首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shortening of telomeres has been hypothesized to contribute to cellular senescence and may play a role in carcinogenesis of human cells. Furthermore, activation of telomerase has frequently been demonstrated in tumor-derived and in vitro immortalized cells. In this study, we have assessed these phenomena during the life span of simian virus 40 (SV40)-transformed preimmortal and immortal human fibroblasts. We observed progressive reduction in telomere length in preimmortal transformed cells with extended proliferative capacity, with the most dramatic shortening at late passage. Telomere lengths became stabilized (or increased) in immortal fibroblasts accompanied, in one case, by the activation of telomerase. However, an independent immortal cell line that displayed stable telomeres did not have detectable telomerase activity. Furthermore, we found significant telomerase activity in two preimmortal derivatives. Our results provide further evidence for maintenance of telomeres in immortalized human fibroblasts, but they suggest a lack of causal relationship between telomerase activation and immortalization. © 1996 Wiley-Liss, Inc.  相似文献   

2.
The ribonucleoprotein, telomerase, is responsible for the maintenance of telomere length in most immortal and cancer cells. Telomerase appears to be a marker of human malignancy with at least 85% of human cancers expressing its activity. In the present study, we examined a series of tumor-derived and in vitro immortalized cell lines for telomerase activity levels, telomere lengths, and expression levels of the RNA and catalytic components of telomerase. We found significant variability in both telomere lengths and telomerase activity in clones from tumor cells. In addition, the levels of telomerase components or telomerase activity were not predictive of telomere length. Data from clonally derived cells suggest that critically shortened telomeres in these tumor-derived cell lines may signal activation of telomerase activity through an increase in the expression of the catalytic subunit of telomerase. Although clones with low telomerase shorten their telomeres over time, their subclones all have high levels of telomerase activity with no telomere shortening. In addition, analysis of early clones for telomerase activity indicates substantial variability, which suggests that activity levels fluctuate in individual cells. Our data imply that cell populations exhibit a cyclic expression of telomerase activity, which may be partially regulated by telomere shortening.  相似文献   

3.
Telomere loss: mitotic clock or genetic time bomb?   总被引:38,自引:0,他引:38  
C B Harley 《Mutation research》1991,256(2-6):271-282
The Holy Grail of gerontologists investigating cellular senescence is the mechanism responsible for the finite proliferative capacity of somatic cells. In 1973, Olovnikov proposed that cells lose a small amount of DNA following each round of replication due to the inability of DNA polymerase to fully replicate chromosome ends (telomeres) and that eventually a critical deletion causes cell death. Recent observations showing that telomeres of human somatic cells act as a mitotic clock, shortening with age both in vitro and in vivo in a replication dependent manner, support this theory's premise. In addition, since telomeres stabilize chromosome ends against recombination, their loss could explain the increased frequency of dicentric chromosomes observed in late passage (senescent) fibroblasts and provide a checkpoint for regulated cell cycle exit. Sperm telomeres are longer than somatic telomeres and are maintained with age, suggesting that germ line cells may express telomerase, the ribonucleoprotein enzyme known to maintain telomere length in immortal unicellular eukaryotes. As predicted, telomerase activity has been found in immortal, transformed human cells and tumour cell lines, but not in normal somatic cells. Telomerase activation may be a late, obligate event in immortalization since many transformed cells and tumour tissues have critically short telomeres. Thus, telomere length and telomerase activity appear to be markers of the replicative history and proliferative potential of cells; the intriguing possibility remains that telomere loss is a genetic time bomb and hence causally involved in cell senescence and immortalization.  相似文献   

4.
Loss of telomeric DNA during cell proliferation may play a role in ageing and cancer. Since telomeres permit complete replication of eukaryotic chromosomes and protect their ends from recombination, we have measured telomere length, telomerase activity and chromosome rearrangements in human cells before and after transformation with SV40 or Ad5. In all mortal populations, telomeres shortened by approximately 65 bp/generation during the lifespan of the cultures. When transformed cells reached crisis, the length of the telomeric TTAGGG repeats was only approximately 1.5 kbp and many dicentric chromosomes were observed. In immortal cells, telomere length and frequency of dicentric chromosomes stabilized after crisis. Telomerase activity was not detectable in control or extended lifespan populations but was present in immortal populations. These results suggest that chromosomes with short (TTAGGG)n tracts are recombinogenic, critically shortened telomeres may be incompatible with cell proliferation and stabilization of telomere length by telomerase may be required for immortalization.  相似文献   

5.
6.
Hybrids between immortal cells that express telomerase and normal cells that lack telomerase have a limited lifespan. We demonstrate that telomerase is repressed in such hybrids. Treatment of immortal human cell lines with certain oligonucleotides resulted in telomere elongation. We took advantage of this observation to test the hypothesis that elongation of telomeres would extend the lifespan of cells in culture. An immortal human cell line was treated with an oligonucleotide to lengthen its telomeres and then was fused with mortal cells. The lifespan of these hybrid cells was longer than that of the hybrids in which telomeres had not been elongated. These observations provide the first direct evidence supporting the hypothesis that telomere length determines proliferative capacity of human cells.  相似文献   

7.
Immortalization of human cells is often associated with reactivation of telomerase, a ribonucleoprotein enzyme that adds TTAGGG repeats onto telomeres and compensates for their shortening. We examined whether telomerase activation is necessary for immortalization. All normal human fibroblasts tested were negative for telomerase activity. Thirteen out of 13 DNA tumor virus-transformed cell cultures were also negative in the pre-crisis (i.e. non-immortalized) stage. Of 35 immortalized cell lines, 20 had telomerase activity as expected, but 15 had no detectable telomerase. The 15 telomerase-negative immortalized cell lines all had very long and heterogeneous telomeres of up to 50 kb. Hybrids between telomerase-negative and telomerase-positive cells senesced. Two senescent hybrids demonstrated telomerase activity, indicating that activation of telomerase is not sufficient for immortalization. Some hybrid clones subsequently recommenced proliferation and became immortalized either with or without telomerase activity. Those without telomerase activity also had very long and heterogeneous telomeres. Taken together, these data suggest that the presence of lengthened or stabilized telomeres is necessary for immortalization, and that this may be achieved either by the reactivation of telomerase or by a novel and as yet unidentified mechanism.  相似文献   

8.
It has been proposed that telomeres shorten with every cell cycle because the normal mechanism of DNA replication cannot replicate the end sequences of the lagging DNA strand. Telomerase, a ribonucleoprotein enzyme that synthesizes telomeric DNA repeats at the DNA 3′ ends of eukaryotic chromosomes, can compensate for such shortening, by extending the template of the lagging strand. Telomerase activity has been identified in human germline cells and in neoplastic immortal somatic cells, but not in most normal somatic cells, which senesce after a certain number of cell divisions. We and others have found that telomerase activity is present in normal human lymphocytes and is upregulated when the cells are activated. But, unlike the immortal cell lines, presence of telomerase activity is not sufficient to make T cells immortal and telomeres from these cells shorten continuously duringin vitroculture. After senescence, telomerase activity, as detected by the TRAP technique, was downregulated. A cytotoxic T lymphocyte (CTL) cell line that was established in the laboratory has very short terminal restriction fragments (TRFs). Telomerase activity in this cell line is induced during activation and this activity is tightly correlated with cell proliferation. The level of telomerase activity in activated peripheral blood T cells, the CTL cell line, and two leukemia cell lines does not correlate with the average TRF length, suggesting that other factors besides telomerase activity are involved in the regulation of telomere length.  相似文献   

9.
Most human cells do not express telomerase and irreversibly arrest proliferation after a finite number of divisions (replicative senescence). Several lines of evidence suggest that replicative senescence is caused by short dysfunctional telomeres, which arise when DNA is replicated in the absence of adequate telomerase activity. We describe a method to reversibly bypass replicative senescence and generate mass cultures that have different average telomere lengths. A retrovirus carrying hTERT flanked by excision sites for Cre recombinase rendered normal human fibroblasts telomerase-positive and replicatively immortal. Superinfection with retroviruses carrying wild-type or mutant forms of TIN2, a negative regulator of telomere length, created telomerase-positive, immortal populations with varying average telomere lengths. Subsequent infection with a Cre-expressing retrovirus abolished telomerase activity, creating mortal cells with varying telomere lengths. Using these cell populations, we show that, after hTERT excision, cells senesce with shorter telomeres than parental cells. Moreover, long telomeres, but not telomerase, protected cells from the loss of division potential caused by ionizing radiation. Finally, although telomerase-negative cells with short telomeres senesced after fewer doublings than those with long telomeres, telomere length per se did not correlate with senescence. Our results support a role for telomere structure, rather than length, in replicative senescence.  相似文献   

10.
The immortalization of human diploid fibroblasts requires the circumvention of both the senescence (M1) and crisis (M2) mechanisms of growth control. Cells expressing the SV40 T antigen virtually always bypass senescence, but only rarely escape crisis. The low frequency of this latter event indicates that cellular mutations are necessary to escape crisis. Thirteen subpopulations of T antigen-expressing human fibroblasts were cultured into crisis. Colonies that appeared to resume growth were assayed for telomerase activity, telomere maintenance, and the immortal phenotype. Our results show that 33 of 35 colonies were telomerase negative and were not immortal. Two colonies were telomerase positive when assayed in the first approximately 15 population doublings after crisis. The first was strongly positive, maintained telomeres at a stable short length, and was later determined to be immortal. The second initially had a weak telomerase signal, grew extremely slowly, and when examined had greatly elongated telomeres consistent with the ALT (alternative lengthening of telomeres) mechanism of telomere maintenance. These cells eventually grew faster and were later determined to be immortal. Additionally, two subpopulations had initially weak and later strong telomerase activity and the cells never entered a defined crisis period. We observed a perfect correlation between telomere maintenance and escape from crisis, supporting the hypothesis that the lack of stable telomeres causes crisis and that the ability to maintain telomeres abrogates crisis. J. Cell. Physiol. 180:46–52, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

11.
Immortal cell populations are able to proliferate indefinitely. Immortalization is associated with activation of processes that compensate for the telomeric shortening that accompanies cell division in normal somatic cells. In many immortal cell lines, telomere maintenance is provided by the action of the ribonucleoprotein enzyme complex, telomerase. Some immortal cell lines have undetectable or very low levels of telomerase activity and there is evidence that these cells maintain their telomeres by an alternative mechanism.  相似文献   

12.
13.
During the process of immortalization, at least two mortality checkpoints, M1 and M2, must be bypassed. Cells that have bypassed M1 (senescence) have an extended life span, but are not necessarily immortal. Recent studies have shown that ectopic expression of the catalytic subunit of telomerase (hTERT) enables normal human cells to bypass senescence (M1) and oncogene transformed cells to avert crisis (M2) and become immortal. However, it is unclear whether hTERT expression is sufficient for normal human fibroblasts to overcome both M1 and M2 and become immortal. We have investigated the role of telomerase in immortalization by maintaining mass cultures of hTERT-transduced primary human fetal lung fibroblasts (MRC-5 cells) for very long periods of time (more than 2 years). In the present studies, up to 70% of MRC-5 cells were transduced with retroviral vectors that express hTERT. hTERT-transduced cells exhibited high levels of telomerase activity, elongation of telomeres, and proliferation beyond senescence. However, after proliferating for more than 36 population doublings (PDLs) beyond senescence, the overall growth rate of hTERT-expressing cells declined. During theses periods of reduced growth, hTERT-transduced MRC-5 cells exhibited features typical of cells in crisis, including an increased rate of cell death and polyploidy. In some instances, very late passage cells acquired a senescence-like phenotype characterized by arrest in the G1 phase of the cell cycle and greatly reduced DNA synthesis. At the onset of crisis, hTERT-transduced cells expressed high levels of telomerase and had very long telomeres, ranging up to 30 kb. Not all cells succumbed to crisis and, consequently, some cultures have proliferated beyond 240 PDLs, while another culture appears to be permanently arrested at 160 PDLs. Late passage MRC-5 cells, including postcrisis cells, displayed no signs of malignant transformation. Our results are consistent with the model in which telomerase and telomere elongation greatly extends cellular life span without inducing malignant changes. However, these investigations also indicate that hTERT-expressing cells may undergo crisis following an extended life span and that immortality is not the universal outcome of hTERT expression in normal diploid fibroblasts.  相似文献   

14.
It has been proposed that the progressive shortening of telomeres in somatic cells eventually results in senescence. Previous experiments have demonstrated that many immortal cell lines have acquired telomerase activity leading to stabilization of telomere length. Telomere dynamics and telomerase activity were examined in the telomerase-positive immortal cell lines HeLa and 293 and subclones derived from them. A mass culture of HeLa cells had a stable mean telomere length over 60 population doublings (PD)in vitro.Subclones of this culture, however, had a range of mean telomere lengths indicating that telomeric heterogeneity exists within a population with a stable mean telomere length. Some of the subclones lacked detectable telomerase activity soon after isolation but regained it by PD 18, suggesting that at least some of the variation in telomere length can be attributed to variations in telomerase activity levels. 293 subclones also varied in telomere length and telomerase activity. Some telomerase-positive 293 subclones contained long telomeres that gradually shortened, demonstrating that factors other than telomerase also act to modulate telomere length. Fluctuations in telomere length in telomerase-positive immortalized cells may contribute to chromosomal instability and clonal evolution.  相似文献   

15.
Human fibroblasts expressing the catalytic component of human telomerase (hTERT) have been followed for 250-400 population doublings. As expected, telomerase activity declined in long term culture of stable transfectants. Surprisingly, however, clones with average telomere lengths several kilobases shorter than those of senescent parental cells continued to proliferate. Although the longest telomeres shortened, the size of the shortest telomeres was maintained. Cells with subsenescent telomere lengths proliferated for an additional 20 doublings after inhibiting telomerase activity with a dominant-negative hTERT mutant. These results indicate that, under conditions of limiting telomerase activity, cis-acting signals may recruit telomerase to act on the shortest telomeres, argue against the hypothesis that the mortality stage 1 mechanism of cellular senescence is regulated by telomere positional effects (in which subtelomeric loci silenced by long telomeres are expressed when telomeres become short), and suggest that catalytically active telomerase is not required to provide a protein-capping role at the end of very short telomeres.  相似文献   

16.
17.
The causal role of aneuploidy in cancer initiation remains under debate since mutations of euploidy‐controlling genes reduce cell fitness but aneuploidy strongly associates with human cancers. Telomerase activation allows immortal growth by stabilizing telomere length, but its role in aneuploidy survival has not been characterized. Here, we analyze the response of primary human cells and murine hematopoietic stem cells (HSCs) to aneuploidy induction and the role of telomeres and the telomerase in this process. The study shows that aneuploidy induces replication stress at telomeres leading to telomeric DNA damage and p53 activation. This results in p53/Rb‐dependent, premature senescence of human fibroblast, and in the depletion of hematopoietic cells in telomerase‐deficient mice. Endogenous telomerase expression in HSCs and enforced expression of telomerase in human fibroblasts are sufficient to abrogate aneuploidy‐induced replication stress at telomeres and the consequent induction of premature senescence and hematopoietic cell depletion. Together, these results identify telomerase as an aneuploidy survival factor in mammalian cells based on its capacity to alleviate telomere replication stress in response to aneuploidy induction.  相似文献   

18.
Telomerase synthesizes telomeric DNA by copying the template sequence of its own RNA component. In Tetrahymena thermophila and yeast (G. Yu, J. D. Bradley, L. D. Attardi, and E. H. Blackburn, Nature 344:126-131, 1990; M. McEachern and E. H. Blackburn, Nature 376:403-409, 1995), mutations in the template domain of this RNA result in synthesis of mutant telomeres and in impaired cell growth and survival. We have investigated whether mutant telomerase affects the proliferative potential and viability of immortal human cells. Plasmids encoding mutant or wild-type template RNAs (hTRs) of human telomerase and the neomycin resistance gene were transfected into human cells to generate stable transformants. Expression of mutant hTR resulted in the appearance of mutant telomerase activity and in the synthesis of mutant telomeres. Transformed cells were not visibly affected in their growth and viability when grown as mass populations. However, a reduction in plating efficiency and growth rate and an increase in the number of senescent cells were detected in populations with mutant telomeres by colony-forming assays. These results suggest that the presence of mutant telomerase, even if coexpressed with the wild-type enzyme, can be deleterious to cells, likely as a result of the impaired function of hybrid telomeres.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号