首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
Wang ZP  Zhang ZH  Zeng YM  Jiang S  Wang SQ  Wang S 《生理学报》2006,58(3):201-206
利用离体海马脑片缺氧无糖(oxygen-glucose deprivation,OGD)损伤模型,探讨七氟醚预处理对神经细胞的保护作用及该作用与线粒体内膜ATP敏感钾通道(mitochondrial ATP-sensitive potassium channels,mitoKATPchannels)的关系,随机将脑片用2%、4%、6%七氟醚,以及6%七氟醚复合mitoKATP通道阻滞剂5-羟基奎酸盐(5-hydroxydecanoic acid,5-HD)预处理30 min,观察OGD损伤14 min复氧1 h期间顺向群峰电位(orthodromic population spike,OPS)的变化,并应用透射电镜观察细胞超微结构的改变.结果表明,与单纯OGD组相比,七氟醚预处理可使海马脑片OPS消失时间明显延长(P<0.01),使OPS明显恢复,其中4%、6%七氟醚组的恢复率均为71.4%(P<0.05 vs OGD),相应恢复程度为(61.0±42.3)%和(78.7±21.1)%(P<0.01),而且6%七氟醚的保护作用可被5-HD取消.OGD组的海马CA1区锥体细胞明显水肿,核膜皱缩、破裂,染色质聚集,线粒体肿胀畸形,嵴断裂或消失,而4%和6%七氟醚组仅见海马CA1区锥体细胞轻度水肿,核膜皱缩不明显,染色质均匀,线粒体轻度肿胀.结果提示,七氟醚预处理对大鼠海马脑片OGD损伤有一定的保护作用,且七氟醚对神经细胞的保护作用与激活mitoKATP通道有关.  相似文献   

2.
目的:探讨低温对离体大鼠海马脑片缺氧无糖(oxygen and glucose deprivation,OGD)损伤的保护作用及其机制.方法:①观察大鼠海马脑片在OGD条件下顺向群峰电位(orthodromic population spike,OPS)的变化及温度对它的影响.②观察谷氨酸(Glu)对海马脑片OPS的影响及低温的抗Glu毒性作用.并在人工脑脊液(ACSF)中分别加入GABA-R的特异性阻滞剂bicuculline(BMI)和NMDA-R的特异性阻滞剂D-(-)-2-Amino-5-phospho-nopentanoic Acid(AP5)或加入BMI和非NMDA-R阻滞剂6,7-Dinitroquinoxaline-2,3(1H,4H)-dione(CNQX)来观察低温对海马脑片OGD损伤保护作用的突触后受体机制.③观察OGD1h后海马CA1区锥体细胞超微结构的变化及低温对其的影响.结果:①OGD可以使海马脑片OPS迅速降低并很快消失,14 min后复氧供糖OPS极少恢复.低温(32℃、25℃)能使OPS消失时间明显延长,复氧供糖后OPS恢复良好.25℃其作用优于32℃.②2 mmol/LGlu使海马脑片OPS迅速消失,洗出后难以恢复.低温(3 2℃、25℃)能显著改善去Glu 1h后OPS的恢复.ACSF中加入BMI CNQX和BMI AP5均对25℃低温处理28min的脑保护作用没有影响.③OGD1h后CA1区锥体细胞水肿严重,胞浆内细胞器变性坏死脱失,线粒体肿胀,脊呈空泡状.低温(25℃)组细胞核膜规则,线粒体轻度肿胀.结论:低温有显著的抗脑OGD损伤作用,其作用机制可能与抗Glu的兴奋性毒性作用和维持细胞内ATP水平有关.而其抗兴奋性毒性作用可能既有NMDA-R又有非NMDA-R的参与.  相似文献   

3.
慢性应激对大鼠海马锥体细胞形态结构的效应   总被引:16,自引:0,他引:16  
为研究慢性应激相关精神障碍的发病机制,采用尼氏(Nissl)染色法、高尔基(Golgi)镀染法和透射电镜技术,探讨慢性应激对大鼠海马CA1、CA3区锥体细胞形态结构的效应.结果显示应激组大鼠海马CA1区锥体细胞形态结构较对照组无明显变化.应激组海马CA3区锥体细胞数(35.14±3.85)较对照组(38.74±3.54)显著减少(P<0.05);顶树突的总长度(155.67 μm±33.32 μm)较对照组(195.63 μm±34.61 μm)显著缩短(P<0.05);应激组大鼠海马CA3区锥体细胞出现超微结构的改变,包括细胞固缩、体积缩小、核膜皱缩、线粒体变性和粗面内质网模糊不清.这提示海马CA3区锥体细胞形态结构的改变,可能是慢性应激相关精神障碍的病理生理基础.  相似文献   

4.
目的:利用整体动物、离体海马脑片、原代培养的海马神经细胞作为实验对象,研究人参皂甙Rb3抗缺血低氧性脑损伤作用及相关机制。方法:①在密闭三角烧瓶中观察小白鼠低氧存活时间。②在离体海马脑片上观察顺向群锋电位(OPS)的恢复率、恢复程度及低氧损伤电位(HIP)出现率。③低压舱作为全脑低氧模型,采用NADPH-d法,观察一氧化氮合酶(NOS)阳性细胞数、平均光密度值。④采用原代培养海马神经细胞低氧模型,观察神经细胞形态、乳酸脱氢酶(LDH)漏出率及总NOS、结构型一氧化氮舍酶(cNOS)、诱导型一氧化氮合酶(iNOS)活性。结果:①小白鼠低氧存活时间人参皂甙Rb3组较正常组明显延长,并具有剂量依赖性,以10mmol/L组最为显著。②人参皂甙Rb,对海马脑片缺血时CAl区诱发场电位的影响:对照组海马脑片模拟缺血时全部出现HIP,复氧供糖1h后OPS恢复率为0%,OPS恢复程度平均为缺血前的5,42%。使用人参皂甙Rb3后,HIP出现率明显下降,复氧供糖1h后OPS恢复率、OPS恢复程度均增加,以60μmol/L作用最为显著。③人参皂甙Rb3使海马CAI区锥体细胞层NOS阳性细胞数、平均光密度值下降。④人参皂甙Rb3能使细胞外液中LDH的漏出减少、总NOS、iNOS活性下降。结论:人参皂甙Rb,对缺血低氧性脑损伤有保护作用,并具有剂量依赖性,作用机制可能与降低低氧损伤时细胞膜通透性,减少NOS表达,抑制NOS的活性,尤其是诱导型NOS活性有关。  相似文献   

5.
摘要 目的:探讨与研究七氟醚对血管性痴呆(Vascular dementia,VaD)大鼠海马区细胞凋亡及B淋巴细胞瘤-2(B-cell lymphoma-2,Bcl-2)蛋白表达的影响及相关机制。方法:60只老年雄性SD大鼠随机平分为两组-七氟醚与对照组,两组大鼠都采用双侧颈动脉缺血再灌注法制作VaD模型,七氟醚组与对照组在建模前分别吸入0.11 %七氟醚与空气各45 min,分别于建模后7 d、14 d与21 d进行Morris水迷宫实验检测大鼠的逃避潜伏期;建模后21 d,采用TUNEL法测定各组大鼠海马组织细胞凋亡情况,采用黄嘌呤氧化酶法、硫代巴比妥酸法分别测定血清超氧化物歧化酶(Superoxide dismutase,SOD)活性与丙二醛(Malondialdehyde,MDA)含量,采用Western blot法检测Bax、Bcl-2蛋白相对表达水平。结果:两组各有26只大鼠顺利建立VaD模型,建模后7 d、14 d与21 d,七氟醚组的逃避潜伏期均显著少于对照组(P<0.05);建模后21 d,七氟醚组大鼠海马组织神经元细胞凋亡指数显著低于对照组(P<0.05);建模后21 d,七氟醚组大鼠血清SOD活性显著高于对照组,而MDA含量则显著低于对照组(P<0.05);建模后21 d,七氟醚组大鼠海马组织Bax、Bcl-2蛋白的相对表达水平均显著高于对照组(P<0.05)。结论:七氟醚干预可通过促进VaD大鼠海马组织抗凋亡蛋白Bcl-2表达抑制细胞凋亡,并可平衡大鼠的氧化应激反应水平,从而促进大鼠记忆功能恢复正常。  相似文献   

6.
目的:探究七氟醚预处理对大鼠脑缺血再灌注损伤的影响,以及转化生长因子-β2(TGF-β2)/Smad3信号通路的活化情况。方法:将50只SD大鼠随机分为5组(n=10):假手术组、模型组、七氟醚预处理组、吡非尼酮组和七氟醚预处理+吡非尼酮组。通过右颈内动脉(ICA)缝线结扎方法制备脑缺血再灌注(I/R)损伤模型。建模前1h,七氟醚组大鼠吸入2.0%七氟醚1h,吡非尼酮组大鼠腹膜内注射200 mg/kg的TGF-β2抑制剂吡非尼酮,七氟醚+吡非尼酮组大鼠同时应用两种药物处理。再灌注24 h后,通过Zea-Longa五级评分法评价大鼠神经功能缺损评分,处死大鼠并测量梗死体积。通过苏木精-伊红(HE)染色和Nissl染色评价脑组织损伤程度。TdT介导的dUTP缺口末端标记法(TUNEL)分析细胞凋亡。免疫荧光染色和Western blot检测TGF-β2、Smad3、血管内皮生长因子-A(VEGF-A)和CD34的表达情况。结果:七氟醚预处理明显降低了大鼠的脑梗塞面积和神经功能缺损评分。七氟醚预处理抑制了大鼠大脑皮质和海马CA1区的神经元凋亡。七氟醚预处理上调了TGF-β2、VEGF-A和CD34的表达,以及Smad3的磷酸化水平。TGF-β2抑制剂吡非尼酮处理均可减弱七氟醚的脑保护作用并抑制TGF-β2、VEGF-A和CD34的表达和Smad3的磷酸化。结论:七氟醚预处理通过激活TGF-β2/Smad3信号通路来减轻I/R损伤大鼠的脑损伤。  相似文献   

7.
5—羟色胺抑制谷氨酸对海马神经元的毒性作用   总被引:5,自引:1,他引:5  
Ma Q  Liu W  Wu LY  Chao FH 《生理学报》2001,53(4):257-260
为探讨5-羟色胺(5-HT)对过量谷氨酸(glutamate,Glu)神经毒性的影响。观察了5-HT存在时,过量Glu对海马细胞存活率、海马脑片CA1区群锋电位(population spike,PS)及神经细胞膜Ga^2 电流的影响。结果发现:5-HT可明显提高过量Glu作用下海马神经细胞的存活率,减缓Glu对海马脑片CA1区PS的降低作用;在细胞膜上,5-HT可明显减弱Glu诱导的Ca^2 内向电流,推测,一定浓度的5-HT具有抑制过量Glu神经毒性的作用。在细胞膜上5-HT可明显减弱Glu诱导的Ca^2 内向电流,推测,一定浓度的5-HT具有抑制过量Glu神经毒性的作用,其机制可能在于5-HT与细胞膜上特定的受体结合,抑制了Glu诱导的Ca^2 内流。  相似文献   

8.
应用离体脑片记录技术,记录大鼠海马CA1区的兴奋性突触后电位(EPSPs),研究了锂对铅引起的大鼠海马CA1区长时程增强效应(long-termpotentiation,LTP)损伤的修复作用。结果表明:对照组大鼠海马CA1区LTP幅度为194.42±14.05%(n=10);铅处理组LTP的幅度为147.06±9.55%(n=13);而锂加铅处理组LTP的幅度为193.45±14.91%(n=15)。与对照组相比,铅处理组LTP的幅度降低了47.36%,而锂几乎完全修复了铅对大鼠海马CA1区LTP幅度的损伤。锂和铅处理后对大鼠海马CA1区的双脉冲易化(paired-pulsefacilica-tion,PPF)都有一定的抑制作用,在脉冲间隔为50ms时,这种抑制效应最大:对照组为155.58±6.35%(n=7);铅暴露组为150.26±13.74%(n=8);锂加铅处理组为140.59±15.42%(n=8)。结果表明:锂对铅引起大鼠海马CA1区LTP的损伤有一定的修复作用。  相似文献   

9.
目的:观察盐酸戊乙奎醚对全脑缺血/再灌注大鼠易损区海马谷氨酸(Glu)及其受体(NMDAR1)的影响,探讨盐酸戊乙奎醚脑保护作用机制。方法:雄性Wistar大鼠60只,随机分为3组(n=20):假手术组(A组);缺血再灌注对照组(B组);盐酸戊乙奎醚干预组,采用Pulsinelli-Brierley四血管阻断法制备全脑缺血模型,实验分两部分进行,各组随机选择10只大鼠于全脑缺血15min再灌注1h、3h、6h,采用脑微透析技术结合高效液相色谱(HPLC)检测大鼠海马细胞外Glu水平的变化,其余10只大鼠于再灌注3h后灌流固定断头取脑,采用免疫组织化学方法,检测海马CA1区NMDAR1蛋白表达。结果:与缺血/再灌注组各对应时点相比较,盐酸戊乙奎醚干预组大鼠海马细胞外Glu含量明显降低,统计结果差异均有显著性(P〈0.05或P〈0.01);海马CA1区NMDAR1表达明显受抑制,积分光密度、阳性细胞面积、平均灰度值均存在显著性差异(P〈0.05或P〈0.01)。结论:脑缺血/再灌注早期应用盐酸戊乙奎醚不仅减少兴奋性氨基酸释放,还能抑制NMDAR1的高表达而产生脑保护作用。  相似文献   

10.
日本血吸虫成虫培养细胞的超微结构观察   总被引:17,自引:0,他引:17  
报告日本血吸虫成虫培养细胞的超微结构。在透射电镜下日本血吸虫成虫培养细胞呈多角形、圆颗粒形,三角扇形和鞭毛形等多种形状,其中以多角形为主。细胞表面光滑,或有乳头乳突起,微绒毛和微饮泡等。胞质内有不同数量的线粒体,内质网,核糖体和糖原颗粒等分布,高尔基复合体很少或无;其中线粒体超微结构的变化可以作为评判培养条件优劣的一个指标。核常呈圆形,核膜为一单位膜,核孔清晰;核内具较丰富的异染色质,核膜内缘常有  相似文献   

11.
Superfusion with an oxygen and glucose deprived medium (in vitro ischemia) of rat hippocampal CA1 pyramidal neurons in tissue slices produced a rapid depolarization within 5 min and thereafter showed no functional recovery (irreversible membrane dysfunction), even if oxygen and glucose were reintroduced. We previously suggested that such a rapid depolarization is triggered by the accumulation of extracellular glutamate (Glu). As a result, we examined the effects of either the activation or inhibition of presynaptic receptors, which modulate Glu release from the nerve terminal, on the potential change produced by in vitro ischemia. The adenosine A1 receptor antagonist, 8-cyclopenthyl theophylline, A2a receptor antagonist, ZM241385, and A2b receptor antagonist, alloxazine, did not significantly alter either the latency or the maximal slope of the rapid depolarization. In addition, the GABAB receptor antagonist, 2-hydroxysaclofen, or the metabotropic Glu receptor type 4 antagonist, alpha-methylserine-O-phosphate, did not change either the latency or the maximal slope. The adenosine A(1) receptor agonist, 2-chloro-N6-cyclopentyladenosine, A2a receptor agonist, CGS2168, or A2b receptor agonist, 5'-(N-ethylcarboxamido)-adenosine, did not affect these parameters either. None of these drugs restored the membrane potential to the pre-exposure level after the reintroduction of oxygen and glucose. Simultaneous intracellular recordings from CA1 and CA3 pyramidal neurons in the same slices revealed the membrane of the CA3 neurons to be hyperpolarized when a rapid depolarization occurred in the CA1 neurons. These results suggest that presynaptic Glu release does not accelerate during the generation of the rapid depolarization induced by in vitro ischemia.  相似文献   

12.
Diacylglycerol kinase (DGK) plays a key role in pathophysiological cellular responses by regulating the levels of a lipid messenger diacylglycerol. Of DGK isozymes, DGKζ localizes to the nucleus in various cells such as neurons. We previously reported that DGKζ translocates from the nucleus to the cytoplasm in hippocampal CA1 pyramidal neurons after 20 min of transient forebrain ischemia. In this study, we examined the underlying mechanism of DGKζ translocation using hippocampal slices exposed to oxygen-glucose deprivation (OGD) to simulate an ischemic model of the brain. DGKζ-immunoreactivity gradually changed from the nucleus to the cytoplasm in CA1 pyramidal neurons after 20 min of OGD and was never detected in the nucleus after reoxygenation. Intriguingly, DGKζ was detected in the nucleus at 10 min OGD whereas the following 60 min reoxygenation induced complete cytoplasmic translocation of DGKζ. Morphometric analysis revealed that DGKζ cytoplasmic translocation correlated with nuclear shrinkage indicative of an early process of neuronal degeneration. The translocation under OGD conditions was blocked by NMDA receptor (NMDAR) inhibitor, and was induced by activation of NMDAR. Chelation of the extracellular Ca2+ blocked the translocation under OGD conditions. These results show that DGKζ cytoplasmic translocation is triggered by activation of NMDAR with subsequent extracellular Ca2+ influx. Furthermore, inhibition of PKC activity under OGD conditions led to nuclear retention of DGKζ in about one-third of the neurons, suggesting that PKC activity partially regulates DGKζ cytoplasmic translocation. These findings provide clues to guide further investigation of glutamate excitotoxicity mechanisms in hippocampal neurons.  相似文献   

13.
"氧糖剥夺"模型作为研究脑缺血的离体模型被广泛使用,该模型模拟了局灶性脑缺血的主要病理变化。然而在缺血病灶核心区与正常脑组织之间称为缺血半暗带的区域,脑血流也有程度不一的降低。为了模拟这种病理变化,发展了一种"不完全氧糖剥夺"的离体脑片模型,该模型满足两个条件,灌流液里氧气部分剥夺而葡萄糖含量降低;"氧糖剥夺"可以导致谷氨酸介导的兴奋性毒性,从而引起神经细胞的坏死。而A型γ-氨基丁酸受体(GABAAR)介导的神经元抑制性活动可以对抗谷氨酸引起的兴奋性毒性,因此近年来引起广泛的研究兴趣。而谷氨酸受体和γ-氨基丁酸受体功能在缺血半暗带是否有改变尚不得而知。因此本文采用海马脑片全细胞膜片钳的记录方法,研究"不完全氧糖剥夺"对海马CA1区神经元的A型γ-氨基丁酸受体介导的抑制性突触后膜电流(IPSCs)的影响。研究发现"不完全氧糖剥夺"使GABAAR介导的IPSCs的峰值增加而衰减时程延长。进一步研究发现该电流的峰值增加是由于GABAAR-氯离子通道的电导增加所致,而与氯离子的反转电位变化无关。这些发现提示在脑缺血的缺血半暗带区域GABAAR介导的神经元抑制性活动可能是增强的,这可能是神经元面对缺血状态产生自我保护的一种内稳态机制。  相似文献   

14.
Kynurenine 3-mono-oxygenase (KMO) inhibitors reduce 3-hydroxykynurenine (3-HK) and quinolinic acid (QUIN) neosynthesis and facilitate kynurenine metabolism towards kynurenic acid (KYNA) formation. They also reduce tissue damage in models of focal or transient global cerebral ischemia in vivo. We used organotypic hippocampal slice cultures exposed to oxygen and glucose deprivation (OGD) to investigate KMO mechanism(s) of neuroprotective activity. Exposure of the slices to 30 min of OGD caused CA1 pyramidal cell death and significantly decreased the amount of KYNA released in the incubation medium. The KMO inhibitors (m-nitrobenzoyl)-alanine (30-100 micro m) or 3,4-dimethoxy-[-N-4-(nitrophenyl)thiazol-2yl]-benzenesulfonamide (1-10 micro m) reduced post-ischemic neuronal death and increased KYNA concentrations in slice incubation media. The maximal concentration of KYNA detected in the incubation media of slices treated with KMO inhibitors was approximately 50 nm and was too low to efficiently interact with alpha7 nicotinic acetylcholine receptors or with the glycineb site of N-methyl-d-aspartate (NMDA) receptors. On the other hand, the addition of either 3-HK or QUIN (1-10 micro m) to OGD-exposed hippocampal slices prevented the neuroprotective activity of KMO inhibitors. Our results suggest that KMO inhibitors reduce the neuronal death found in the CA1 region of organotypic hippocampal slices exposed to 30 min of OGD by decreasing the local synthesis of 3-HK and QUIN.  相似文献   

15.
Brain ischemia occurs when the blood supply to the brain is interrupted, leading to oxygen and glucose deprivation (OGD). This triggers a cascade of events causing a synaptic accumulation of glutamate. Excessive activation of glutamate receptors results in excitotoxicity and delayed cell death in vulnerable neurons. Following global cerebral ischemia, hippocampal CA1 pyramidal neurons are more vulnerable to injury than their cortical counterparts. The mechanisms that underlie this difference are unclear. Cultured hippocampal neurons respond to OGD with a rapid internalization of AMPA receptor (AMPAR) subunit GluA2, resulting in a switch from GluA2-containing Ca2+-impermeable receptors to GluA2-lacking Ca2+-permeable subtypes (CP-AMPARs). GluA2 internalization is a critical component of OGD-induced cell death in hippocampal neurons. It is unknown how AMPAR trafficking is affected in cortical neurons following OGD. Here, we show that cultured cortical neurons are resistant to an OGD insult that causes cell death in hippocampal neurons. GluA1 is inserted at the plasma membrane in both cortical and hippocampal neurons in response to OGD. In contrast, OGD causes a rapid endocytosis of GluA2 in hippocampal neurons, which is absent in cortical neurons. These data demonstrate that populations of neurons with different vulnerabilities to OGD recruit distinct cell biological mechanisms in response to insult, and that a crucial aspect of the mechanism leading to OGD-induced cell death is absent in cortical neurons. This strongly suggests that the absence of OGD-induced GluA2 trafficking contributes to the relatively low vulnerability of cortical neurons to ischemia.  相似文献   

16.
The hippocampal CA1 region is sensitive to hypoxic and ischemic injury but can be protected by ischemic preconditioning (IPC). However, the mechanism through which IPC protects hippocampal CA1 neurons is still under investigation. Additionally, the role of autophagy in determining the fate of hippocampal neurons is unclear. Here, we examined whether IPC induced autophagy to alleviate hippocampal CA1 neuronal death in vitro and in vivo with oxygen glucose deprivation (OGD) and bilateral carotid artery occlusion (BCCAO) models. Survival of hippocampal neurons increased from 51.5% ± 6.3% in the non-IPC group (55 min of OGD) to 77.3% ± 7.9% in the IPC group (15 min of OGD, followed by 55 min of OGD 24 h later). The number of hippocampal CA1 layer neurons increased from 182 ± 26 cells/mm2 in the non-IPC group (20 min of BCCAO) to 278 ± 55 cells/mm2 in the IPC group (1 min × 3 BCCAO, followed by 20 min of BCCAO 24 h later). Akt phosphorylation and microtubule-associated protein light chain 3 (LC3)-II/LC3-I expression were increased in the preconditioning group. Moreover, the protective effects of IPC were abolished only by inhibiting the activity of autophagy, but not by blocking the activation of Akt in vitro. Using in vivo experiments, we found that LC3 expression was upregulated, accompanied by an increase in neuronal survival in hippocampal CA1 neurons in the preconditioning group. The neuroprotective effects of IPC on hippocampal CA1 neurons were completely inhibited by treatment with 3-MA. In contrast, hippocampal CA3 neurons did not show changes in autophagic activity or beneficial effects of IPC. These data suggested that IPC may attenuate ischemic injury in hippocampal CA1 neurons through induction of Akt-independent autophagy.  相似文献   

17.
Zhang H  Cao HJ  Kimelberg HK  Zhou M 《PloS one》2011,6(2):e16803
Volume-regulated anion channels (VRAC) are widely expressed chloride channels that are critical for the cell volume regulation. In the mammalian central nervous system, the physiological expression of neuronal VRAC and its role in cerebral ischemia are issues largely unknown. We show that hypoosmotic medium induce an outwardly rectifying chloride conductance in CA1 pyramidal neurons in rat hippocampal slices. The induced chloride conductance was sensitive to some of the VRAC inhibitors, namely, IAA-94 (300 μM) and NPPB (100 μM), but not to tamoxifen (10 μM). Using oxygen-and-glucose deprivation (OGD) to simulate ischemic conditions in slices, VRAC activation appeared after OGD induced anoxic depolarization (AD) that showed a progressive increase in current amplitude over the period of post-OGD reperfusion. The OGD induced VRAC currents were significantly inhibited by inhibitors for glutamate AMPA (30 μM NBQX) and NMDA (40 μM AP-5) receptors in the OGD solution, supporting the view that induction of AD requires an excessive Na(+)-loading via these receptors that in turn to activate neuronal VRAC. In the presence of NPPB and DCPIB in the post-OGD reperfusion solution, the OGD induced CA1 pyramidal neuron death, as measured by TO-PRO-3-I staining, was significantly reduced, although DCPIB did not appear to be an effective neuronal VRAC blocker. Altogether, we show that rat hippocampal pyramidal neurons express functional VRAC, and ischemic conditions can initial neuronal VRAC activation that may contribute to ischemic neuronal damage.  相似文献   

18.
An excessive activation of poly(ADP-ribose) polymerase (PARP) has been proposed to play a key role in post-ischemic neuronal death. We examined the neuroprotective effects of the PARP inhibitors benzamide, 6(5H)-phenanthridinone, and 3,4-dihydro-5-[4-1(1-piperidinyl)buthoxy]-1(2H)-isoquinolinone in three rodent models of cerebral ischemia. Increasing concentrations of the three PARP inhibitors attenuated neuronal injury induced by 60 min oxygen-glucose deprivation (OGD) in mixed cortical cell cultures, but were unable to reduce CA1 pyramidal cell loss in organotypic hippocampal slices exposed to 30 min OGD or in gerbils following 5 min bilateral carotid occlusion. We then examined the necrotic and apoptotic features of OGD-induced neurodegeneration in cortical cells and hippocampal slices using biochemical and morphological approaches. Cortical cells exposed to OGD released lactate dehydrogenase into the medium and displayed ultrastructural features of necrotic cell death, whereas no caspase-3 activation nor morphological characteristics of apoptosis were observed at any time point after OGD. In contrast, a marked increase in caspase-3 activity was observed in organotypic hippocampal slices after OGD, together with fluorescence and electron microscope evidence of apoptotic neuronal death in the CA1 subregion. Moreover, the caspase inhibitor Z-VAD-FMK reduced OGD-induced CA1 pyramidal cell loss. These findings suggest that PARP overactivation may be an important mechanism leading to post-ischemic neurodegeneration of the necrotic but not of the apoptotic type.  相似文献   

19.
The glycosaminoglycan chondroitin sulfate (CS) is a major constituent of the extracellular matrix of the central nervous system where it can constitute part of the perineuronal nets. Constituents of the perineuronal nets are gaining interest because they have modulatory actions on their neighbouring neurons. In this study we have investigated if CS could afford protection in an acute in vitro ischemia/reoxygenation model by using isolated hippocampal slices subjected to 60min oxygen and glucose deprivation (OGD) followed by 120min reoxygenation (OGD/Reox). In this toxicity model, CS afforded protection of rat hippocampal slices measured as a reduction of lactate dehydrogenase (LDH) release; maximum protection (70% reduction of LDH) was obtained at the concentration of 3mM. To evaluate the intracellular signaling pathways implicated in the protective effect of CS, we first analysed the participation of the mitogen-activated protein kinases (MAPKs) p38 and ERK1/2 by western blot. OGD/Reox induced the phosphorylation of p38 and dephosphorylation of ERK1/2; however, CS only inhibited p38 but had no effect on ERK1/2. Furthermore, OGD/Reox-induced translocation of p65 to the nucleus was prevented in CS treated hippocampal slices. Finally, CS inhibited iNOS induction caused by OGD/Reox and thereby nitric oxide (NO) production measured as a reduction in DAF-2 DA fluorescence. In conclusion, the protective effect of CS in hippocampal slices subjected to OGD/Reox can be related to a modulatory action of the local immune response by a mechanism that implies inhibition of p38, NFκB, iNOS and the production of NO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号