首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microbial lipids produced by Rhodotorula gracilis NRRL Y-1091 grown in continuous culture under nitrogen-limiting condition were evaluated and the effects of growth rate and oxygen concentration on the degree of unsaturatoin of fatty acids studied. As the growth rate increased the protein content of the biomass increased but cell biomass, lipid content, and lipid productivity decreased; the specific lipid production rate remained constant at about 0.012 g lipid/g dry biomass/h. The maximum lipid content recorded was 49.8% (w/w) of the cell mass at a growth rate of 0.02 h(-1). The growth rate also affected fatty acid composition; polyunsaturated fatty acids (C18:2 and C18:3) increaded with growth rate while other fatty acids (C16:0, C18:0, C18:1) decreased. Increase in oxygen concentration between 5 and 234muM increased the lipid content without significantly affecting its degree of unsaturation. On the other hand, the degree of unsaturation was significantly affected by specific oxygen uptake rate for this obligate aerobe, Rh. gracilis.  相似文献   

2.
The fatty acid composition of the total and polar lipid fractions of Choanephora cucurbitarum grown under different cultural conditions were analyzed by thin-layer and gas-liquid chromatography. It was observed that temperature, age, pH, and light influenced the degree of unsaturation, this being due mainly to changes in the gamma-linolenic acid concentration. The conditions used in this study did not alter the qualitative profile of fatty acids normally present in the organism. Neither did these conditions stimulate the production of further long-chain fatty acids (C20-C26) beyond gamma-linolenic acid (C18:3) as reported earlier using growth media containing glutamic acid. The fatty acid pattern of lipid fractions though the same qualitatively, differed quantitatively. The polar lipid fractions, phosphatidyl choline, phosphatidyl ethanolamine, and diphosphatidyl glycerol showed an appreciable variation in gamma-linolenic acid content under different cultural conditions. The degree of unsaturation of the various lipid fractions decreased with increases in temperature, light intensity, and pH, but within each treatment the same pattern of decreasing degree of unsaturation with increasing age was observed. The significance of these observations is discussed.  相似文献   

3.
Summary The effect of ethanol on exponential phase cultures of S. cerevisiae has been examined using l-alanine uptake and proton efflux as indices of ethanol tolerance. Preincubation with 2 M ethanol inhibited l-alanine uptake, proton efflux and fermentation rates. However, the effect of ethanol varied in yeast cells enriched with different fatty acyl residues. It was observed that cells enriched with polyunsaturated fatty acids acquired greater tolerance to ethanol as compared to monounsaturated fatty acids. By varying the degree of unsaturation of supplemented fatty acid, a sequential insertion of double bonds in yeast membrane lipid was achieved. Results demonstrated that S. cerevisiae became more resistant to ethanol with an increase in the degree of unsaturation and that membrane fluidity could be an important determinant of ethanol tolerance.  相似文献   

4.
The degree of plasma membrane fatty acid unsaturation and the copper sensitivity of Saccharomyces cerevisiae are closely correlated. Our objective was to determine whether these effects could be accounted for by differential metal induction of lipid peroxidation. S. cerevisiae S150-2B was enriched with the polyunsaturated fatty acids (PUFAs) linoleate (18:2) and linolenate (18:3) by growth in 18:2- or 18:3-supplemented medium. Potassium efflux and colony count data indicated that sensitivity to both copper (redox active) and cadmium (redox inactive) was increased in 18:2-supplemented cells and particularly in 18:3-supplemented cells. Copper- and cadmium-induced lipid peroxidation was rapid and associated with a decline in plasma membrane lipid order, detected by fluorescence depolarization measurements with the membrane probe trimethylammonium diphenylhexatriene. Levels of thiobarbituric acid-reactive substances (lipid peroxidation products) were up to twofold higher in 18:2-supplemented cells than in unsupplemented cells following metal addition, although this difference was reduced with prolonged incubation up to 3 h. Conjugated-diene levels in metal-exposed cells also increased with both the concentration of copper or cadmium and the degree of cellular fatty acid unsaturation; maximal levels were evident in 18:3-supplemented cells. The results demonstrate heavy metal-induced lipid peroxidation in a microorganism for the first time and indicate that the metal sensitivity of PUFA-enriched S. cerevisiae may be attributable to elevated levels of lipid peroxidation in these cells.  相似文献   

5.
In plants, two lipid desaturation pathways exist. A so-called prokaryotic pathway is active in plastids and responsible for unsaturation of 16 carbon fatty acids. An eukaryotic one, in the endoplasmic reticulum, acts on 18 carbon fatty acids. Desaturase activities are affected in stressed plants, and conversely, they have an impact on the capability of plants to adapt to stress. So knowing lipid unsaturation is important for physiological studies. Analysis of lipids by mass spectrometry, in the multiple reaction mode, gives access to the molecular species present in each membrane lipid class. We illustrate the powerfulness of this technique by applying it to phospholipids and galactolipids extracted from plants where the desaturation pathways are present at variable level.  相似文献   

6.
Summary The oleaginous fungus Entomophthora exitalis was grown in continuous culture at a constant dilution rate (0.04 h–1) and over a range of temperatures (20–30° C). As the growth temperature was decreased from 30 to 20° C the percentage of polyunsaturated fatty acids (PUFA) increased proportionally from 18 to 27% (w/w) of the total fatty acids. The increase in unsaturation was as a result of an increased proportion of n-6 PUFA (particularly arachidonic acid) in the phospholipid and sphingo- plus glycolipid fractions. The triacylglycerol fraction of lipids displayed a negligible change. The proportion of phospholipids within the extracted lipid increased between 26 and 20° C without any change in the lipid content of the fungus. Although the changes in lipid unsaturation correlated, at first inspection, to the culture dissolved O2 tension (DOT), growth of the fungus at a constant dilution rate and temperature (22° C) over a range of DOT values failed to influence lipid unsaturation. Thus temperature is the principal regulation factor of the degree of unsaturation in the lipids of this organism. Offprint requests to: C. Ratledge  相似文献   

7.
Many reports have demonstrated that birds show a low degree of fatty acid unsaturation and lipid peroxidation compared with mammals of similar body size. The aim of the present study was to examine fatty acid profiles, non-enzymatic lipid peroxidation and vitamin E levels of mitochondria and microsomes obtained from liver, heart and brain of goose (Anser anser). The unsaturated fatty acid content found in mitochondria and microsomes of all tissues examined was approximately 60% with a prevalence of C18:1 n9 + C18:2 n6 = 50%. The 20:4 n6 + C22:6 n3 content was significantly higher in brain organelles (approx. 16%) compared with mitochondria and microsomes of liver and heart (approx. 4%). Whereas these organelles were not affected when subjected to lipid peroxidation, brain mitochondria were highly affected, as indicated by the increase in chemiluminescence and a considerable decrease of arachidonic and docosahexaenoic acids. These changes were not observed during lipid peroxidation of brain microsomes. Vitamin E content was higher in liver and heart than in brain mitochondria (1.77 +/- 0.06 and 1.93 +/- 0.13 vs. 0.91 +/- 0.09 nmol/mg protein). The main conclusion of this paper is that a lower degree of unsaturation of fatty acids in liver and heart mitochondria and a higher vitamin E level than in brain mitochondria protect those tissues against lipid peroxidation.  相似文献   

8.
The total lipid and fatty acid content ofSpirulina platensis UTEX 1928 was 7.2 and 2.2% respectively of cellular dry weight under controlled conditions supporting high growth rates. With increases in irradiance from 170 to 870 μmol photon m?2 s?1, growth rate increased, total lipid decreased, and fatty acid composition was unaffected. At 1411 μmol photon m?2 s?1, total lipid increased slightly and percent composition of the fatty acid gamma linolenic acid increased. Growth and total lipid content ofS. platensis were affected by changes in growth temperature from 25 to 38 °C. With increased growth rate, total lipid content increased. This suggests that the storage of carbon increases at temperatures supporting high growth rates. The degree of saturation increased with temperature. Although the percent composition of gamma linolenic acid was higher at lower growth temperature, production was still primarily a function of growth rate. The effect of temperature on fatty acid content and degree of saturation was of secondary importance. Nitrogen starvation increased total lipid content but decreased fatty acid content as a percentage of dry weight; composition of the fatty acids was unaffected. N-starvation appeared to suspend synthesis of long chain fatty acids inS. platensis, suggesting that some other compound stores fixed carbon when nitrogen is limiting. It was concluded that fatty acid production inS. platensis is maximized by optimizing culture conditions for growth.  相似文献   

9.
The fatty acid composition of yeast lipid was manipulated by using auxotrophic strain of S.cerevisiae, KD115, which requires unsaturated fatty acid (UFA) for its growth. It was possible to specifically enrich the yeast with different fatty acyl residues. As compared to wild type strain (S288C), the uptake of amino acids viz., L-alanine, glycine, L-glutamic acid, L-valine in KD115 was drastically reduced, however, the uptake of L-leucine and L-lysine was not affected by the change in lipid unsaturation. Kinetic studies revealed that KT and Jmax values for L-alanine were altered whereas for L-lysine they remained unaffected by UFA modification. Furthermore, unsaturation index for wild type cells was found to be fairly constant while it was variable in KD115 supplemented with different UFAs. It is observed that the variation in amino acid permeases activity which was affected by fluctuations in fatty acyl composition corresponds more to degree of unsaturation rather than growth stage of KD115.  相似文献   

10.
Unsaturated fatty acids play an essential role in the biophysical characteristics of cell membranes and determine the proper function of membrane-attached proteins. Thus, the ability of cells to alter the degree of unsaturation in their membranes is an important factor in cellular acclimatization to environmental conditions. Many eukaryotic organisms can synthesize dienoic fatty acids, but Saccharomyces cerevisiae can introduce only a single double bond at the Delta(9) position. We expressed two sunflower (Helianthus annuus) oleate Delta(12) desaturases encoded by FAD2-1 and FAD2-3 in yeast cells of the wild-type W303-1A strain (trp1) and analyzed their effects on growth and stress tolerance. Production of the heterologous desaturases increased the content of dienoic fatty acids, especially 18:2Delta(9,12), the unsaturation index, and the fluidity of the yeast membrane. The total fatty acid content remained constant, and the level of monounsaturated fatty acids decreased. Growth at 15 degrees C was reduced in the FAD2 strains, probably due to tryptophan auxotrophy, since the trp1 (TRP1) transformants that produced the sunflower desaturases grew as well as the control strain did. Our results suggest that changes in the fluidity of the lipid bilayer affect tryptophan uptake and/or the correct targeting of tryptophan transporters. The expression of the sunflower desaturases, in either Trp(+) or Trp(-) strains, increased NaCl tolerance. Production of dienoic fatty acids increased the tolerance to freezing of wild-type cells preincubated at 30 degrees C or 15 degrees C. Thus, membrane fluidity is an essential determinant of stress resistance in S. cerevisiae, and engineering of membrane lipids has the potential to be a useful tool of increasing the tolerance to freezing in industrial strains.  相似文献   

11.
Lipid accumulation of Candida 107, grown at dilution rates from 0.03 to the maximum of 0.21/h, with carbon, nitrogen, phosphate, and magnesium limitations in a chemostat, was maximal at about 40% (wt/wt) with nitrogen-limited medium at a dilution rate of 0.06/h, giving an efficiency of substrate conversion of 22 g of lipid per g of glucose consumed. At higher dilution rates the lipid content decreased. With carbon-limited growth, the highest lipid content (14%, wt/wt) was at the maximum dilution rate. High lipid contents also occurred with phosphate + nitrogen as double limitations of growth, with the lipid content of the yeast (about 35%, wt/wt) continuing to be near maximum at dilution rates also near maximum (0.17/h), thus giving the highest specific rate of lipid formation of any growth conditions (0.59 g of lipid/g of yeast per h). However, the efficiency of substrate utilization was only 5.2 g of lipid formed per 100 g of glucose consumed. The composition of the fatty acyl residues within the lipid remained constant over many weeks if the steady-state conditions remained unchanged. With carbon-limited growth, the degree of unsaturation of the fatty acids markedly decreased as the dilution rate was increased, but with nitrogen limitation the reverse trend was seen. In all cases, linoleic and oleic acids were the principal fatty acyl residues affected, and their relative proportions always varied in opposite directions. When magnesium was a limiting nutrient, there was a considerable increase in the proportion of myristic acid produced within the lipid. Neutral lipids (predominantly triglycerides) varied from 66 to 92% of the total lipid from carbon- and nitrogen-limited growth; phospholipids (varying from 2 to 25%) were highest in nitrogen-limited growth. The fatty acyl residues within each lipid fraction showed the same variations with changing growth rates.  相似文献   

12.
Vegetatively propagated Ctenanthe setosa (Rosc.) Eichler (Marantaceae) plants were grown in plastic pots under laboratory irrigation and water deficit conditions. One set of plants was submitted to water irrigation regularly and another set of plants was submitted to water deficit conditions. After a 28 d water deficit stress, the leaves started to roll. Approximately after 33–35 d, the leaves were tightly rolled. Water stress significantly increased the dry weight of rolled leaves. After the 35 d period of water deficit the open (non-stressed) and rolled (stressed, water deficit) leaves were harvested for lipid content and class compositional analysis. The fatty acids consistently identified in phospholipids and glycolipids as well as in total leaf lipid were 16:0, 18:0, 18:1, 18:2 and 18:3. The 16:0, 18:3 and 18:1 acids in control plant and 18:2, 16:0 and 18:3 acids in rolled leaves were determined as the major fatty acids. While the percentage composition of 16:0, 18:1 and 18:3 acids decreased in rolled leaves, the level of 18:2 acid increased. However, the percentage composition of unsaturation in phospholipid (71%) and glycolipid (80.4%) fractions in rolled leaves were found higher than in control leaves. The results show that the degree of unsaturation in phospholipid, glycolipid and total lipid was significantly altered during leaf rolling. The increase in unsaturation degree may regulate membrane permeability and thus adapt the leaves to water stress in the drought environment.  相似文献   

13.
Two main aspects of the lipid dynamics, local microviscosity and lateral diffusion, were investigated in intact plant mitochondria isolated from different tissues exhibiting large differences in their fatty acids in terms of unsaturation (amount of linoleic and linolenic acids) or length of the hydrocarbon chains. In addition, the same parameters were determined in the outer and inner membranes isolated from cauliflower mitochondria, which differed not only in the fatty acid composition but also by the lipid-to-protein ratio. In intact mitochondria, local microviscosity assayed with anthroyloxy-fatty acids exhibited a transverse gradient from the surface to the center of the bilayer, which was mainly affected by the unsaturation index and the content in linoleic or linolenic acids. In contrast, lipid lateral diffusion increased as the content in linolenic or palmitic acids increased, but was not directly correlated to the unsaturation index. Interestingly, local microviscosity at the membrane surface was higher in the outer membrane than in the inner membrane, whereas no significant difference was found in lipid lateral diffusion. These results indicate that the influence of the fatty acid composition of mitochondrial membranes on the dynamics of the phospholipid bilayer depends on the type of movement considered and suggest that other parameters, such as the protein content of the bilayer, also affect membrane fluidity.  相似文献   

14.
Lipid compositions in mycelium and spores of Blakeslea trispora heterothallic strains were studied. Distinctions between the strains in the ability to synthesize linolenic acid and in optimal growth temperature were demonstrated. The (-) strain grew at a higher temperature and was unable to synthesize linolenic acid, whereas the (+) strain accumulated this acid up to 20% of total fatty acids. The distinctions between the strains remained at different developmental stages (mycelium and spores). A higher thermophilicity of the (-) strain correlated with a high sterol content, which is typical of thermophilic fungi. The lipid compositions of heterothallic strains studied differed in lipid content, their fractional composition, the degree of unsaturation, and carotenoid composition.  相似文献   

15.
The effects of drought stress and/or low temperature stress on total lipid and phospholipid content and fatty acid composition of leaves of cucumber ( Cucumis sativus L.) genotypes differing in growth response at suboptimal temperature were studied. Both drought and low temperature resulted in reduced growth, especially in cv. Farbio, the genotype least tolerant to low temperature. Drought resulted in an increase in total lipid and phospholipid per g fresh weight. On a lipid basis no change in phospholipids or fatty acid content was observed. The fatty acid composition was changed by drought and low temperature, resulting in an increase in the degree of unsaturation. The genotype-specific reaction to treatment for total lipid content and the degree of unsaturation point to the possibility of a genetic origin for drought-induced lipid changes, which may be used in a breeding program for improved growth at suboptimal temperature.  相似文献   

16.
Studies have been made on the lipid composition of total lipids, triglycerides and their fatty acids, cholesterol and phospholipids in the vertebral column of young and adult rabbits. It was shown that the content of total lipids and triglycerides increases, whereas that of cholesterol and phospholipids decreases with age. The content of total lipids in the vertebral column is 10 times higher as compared to that in the bones of the extremities. Mid-thoracic part of the vertebral column exhibits higher lipid content than other thoracic parts of the column. Lipid content of the vertebral processes is lower than that of the vertebral bodies. These data indicate lipid specificity and heterogeneity of bone tissue of the vertebral column. The main fatty acids of vertebral triglycerides are presented by those with 14-18 carbon atoms (90%), no acids with 22 atoms were found. Higher content of the linoleic acid (19%) and higher total unsaturation of triglycerides were found in the bone tissue of rabbits in comparison with those of man.  相似文献   

17.
Effects of water-deficit on lipids of safflower aerial parts   总被引:1,自引:0,他引:1  
Three-week-old plants of safflower (Carthamus tinctorius L.) were subjected to a water-deficit stress. The lipid composition of the shoot parts of both control (well-watered) and water stressed plants was analyzed. Experimental data revealed that moderate stress induced an increase in total lipid content within all lipidic classes. However, severe water-deficit induced a sharp decrease in the total lipid content and specially in polar lipids, particularly in phosphatidylethanolamine, phosphatidylcholine, monogalactosyl-diacylglycerol and digalactosyl-diacylglycerol. Also, the content of neutral lipids was increased. Concerning the fatty acid composition, water-deficit induced a decrease in their degree of unsaturation expressed by a reduction in the proportions of linolenic (18:3) and linoleic (18:2) acids and most of lipidic classes.  相似文献   

18.
The selective mobilization of fatty acids from white fat cells depends on their molecular structure, in particular the degree of unsaturation. The present study was designed to examine if the release of fatty acids by hormone-sensitive lipase (HSL) in vitro i) is influenced by the amount of unsaturation, ii) depends on the temperature, and iii) could explain the selective pattern of fatty acid mobilization and notably the preferential mobilization of certain highly unsaturated fatty acids. Recombinant rat and human HSL were incubated with a lipid emulsion. The hydrolysis of 35 individual fatty acids, ranging in chain length from 12 to 24 carbon atoms and in unsaturation from 0 to 6 double bonds was measured. Fatty acid composition of in vitro released NEFA was compared with that of fat cell triacylglycerols (TAG), the ratio % NEFA/% TAG being defined as the relative hydrolysis. The relative hydrolysis of individual fatty acids differed widely, ranging from 0.44 (24:1n-9) to 1.49 (18:1n-7) with rat HSL, and from 0.38 (24:1n-9) to 1.67 (18:1n-7) with human HSL. No major difference was observed between rat and human HSL. The relative release was dependent on the number of double bonds according to chain length. The amount of fatty acid released by recombinant rat HSL was decreased but remained robust at 4 degrees C compared with 37 degrees C, and the relative hydrolysis of some individual fatty acids was affected. The relative hydrolysis of fatty acids moderately, weakly, and highly mobilized by adipose tissue in vivo was similar and close to unity in vitro. We conclude that i) the release of fatty acids by HSL is only slightly affected by their degree of unsaturation, ii) the ability of HSL to efficiently and selectively release fatty acids at low temperature could reflect a cold adaptability for poikilotherms or hibernators when endogenous lipids are needed, and iii) the selectivity of fatty acid hydrolysis by HSL does not fully account for the selective pattern of fatty acid mobilization, but could contribute to explain the preferential mobilization of some highly unsaturated fatty acids compared with others.  相似文献   

19.
Three 9-day-old cultivars of Hordeum vulgare L. (Barberousse, Gerbel and Panda) were exposed to low levels of SO2 fumigation (40 ± 5 and 117 ± 20 ppb). After 48 days of treatment the seedlings were harvested for lipid analysis. In comparison to the control (plants exposed to charcoal-filtered air), the total lipid content of fumigated seedlings declined at 40 ppb SO2 and even more so at 117 ppb in all three cultivars. A large reduction in diacylglycerols. polar lipids and free sterols was also observed after fumigations at both SO2 concentrations, whereas the treatments resulted in an increase in triacylglycerols and free fatty acids. The percentage composition of total fatty acids and that of each lipid class were changed by the fumigations. resulting in an increase in the degree of unsaturation. No changes in the percentage composition of sterols occurred in the fumigated leaves. These results suggest that even if SO2 may not directly oxidize unsaturated fatty acids at the low concentrations used here (which do not cause visible injury). it may alter lipid metabolism. This alteration. which was particularly evident in the polar lipids and sterols, could affect the functions associated with membrane stabilization, in which lipids plus sterols play a key part.  相似文献   

20.
Cyanidium caldarium was cultured at 20 and 55 C and harvested during exponential growth phase. Comparative lipid studies on each cell type show a decrease by one-half of the total lipid in cells grown at 55 C over cells grown at 20 C. While the distribution of lipid into each of five lipid classes was not influenced by high temperature (55 C), the degree of unsaturation was greatly affected. Ratios of unsaturated to saturated fatty acids in these cells decreased 3-fold with increased temperature in the growth environment. Cells cultured at 20 C contained 30% of their fatty acids as linolenic while this fatty acid could not be detected in cells cultured at 55 C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号