首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We incubated 196 large-diameter aspen (Populus tremuloides), birch (Betula papyrifera), and pine (Pinus taeda) logs on the FACE Wood Decomposition Experiment encompassing eight climatically-distinct forest sites in the United States. We sampled dead wood from these large-diameter logs after 2 to 6 y of decomposition and determined wood rot type as a continuous variable using the lignin loss/density loss ratio (L/D) and assessed wood-rotting fungal guilds using high-throughput amplicon sequencing (HTAS) of the ITS-2 marker. We found L/D values in line with a white rot dominance in all three tree species, with pine having lower L/D values than aspen and birch. Based on HTAS data, white rot fungi were the most abundant and diverse wood-rotting fungal guild, and soft rot fungi were more abundant and diverse than brown rot fungi in logs with low L/D values. For aspen and birch logs, decay type was related to the wood density at sampling. For the pine logs, decay type was associated with the balance between white and brown/soft rot fungi abundance and OTU richness. Our results demonstrate that decay type is governed by biotic and abiotic factors, which vary by tree species.  相似文献   

2.
Fungal communities within a naturally fallen bough of Japanese beech (Fagus crenata) were investigated with reference to chemical properties of decay columns. Five logs were cut out from the fallen bough, which ranged from 10.7 to 20.5 cm in diameter. Nine fungal species and one sterile fungus were isolated from decay columns that elongated along a longitudinal axis and were delimited by black zone lines and wood discoloration. Lampteromyces japonicus and Trichoderma spp. were isolated from all five logs. Lampteromyces japonicus and Antrodiella albocinnamomea occupied the largest volume in the logs. Lignin and carbohydrate contents, lignocellulose index (LCI), nitrogen content, and water content were different among decay columns colonized by different fungal species in each log. In L. japonicus, LCI of decay column was correlated to that of wood blocks decayed under pure culture condition by the fungi isolated from the decay columns. These results suggest that the small-scale variation in chemical properties within fallen logs of Japanese beech reflects the distribution and the decay ability of colonized fungi.  相似文献   

3.
Decaying wood plays an important role in forest biodiversity, nutrient cycling and carbon balance. Community structure of wood-inhabiting fungi changes with mass loss of wood, but the relationship between substrate quality and decomposers is poorly understood. This limits the extent to which these ecosystem services can be effectively managed. We studied the fungal community and physico-chemical quality (stage of decay, dimensions, density, moisture, C : N ratio, lignin and water or ethanol extractives) of 543 Norway spruce logs in five unmanaged boreal forest sites of southern Finland. Fungi were identified using denaturing gradient gel electrophoresis and sequencing of DNA extracted directly from wood samples. Macroscopic fruiting bodies were also recorded. Results showed a fungal community succession with decreasing wood density and C : N ratio, and increasing moisture and lignin content. Fungal diversity peaked in the most decayed substrates. Ascomycetes typically colonized recently fallen wood. Brown-rot fungi preferred the intermediate decay stages. White-rot fungi represented approximately one-fifth of sequenced species in all decay phases excluding the final phase, where ectomycorrhizal (ECM) fungi became dominant. Lignin content of logs with white-rot fungi was low, and ECM fungi were associated with substrates containing abundant nitrogen. Macroscopic fruiting bodies were observed for only a small number of species detected with molecular techniques.  相似文献   

4.
Wood-inhabiting fungi may affect soil fungal communities directly underneath decaying wood via their exploratory hyphae. In addition, differences in wood leachates between decaying tree species may influence soil fungal communities. We determined the composition of fungi in 4-yr old decaying logs of Larix kaempferi and Quercus rubra as well as in soil directly underneath and next to logs. Fungal community composition in soil covered by logs was different from that in wood and uncovered soil and was clearly influenced by the tree species. Soil fungal species richness under logs was lower than in uncovered soil but higher than in decaying wood. The amount of exploratory hyphae of log-inhabiting fungi was only high close to decaying logs. In conclusion, there is a small but significant effect of decaying coniferous and broadleaf logs on soil fungal communities directly underneath logs, likely affected by differences in wood chemistry and fungal preference between tree species.  相似文献   

5.
When lodgepole pines (Pinus contorta Douglas ex Louden var. latifolia Engelm. ex S. Watson) that are killed by the mountain pine beetle (Dendroctonus ponderosae) and its fungal associates are not harvested, fungal decay can affect wood and fibre properties. Ophiostomatoids stain sapwood but do not affect the structural properties of wood. In contrast, white or brown decay basidiomycetes degrade wood. We isolated both staining and decay fungi from 300 lodgepole pine trees killed by mountain pine beetle at green, red, and grey stages at 10 sites across British Columbia. We retained 224 basidiomycete isolates that we classified into 34 species using morphological and physiological characteristics and rDNA large subunit sequences. The number of basidiomycete species varied from 4 to 14 species per site. We assessed the ability of these fungi to degrade both pine sapwood and heartwood using the soil jar decay test. The highest wood mass losses for both sapwood and heartwood were measured for the brown rot species Fomitopsis pinicola and the white rot Metulodontia and Ganoderma species. The sap rot species Trichaptum abietinum was more damaging for sapwood than for heartwood. A number of species caused more than 50% wood mass losses after 12 weeks at room temperature, suggesting that beetle-killed trees can rapidly lose market value due to degradation of wood structural components.  相似文献   

6.
Dead wood is an important habitat for forest organisms, and wood decay fungi are the principal agents determining the dead wood properties that influence the communities of organisms inhabiting dead wood. In this study, we investigated the effects of wood decomposer fungi on the communities of myxomycetes and bryophytes inhabiting decayed logs. On 196 pine logs, 72 species of fungi, 34 species and seven varieties of myxomycetes, and 16 species of bryophytes were identified. Although white rot was the dominant decay type in sapwood and heartwood, brown and soft rots were also prevalent, particularly in sapwood. Moreover, white rot and soft rot were positively and brown rot negatively correlated with wood pH. Ordination analyses clearly showed a succession of cryptogam species during log decomposition and showed significant correlations of communities with the pH, water content, and decay type of wood. These analyses indicate that fungal wood decomposer activities strongly influence the cryptogam communities on dead wood.  相似文献   

7.
The protection of wood from fungal stain using biological agents has considerable potential for reducing discoloration of freshly sawn logs and lumber, while decreasing fungicide use. A number of biocontrol candidates have been reported worldwide, and Gliocladium roseum is one of such microorganisms. In this study, the bio-activity of G. roseum was investigated against different wood-degrading fungi on agar plates and wafers of 12 major Canadian wood species. Of the four sap-staining fungi tested on agar plates, Ophiostoma piceae and Alternaria alternata showed greater sensitivity than Aureobasidium pullulans or Cladosporium sphaerospermum to G. roseum . On wood wafers, a spore suspension of G. roseum (1 10 6 spores/ ml) provided satisfactory protection of wood from stain on western hemlock ( Tsuga heterophylla ), white spruce ( Picea glauca ), amabilis fir ( Abies amabilis ), balsam fir ( Abies balsamea ) and jack pine ( Pinus banksiana ). The antagonist also restricted the development of moulds and stain on black spruce ( Picea mariana ), lodgepole pine ( Pinus contorta ) and white pine ( Pinus strobus ), but did not protect Douglas fir ( Pseudotsuga menziesii ), red pine ( Pinus resinosa ), white birch ( Betula papyrifera ) and trembling aspen ( Populus tremuloides ). Logs of black spruce and jack pine treated with G. roseum were much less stained than untreated ones after a 4-month period of summer storage in the field. In an anti-decay test, no significant difference was found for weight loss between wood blocks treated with G. roseum and untreated samples. Application of G. roseum with low levels of an anti-sap stain chemical (NP-1) to wood wafers simultaneously did not produce a noticeable improvement in wood protection against stain compared with the chemical treatment alone.  相似文献   

8.
木腐真菌是微生物的一个重要类群, 主要以倒木为生长基质, 通过产生各种水解酶将倒木的纤维素、木质素和半纤维素分解为小分子物质, 对促进森林生态系统中的营养物质循环发挥着重要的生态功能。于2016年8月在浙江古田山国家级自然保护区开展的木腐真菌野外调查, 利用形态学和DNA序列分析对采集的标本进行了物种鉴定, 并分析了木腐真菌的物种组成和地理成分。在采集的158份标本中鉴定木腐真菌45属92种, 其中白腐真菌78种, 褐腐真菌14种。古田山的木腐真菌物种区系组成中, 热带-亚热带成分比例最高。在158份木腐真菌标本中, 97份标本采自直径大于10 cm的倒木或树桩上, 分属于76个种, 是木腐真菌生长的主要基质大小类型; 48份标本采自直径为2-10 cm的枝干上, 分属38个种; 13份标本采自直径小于2 cm的枝干上, 分属12种。不同腐烂等级倒木上生长的真菌数量和种类差异明显, 其中一级腐烂倒木上采集到9份标本(7种), 二级腐烂倒木上采集到86份标本(45种), 三级腐烂倒木上49份标本(29种), 四级腐烂倒木上14份标本(14种)。结果表明, 林分中倒木直径大小和腐烂程度是影响木腐真菌生长与分布的重要因子。  相似文献   

9.
Niche differentiation in soil horizons, host species and natural nutrient gradients contribute to the high diversity of ectomycorrhizal fungi in boreal forests. This study aims at documenting the diversity and community composition of ectomycorrhizal fungi of Norway spruce ( Picea abies ) and silver birch ( Betula pendula ) seedlings in five most abundant microsites in three Estonian old-growth forests. Undisturbed forest floor, windthrow mounds and pits harboured more species than brown- and white-rotted wood. Several species of ectomycorrhizal fungi were differentially represented on either hosts, microsites and sites. Generally, the most frequent species in dead wood were also common in forest floor soil. Ordination analyses suggested that decay type determined the composition of EcM fungal community in dead wood. Root connections with in-growing mature tree roots from below affected the occurrence of certain fungal species on seedling roots systems in dead wood. This study demonstrates that ectomycorrhizal fungi differentially establish in certain forest microsites that is attributable to their dispersal and competitive abilities. Elevated microsites, especially decayed wood, act as seed beds for both ectomycorrhizal forest trees and fungi, thus affecting the succession of boreal forest ecosystems.  相似文献   

10.
The increasing human impact on the earth's biosphere is inflicting changes at all spatial scales. As well as deterioration and fragmentation of natural biological systems, these changes also led to other, unprecedented effects and emergence of novel habitats. In boreal zone, intensive forest management has negatively impacted a multitude of deadwood‐associated species. This is especially alarming given the important role wood‐inhabiting fungi have in the natural decay processes. In the boreal zone, natural broad‐leaved‐dominated, herb‐rich forests are threatened habitats which have high wood‐inhabiting fungal species richness. Fungal diversity in other broadleaved forest habitat types is poorly known. Traditional wood pastures and man‐made afforested fields are novel habitats that could potentially be important for wood‐inhabiting fungi. This study compares species richness and fungal community composition across the aforementioned habitat types, based on data collected for wood‐inhabiting fungi occupying all deadwood diameter fractions. Corticioid and polyporoid fungi were surveyed from 67 130 deadwood particles in four natural herb‐rich forests, four birch‐dominated wood pastures, and four birch‐dominated afforested field sites in central Finland. As predicted, natural herb‐rich forests were the most species‐rich habitat. However, afforested fields also had considerably higher overall species richness than wood pastures. Many rare or rarely collected species were detected in each forest type. Finally, fungal community composition showed some divergence not only among the different habitat types, but also among deadwood diameter fractions. Synthesis and applications: In order to maintain biodiversity at both local and regional scales, conserving threatened natural habitat types and managing traditional landscapes is essential. Man‐made secondary woody habitats could provide the necessary resources and serve as surrogate habitats for many broadleaved deadwood‐associated species, and thus complement the existing conservation network of natural forests.  相似文献   

11.
Ophiostoma species are an economically important group of saprophytic and pathogenic fungi that grow in trees or wood. Ophiostoma like O. piceae and O. floccosum produce melanin, a pigment that stains lumber and logs. We used such species as model organisms for characterizing the molecular mechanisms in fungal melanin production. Because homologous recombination is rare in the Ophiostoma, identifying gene function in this group is challenging. We addressed this by assessing RNA interference (RNAi) as an alternative to gene replacement. For this, we built different inverted repeat transgene (IRT) constructs to down-regulate the polyketide synthase (PKS1) gene of the melanin pathway in O. piceae and O. floccosum. Transformation with IRT-PKS reduced mRNA levels for the PKS1 gene, and consequently decreased pigmentation in transformants. We showed that the PKS1 RNAi efficiency was proportional to the length of the dsRNA expressed from IRT constructs. These results indicated that RNAi is an appropriate tool for functional analysis of genes in Ophiostoma.  相似文献   

12.
The objective of the present study was to develop a biological technology that would protect logs destined for oriented strand board (OSB) manufacturing from biodegradation. Aspen, red maple, and yellow birch trees were felled in one summer and the logs either debarked or not debarked, and either treated or not treated with a biological product of Gliocladium roseum. The logs were piled in different treatment groups and stored in a yard for 5 months and 1 year before evaluation. The results showed that all untreated logs, with or without bark, were seriously degraded by moulds, stain and decay fungi after a summer storage period of 5 months. The logs with bark were more degraded than the debarked logs, and the log ends were more degraded than the middle sections. After 5 months, 55–83% of the surface area of the wood discs was degraded in untreated logs. The biological treatment was effective, and only 4–16% of the surface area of the wood discs in treated logs was infected by various fungi. Strands cut from untreated logs consisted of 50–75% grey- or blue-stained strands, whereas those cut from biologically treated logs consisted of 10–25% such strands. Panels made using biologically treated logs had a lower thickness swelling and water absorption values compared to panels made using freshly cut logs and untreated stored logs. The other physical and mechanical properties of the various panels made in this test were comparable. In terms of mould resistance, all panels made from fungal-treated logs had a better mould resistance than those made from freshly cut and untreated logs.  相似文献   

13.
A survey of the patterns of wood decaying fungi as to occurrence of sporocarps on naturally fallen logs of Norway spruce ( Picea abies ) was undertaken in two nearby forest stands with different histories of management. One stand was an old-growth forest with few signs of logging, and the other stand was selectively logged 60–80 years ago. Altogether 118 species were found. Forest management had a negative impact on the species diversity. Newly fallen and weakly decayed logs in a natural forest had a higher species richness, more red-listed species, as well as more indicator species compared to similar logs in a managed forest. The importance of dead wood for species diversity of wood inhabiting fungi was clearly demonstrated. Presence of logs in later stages of decomposition increased the total species number in a natural forest stand with 42 (63 %), compared to a survey of only newly fallen and weakly decayed logs. Presence of logs in later stages of decomposition also increased the diversity of the species pool colonising newly fallen and weakly decayed logs. The highest number of fruiting species was found on intermediately decayed logs and on logs lying in contact with the ground. The fungal gradient as revealed in a DCA ordination was primarily related to decay. A successional pathway based on the primary decayer Fomitopsis pinicola was not detected.  相似文献   

14.
Several boreal wood-living insect species breed exclusively in recently burned forest. However, the reason for this dependence on fire is largely unknown. Here wood-living insects and other arthropods were sampled from burned and unburned logs of birch and spruce in a burned forest, together with unburned logs at a clearing and in an uncut forest, during two years of succession after tree death. Burned spruce logs hosted fewer beetles than unburned logs. Notably, bark-beetles and their associated fauna, responded negatively to fire-scorching of the logs while arthropods that feed on ascomycete fungi responded positively. Fire-scorched logs more often had visible ascomycete fungi, and lost their bark faster than unburned logs. However, despite this obvious effect of fire-scorching of the logs, the species composition in burned and unburned logs at the burned site was more similar than in unburned logs at the three different sites. A larger diversity of beetles, when measured with rarefaction, was found for fire-scorched logs. When sites were compared, birch logs had the most diverse fauna at the burned site and spruce logs in the uncut forest. Pyrophilous insect species were almost exclusively confined to the burned forest, but occurred in both burned and unburned logs. These species may be divided into two groups: (1) mycophagous species that need burned substrate per se because ascomycete fungi are favoured by burning, and (2) phloem-feeders and predators that are favoured by some habitat characteristic of recently burned forest rather than of burned wood.  相似文献   

15.
Driftwood is woody debris that is floating on the sea or brought onto the shore by the sea. It can have a natural origin but often it originates from human activities. Driftwood has a significant ecological role as a microhabitat for a large range of species. Dead-wood-associated aphyllophoroid fungi on driftwood have been studied rather little globally, and there are hardly any studies conducted in the Baltic Sea. We studied the diversity and ecology of polypores and corticioids growing on driftwood (man-made logs) on the shores of the Finnish SW-archipelago. In total, 394 driftwood logs were surveyed for visible fungal sporocarps. We found altogether 145 species (1023 records) of which approximately three-fourths were corticioids. The driftwood logs hosted several rare and noteworthy species, such as one new corticioid species, 16 nationally rare species, and 40 new species to the region. The five most common species accounted for one-third of all observations, whereas 82 species (11% of all records) were recorded only once or twice. Larger logs hosted, on average, more species compared to small-diameter logs. The mean number of species increased significantly when comparing the logs in the first and the middle stages of decay. Our results show that driftwood logs can host a wide variety of species and they provide an important substrate for many dead-wood-associated fungi, including species of conservation concern and species with restricted ecological requirements. Driftwood hosted several species that have not been previously found in the archipelago forests, and the logs clearly enrich the fungal diversity in the area. Our results encourage to increase dead wood for fungi in coastal forests where it has been dramatically decreased as a result of strong hemeroby.  相似文献   

16.
This study was conducted to generate information regarding the diversity of fungi inhabiting creosote-treated wood in a storage yard for crosstie wastes in Gwangmyeong, Korea. Additionally, the resistance to polycyclic aromatic hydrocarbons (PAHs) of indigenous fungi that mainly occupy creosote-treated wood was evaluated. We isolated fungi from the surface and inner area of crosstie wastes and identified them using a combination of traditional methods and molecular techniques. Overall, 179 isolates including 47 different species were isolated from 240 sampling sites. The identified fungal species included 23 ascomycetes, 19 basidiomycetes, and 5 zygomycetes. Three species, Alternaria alternata, Irpex lacteus, and Rhizomucor variabilis, were the most frequently isolated ascomycetes, basidiomycetes, and zygomycetes, respectively. The results of this study showed that there was a large difference in the fungal diversity between the surface and the inner area. Additionally, zygomycetes and ascomycetes were found to have a greater tolerance to PAHs than basidiomycetes. However, two basidiomycetes, Heterobasidion annosum and Schizophyllum commune, showed very high resistance to PAHs, even in response to the highest concentration (1,000 ppm), which indicates that these species may play a role in the degradation of PAHs.  相似文献   

17.
Diverse communities of fungi and bacteria in deadwood mediate wood decay. While rates of decomposition vary greatly among woody species and spatially distinct habitats, the relative importance of these factors in structuring microbial communities and whether these shift over time remains largely unknown. We characterized fungal and bacterial diversity within pieces of deadwood that experienced 6.3–98.8% mass loss while decaying in common garden ‘rotplots’ in a temperate oak-hickory forest in the Ozark Highlands, MO, USA. Communities were isolated from 21 woody species that had been decomposing for 1–5 years in spatially distinct habitats at the landscape scale (top and bottom of watersheds) and within stems (top and bottom of stems). Microbial community structure varied more strongly with wood traits than with spatial locations, mirroring the relative role of these factors on decay rates on the same pieces of wood even after 5 years. Co-occurring fungal and bacterial communities persistently influenced one another independently from their shared environmental conditions. However, the relative influence of wood construction versus spatial locations differed between fungi and bacteria, suggesting that life history characteristics of these clades structure diversity differently across space and time in decomposing wood.  相似文献   

18.
Fungi play a crucial role in dead wood decay, being the major decomposers of wood and affecting microbiota associated with dead wood. We sampled dead wood from five deciduous tree species over more than forty years of decay in a natural European floodplain forest with high tree species diversity. While the assembly of dead wood fungal communities shows a high level of stochasticity, it also indicates clear successional patterns, with fungal taxa either specific for early or late stages of wood decay. No clear patterns of fungal biomass content over time were observed. Out of 220 major fungal operational taxonomic units, less than 8% were associated with a single tree species, most of them with Quercus robur. Tree species and wood chemistry, particularly pH, were the most important drivers of fungal community composition. This study highlights the importance of dead wood and tree species diversity for preserving the biodiversity of fungi.  相似文献   

19.
Lichenised fungi are traditionally assumed to form obligate symbioses with algae or cyanobacteria and to be confined to the surface of their growing substratum. However, in a recent 454 pyrosequencing study of fungal communities in Picea abies logs, lichen-forming fungi were detected at a depth of more than 6 cm in dead wood, implying the existence of free-living lichen mycobionts. To determine whether this was the case, we investigated whether Cladonia spp., the most frequently encountered mycobionts, occurred in wood without their photobionts. We detected green algae in all samples with records of Cladonia spp. Hence, we found no evidence for free-living Cladonia mycobionts in wood. We suggest that the detected Cladonia DNA in these logs originates from vegetative propagules or thallus fragments dispersed into the logs by animals or water. However, the occurrence of free-living stages of other lichen-forming fungal taxa in dead wood cannot be excluded.  相似文献   

20.
Owing to previous methodological limitations, knowledge about the fine-scale distribution of fungal mycelia in decaying logs is limited. We investigated fungal communities in decaying Norway spruce logs at various spatial scales at two environmentally different locations in Sweden. On the basis of 454 pyrosequencing of the ITS2 region of rDNA, 1914 operational taxonomic units (OTUs) were detected in 353 samples. The communities differed significantly among logs, but the physical distance between logs was not found to have a significant effect on whether fungal communities had any resemblance to each other. Within a log, samples that were closer together generally had communities that showed more resemblance to each other than those that were further apart. OTUs characteristic for particular positions on the logs could be identified. In general, these OTUs did not overlap with the most abundant OTUs, and their ecological role was often unknown. Only a few OTUs were detected in the majority of logs, whereas numerous OTUs were rare and present in only one or a few logs. Wood-decaying Basidiomycetes were often represented by higher sequence reads in individual logs than Ascomycete OTUs, suggesting that Basidiomycete mycelia spread out more rapidly when established. OTU richness tended to increase with the decay stage of the sample; however, the known wood decayers were most abundant in less-decomposed samples. The fungi identified in the logs represented different ecological strategies. Our findings differ from previously published sporocarp studies, indicating that the highly abundant fruiting species may respond to environment in different ways than the rest of the fungal community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号