitive phenotype. Thus, there is an essential interaction(s) between 3CD and other viral P2 or P3 protein products required for efficient RNA replication which is not fully achieved between proteins from the two different members of the same virus genus.  相似文献   

18.
A sequence-specific ribozyme (M1GS RNA) derived from the catalytic RNA subunit of RNase P from Escherichia coli was used to target the mRNA encoding human cytomegalovirus (HCMV) protease (PR), a viral protein that is responsible for the processing of the viral capsid assembly protein. We showed that the constructed ribozyme cleaved the PR mRNA sequence efficiently in vitro. Moreover, a reduction of about 80% in the expression level of the protease and a reduction of about 100-fold in HCMV growth were observed in cells that expressed the ribozyme stably. In contrast, a reduction of less than 10% in the expression of viral protease and viral growth was observed in cells that either did not express the ribozyme or produced a catalytically inactive ribozyme mutant. Further examination of the antiviral effects of the ribozyme-mediated cleavage of PR mRNA indicates that (1) the proteolytic cleavage of the capsid assembly protein is inhibited significantly, and (2) the packaging of the viral genomic DNA into the CMV capsids is blocked. These observations are consistent with the notion that the protease functions to process the capsid assembly protein and is essential for viral capsid assembly. Moreover, our results indicate that the RNase P ribozyme-mediated cleavage specifically reduces the expression of the protease, but not other viral genes examined. Thus, M1GS ribozyme is highly effective in inhibiting HCMV growth by targeting the PR mRNA and may represent a novel class of general gene-targeting agents for the studies and treatment of infections caused by human viruses, including HCMV.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号