首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cell polarity is essential for cell division, cell differentiation, and most differentiated cell functions including cell migration. The small G protein Cdc42 controls cell polarity in a wide variety of cellular contexts. Although restricted localization of active Cdc42 seems to be important for its distinct functions, mechanisms responsible for the concentration of active Cdc42 at precise cortical sites are not fully understood. In this study, we show that during directed cell migration, Cdc42 accumulation at the cell leading edge relies on membrane traffic. Cdc42 and its exchange factor βPIX localize to intracytosplasmic vesicles. Inhibition of Arf6-dependent membrane trafficking alters the dynamics of Cdc42-positive vesicles and abolishes the polarized recruitment of Cdc42 and βPIX to the leading edge. Furthermore, we show that Arf6-dependent membrane dynamics is also required for polarized recruitment of Rac and the Par6-aPKC polarity complex and for cell polarization. Our results demonstrate influence of membrane dynamics on the localization and activation of Cdc42 and consequently on directed cell migration.  相似文献   

2.
BACKGROUND: In the fission yeast Schizosaccharomyces pombe, cell growth takes place exclusively at both ends of the cylindrical cell. During this highly polarized growth, microtubules are responsible for the placement of the cell-end marker proteins, the Tea1-Tea4/Wsh3 complex, which recruits the Pom1 DYRK-family protein kinase. Pom1 is required for proper positioning of growth sites, and the Deltapom1 mutation brings about monopolar cell growth. RESULTS: Pom1 kinase physically interacts with Rga4, which has a GAP (GTPase-activating protein) domain for Rho-family GTPase. Genetic and biochemical evidence indicates that Rga4 functions as GAP for the Cdc42 GTPase, an evolutionarily conserved regulator of F-actin. CRIB (Cdc42/Rac interactive binding)-GFP microscopy has revealed that GTP-bound, active Cdc42 is concentrated to growing cell ends accompanied by developed F-actin structures, where the Rga4 GAP is excluded. The monopolar Deltapom1 mutant fails to eliminate Rga4 from the nongrowing cell end, resulting in monopolar distribution of GTP-Cdc42 to the growing cell end. However, mutational inactivation of Rga4 allows Cdc42 to be active at both ends of Deltapom1 cells, suggesting that mislocalization of Rga4 in the Deltapom1 mutant contributes to its monopolar phenotype. CONCLUSIONS: Pom1 kinase recruited to cell ends by the Tea1-Tea4/Wsh3 complex is essential for proper localization of a GAP for Cdc42, Rga4, which ensures bipolar localization of GTP-bound, active Cdc42. Because of the established role of Cdc42 in F-actin formation, these observations provide a new insight into how the microtubule system achieves localized formation of F-actin to generate cell polarity.  相似文献   

3.
BACKGROUND: Mammalian Scribble (Scrib) plays a conserved role in polarization of epithelial and neuronal cells. Polarization is essential for migration of a variety of cell types; however, the function of Scrib in this context remains unclear. Scrib has been shown to interact with betaPIX, a guanine nucleotide exchange factor for the small GTPases Rac and Cdc42. Cdc42 controls cell polarity from yeast to mammals during asymmetric cell division and epithelial cell polarization, as well as during cell migration. Cdc42 is, in particular, required for polarization and orientation of astrocytes in a scratch-induced polarized migration assay. Using this assay, we characterized Scrib function during polarized cell migration. RESULTS: Depletion of Scrib by siRNA or expression of dominant-negative constructs inhibits astrocyte polarization. Like Cdc42, Scrib controls protrusion formation, cytoskeleton polarization, and centrosome and Golgi reorientation. Scrib interacts and colocalizes with betaPIX at the front edge of polarizing astrocytes. Perturbation of Scrib localization or of Scrib-betaPIX interaction inhibits betaPIX polarized recruitment. We further show that betaPIX is required for astrocyte polarization and that both the Scrib-binding motif and the GEF activity of betaPIX are essential for its function. Scrib and betaPIX control Cdc42 activation and localization during astrocyte polarization. Thereby, Scrib regulates Cdc42-dependent APC and Dlg1 recruitment to the leading edge to promote cell orientation. CONCLUSION: We conclude that Scrib plays a key role in the establishment of cell polarity during migration. By interacting with betaPIX, Scrib controls localization and activation of the small GTPase Cdc42 and regulates Cdc42-dependent polarization pathways.  相似文献   

4.
The BNIP-2 and Cdc42GAP homology (BCH) domain is a novel regulator for Rho GTPases, but its impact on p50-Rho GTPase-activating protein (p50RhoGAP or Cdc42GAP) in cells remains elusive. Here we show that deletion of the BCH domain from p50RhoGAP enhanced its GAP activity and caused drastic cell rounding. Introducing constitutively active RhoA or inactivating GAP domain blocked such effect, whereas replacing the BCH domain with endosome-targeting SNX3 excluded requirement of endosomal localization in regulating the GAP activity. Substitution with homologous BCH domain from Schizosaccharomyces pombe, which does not bind mammalian RhoA, also led to complete loss of suppression. Interestingly, the p50RhoGAP BCH domain only targeted RhoA, but not Cdc42 or Rac1, and it was unable to distinguish between GDP and the GTP-bound form of RhoA. Further mutagenesis revealed a RhoA-binding motif (residues 85-120), which when deleted, significantly reduced BCH inhibition on GAP-mediated cell rounding, whereas its full suppression also required an intramolecular interaction motif (residues 169-197). Therefore, BCH domain serves as a local modulator in cis to sequester RhoA from inactivation by the adjacent GAP domain, adding to a new paradigm for regulating p50RhoGAP signaling.  相似文献   

5.
The Cdc42 small GTPase regulates cytoskeletal reorganization and cell morphological changes that result in cellular extensions, migration, or cytokinesis. We previously showed that BNIP-2 interacted with Cdc42 and its cognate inactivator, p50RhoGAP/Cdc42GAP via its BNIP-2 and Cdc42GAP homology (BCH) domain, but its cellular and physiological roles still remain unclear. We report here that following transient expression of BNIP-2 in various cells, the expressed protein was located in irregular spots throughout the cytoplasm and concentrated at the leading edge of cellular extensions. The induced cell elongation and membrane protrusions required an intact BCH domain and were variously inhibited by coexpression of dominant negative mutants of Cdc42 (completely inhibited), Rac1 (partially inhibited), and RhoA (least inhibited). Presence of the Cdc42/Rac1 interactive binding (CRIB) motif alone as the dominant negative mutant of p21-activated kinase also inhibited the BNIP-2 effect. Bioinformatic analyses together with progressive deletional mutagenesis and binding studies revealed that a distal part of the BNIP-2 BCH domain contained a sequence with low homology to CRIB motif. However, in contrary to most effectors, BNIP-2 binding to Cdc42 was mediated exclusively via the unique sequence motif 285VPMEYVGI292. Cells expressing the BNIP-2 mutants devoid of this motif or/and the 34-amino acids immediately upstream to this sequence failed to elicit cell elongation and membrane protrusions despite that the protein still remained in the cytoplasm and interacted with Cdc42GAP. Evidence is presented where BNIP-2 in vivo induces cell dynamics by recruiting Cdc42 via its BCH domain, thus providing a novel mechanism for regulating Cdc42 signaling pathway.  相似文献   

6.
7.
Li Z  Hannigan M  Mo Z  Liu B  Lu W  Wu Y  Smrcka AV  Wu G  Li L  Liu M  Huang CK  Wu D 《Cell》2003,114(2):215-227
Efficient chemotaxis requires directional sensing and cell polarization. We describe a signaling mechanism involving G beta gamma, PAK-associated guanine nucleotide exchange factor (PIX alpha), Cdc42, and p21-activated kinase (PAK) 1. This pathway is utilized by chemoattractants to regulate directional sensing and directional migration of myeloid cells. Our results suggest that G beta gamma binds PAK1 and, via PAK-associated PIX alpha, activates Cdc42, which in turn activates PAK1. Thus, in this pathway, PAK1 is not only an effector for Cdc42, but it also functions as a scaffold protein required for Cdc42 activation. This G beta gamma-PAK1/PIX alpha/Cdc42 pathway is essential for the localization of F-actin formation to the leading edge, the exclusion of PTEN from the leading edge, directional sensing, and the persistent directional migration of chemotactic leukocytes. Although ligand-induced production of PIP(3) is not required for activation of this pathway, PIP(3) appears to localize the activation of Cdc42 by the pathway.  相似文献   

8.
The highly conserved small GTPase Cdc42 regulates polarized cell growth and morphogenesis from yeast to humans. We previously reported that Cdc42 activation exhibits oscillatory dynamics at cell tips of Schizosaccharomyces pombe cells. Mathematical modeling suggests that this dynamic behavior enables a variety of symmetric and asymmetric Cdc42 activation distributions to coexist in cell populations. For individual wild-type cells, however, Cdc42 distribution is initially asymmetrical and becomes more symmetrical as cell volume increases, enabling bipolar growth activation. To explore whether different patterns of Cdc42 activation are possible in vivo, we examined S. pombe rga4∆ mutant cells, lacking the Cdc42 GTPase-activating protein (GAP) Rga4. We found that monopolar rga4∆ mother cells divide asymmetrically leading to the emergence of both symmetric and asymmetric Cdc42 distributions in rga4∆ daughter cells. Motivated by different hypotheses that can mathematically reproduce the unequal fate of daughter cells, we used genetic screening to identify mutants that alter the rga4∆ phenotype. We found that the unequal distribution of active Cdc42 GTPase is consistent with an unequal inheritance of another Cdc42 GAP, Rga6, in the two daughter cells. Our findings highlight the crucial role of Cdc42 GAP localization in maintaining consistent Cdc42 activation and growth patterns across generations.  相似文献   

9.
Active Cdc42 is essential for the establishment of polarized growth. This GTPase is negatively regulated by the GTPase-activating proteins (GAPs), which are important for the spatial specificity of Cdc42 function. Rga4 is the only GAP described as negative regulator of fission yeast Cdc42. We report here that Rga6, another fission yeast Cdc42 GAP, shares some functions with Rga4. Cells lacking Rga6 are viable but slightly shorter and broader than wild type, and cells lacking Rga6 and Rga4 simultaneously are rounded. In these cells, active Cdc42 is observed all around the membrane. These additive effects indicate that both GAPs collaborate in the spatial regulation of active Cdc42. Rga6 localizes to the plasma membrane, forming clusters different from those formed by Rga4. A polybasic region at the Rga6 C-terminus is responsible for its membrane localization. Rga6-GFP fluorescence decreases considerably at the growing tips, and this decrease is dependent on the actin cables. Of note, in the absence of Rga6, the amplitude of active Cdc42 oscillations at the tips decreases, and less GTP-Cdc42 accumulates at the new end of the cells. We propose that Rga6 collaborates with Rga4 to spatially restrict active Cdc42 at the cell tips and maintain cell dimensions.  相似文献   

10.
Active Cdc42 GTPase, a key regulator of cell polarity, displays oscillatory dynamics that are anticorrelated at the two cell tips in fission yeast. Anticorrelation suggests competition for active Cdc42 or for its effectors. Here we show how 14-3-3 protein Rad24 associates with Cdc42 guanine exchange factor (GEF) Gef1, limiting Gef1 availability to promote Cdc42 activation. Phosphorylation of Gef1 by conserved NDR kinase Orb6 promotes Gef1 binding to Rad24. Loss of Rad24–Gef1 interaction increases Gef1 protein localization and Cdc42 activation at the cell tips and reduces the anticorrelation of active Cdc42 oscillations. Increased Cdc42 activation promotes precocious bipolar growth activation, bypassing the normal requirement for an intact microtubule cytoskeleton and for microtubule-dependent polarity landmark Tea4-PP1. Further, increased Cdc42 activation by Gef1 widens cell diameter and alters tip curvature, countering the effects of Cdc42 GTPase-activating protein Rga4. The respective levels of Gef1 and Rga4 proteins at the membrane define dynamically the growing area at each cell tip. Our findings show how the 14-3-3 protein Rad24 modulates the availability of Cdc42 GEF Gef1, a homologue of mammalian Cdc42 GEF DNMBP/TUBA, to spatially control Cdc42 GTPase activity and promote cell polarization and cell shape emergence.  相似文献   

11.
Cell motility is actuated by a host of intracellular signaling cascades that result in movement of the cell in one direction, even without an external gradient. Phospholipase C-gamma (PLCgamma) has been shown to be important for growth factor-induced lamellipodial protrusion at the front of the cell while Cdc42 has been implicated in both filopodium formation at the leading edge and control of polarity of migrating cells. We asked whether these asymmetries in effector molecules may be linked. When we overexpressed either constitutively active, dominant negative, or GFP-tagged Cdc42, wild-type NR6 fibroblasts lost directionality, as expected. On epidermal growth factor (EGF) exposure these cells produced multiple, transient protrusions in every direction; these extensions failed to result in productive motility. GFP-tagged Cdc42 appeared transiently at edges of newly formed protrusions in EGF-stimulated cells while they moved haphazardly. While PLCgamma is distributed throughout the cell, the ratio of active, tyrosyl-phosphorylated PLCgamma was increased at the leading edge, where phosphatidylinositol (4,5)-bisphosphate (PIP(2)) hydrolysis is concentrated. This co-localization of activities may be due to Cdc42 directing PLCgamma to the cell front, as PLCgamma associated with Cdc42 in an EGF-dependent manner. We conclude that Cdc42 controls cell polarity, likely in part, through its binding to active PLCgamma.  相似文献   

12.
RhoA, Cdc42, and Rac1 are small GTPases that regulate cytoskeletal reorganization leading to changes in cell morphology and cell motility. Their signaling pathways are activated by guanine nucleotide exchange factors and inactivated by GTPase-activating proteins (GAPs). We have identified a novel RhoGAP, BPGAP1 (for BNIP-2 and Cdc42GAP Homology (BCH) domain-containing, Proline-rich and Cdc42GAP-like protein subtype-1), that is ubiquitously expressed and shares 54% sequence identity to Cdc42GAP/p50RhoGAP. BP-GAP1 selectively enhanced RhoA GTPase activity in vivo although it also interacted strongly with Cdc42 and Rac1. "Pull-down" and co-immunoprecipitation studies indicated that it formed homophilic or heterophilic complexes with other BCH domain-containing proteins. Fluorescence studies of epitope-tagged BPGAP1 revealed that it induced pseudopodia and increased migration of MCF7 cells. Formation of pseudopodia required its BCH and GAP domains but not the proline-rich region, and was differentially inhibited by coexpression of the constitutively active mutant of RhoA, or dominant negative mutants of Cdc42 and Rac1. However, the mutant without the proline-rich region failed to confer any increase in cell migration despite the induction of pseudopodia. Our findings provide evidence that cell morphology changes and migration are coordinated via multiple domains in BPGAP1 and present a novel mode of regulation for cell dynamics by a RhoGAP protein.  相似文献   

13.
Metastasis remains the main challenge to overcome for treating ovarian cancers. In this study, we investigate the potential role of the Cdc42 GAP StarD13 in the modulation of cell motility, invasion in ovarian cancer cells. StarD13 depletion does not affect the 2D motility of ovarian cancer cells. More importantly, StarD13 inhibits matrix degradation, invadopodia formation and cell invasion through the inhibition of Cdc42. StarD13 does not localize to mature TKS4-labeled invadopodia that possess matrix degradation ability, while a Cdc42 FRET biosensor, detects Cdc42 activation in these invadopodia. In fact, StarD13 localization and Cdc42 activation appear mutually exclusive in invadopodial structures. Finally, for the first time we uncover a potential role of Cdc42 in the direct recruitment of TKS4 to invadopodia. This study emphasizes the specific role of StarD13 as a narrow spatial regulator of Cdc42, inhibiting invasion, suggesting the suitability of StarD13 for targeted therapy.  相似文献   

14.
Migratory immune cells use intracellular signaling networks to generate and orient spatially polarized responses to extracellular cues. The monomeric G protein Cdc42 is believed to play an important role in controlling the polarized responses, but it has been difficult to determine directly the consequences of localized Cdc42 activation within an immune cell. Here we used subcellular optogenetics to determine how Cdc42 activation at one side of a cell affects both cell behavior and dynamic molecular responses throughout the cell. We found that localized Cdc42 activation is sufficient to generate polarized signaling and directional cell migration. The optically activated region becomes the leading edge of the cell, with Cdc42 activating Rac and generating membrane protrusions driven by the actin cytoskeleton. Cdc42 also exerts long-range effects that cause myosin accumulation at the opposite side of the cell and actomyosin-mediated retraction of the cell rear. This process requires the RhoA-activated kinase ROCK, suggesting that Cdc42 activation at one side of a cell triggers increased RhoA signaling at the opposite side. Our results demonstrate how dynamic, subcellular perturbation of an individual signaling protein can help to determine its role in controlling polarized cellular responses.  相似文献   

15.
Rho family GTPases, particularly Rac1 and Cdc42, are key regulators of cell polarization and directional migration. Adenomatous polyposis coli (APC) is also thought to play a pivotal role in polarized cell migration. We have found that IQGAP1, an effector of Rac1 and Cdc42, interacts directly with APC. IQGAP1 and APC localize interdependently to the leading edge in migrating Vero cells, and activated Rac1/Cdc42 form a ternary complex with IQGAP1 and APC. Depletion of either IQGAP1 or APC inhibits actin meshwork formation and polarized migration. Depletion of IQGAP1 or APC also disrupts localization of CLIP-170, a microtubule-stabilizing protein that interacts with IQGAP1. Taken together, these results suggest a model in which activation of Rac1 and Cdc42 in response to migration signals leads to recruitment of IQGAP1 and APC which, together with CLIP-170, form a complex that links the actin cytoskeleton and microtubule dynamics during cell polarization and directional migration.  相似文献   

16.
Although arsenic is a human carcinogen, the molecular mechanisms of its action remain to be understood. The present study reports that exposure to arsenic induced actin filament reorganization, resulting in lamellipodia and filopodia structures through the activation of Cdc42 in SVEC4-10 endothelial cells. It was also found that arsenic induced the formation of the superoxide anion (O2*) in SVEC4-10 cells. Immunoprecipitation and Western blotting analysis demonstrated that arsenic stimulation induced serine phosphorylation of p47phox, a key component of NADPH oxidase, indicating that arsenic induces O2* formation through NADPH oxidase activation. Inhibition of arsenic-induced actin filament reorganization by either overexpression of a dominant negative Cdc42 or pretreatment of an actin filament stabilizing regent, jasplakinolide, abrogated arsenic-induced NADPH oxidase activation, showing that the activation of NADPH oxidase was regulated by Cdc42-mediated actin filament reorganization. This study also showed that overexpression of a dominant negative Rac1 was sufficient to abolish arsenic-induced O2*- production, implying that Rac1 activities are required for Cdc42-mediated NADPH oxidase activation in response to arsenic stimulation. Furthermore, arsenic stimulation induced cell migration, which can be inhibited by the inactivation of either Cdc42 or NADPH oxidase. Taken together, the results indicate that arsenic is able to activate NADPH oxidase through Cdc42-mediated actin filament reorganization, leading to the induction of an increase in cell migration in SVEC4-10 endothelial cells.  相似文献   

17.
BACKGROUND: Tumor cells can move in a three-dimensional (3D) environment in either mesenchymal-type or amoeboid modes. In mesenchymal-type movement, cells have an elongated morphology with Rac-induced protrusions at the leading edge. Amoeboid cells have high levels of actomyosin contractility, and movement is associated with deformation of the cell body through the matrix without proteolysis. Because signaling pathways that control the activation of GTPases for amoeboid movement are poorly understood, we sought to identify regulators of amoeboid movement by screening an siRNA library targeting guanine nucleotide exchange factors (GEFs) for Rho-family GTPases. RESULTS: We identified DOCK10, a Cdc42 GEF, as a key player in amoeboid migration; accordingly, we find that expression of activated Cdc42 induces a mesenchymal-amoeboid transition and increases cell invasion. Silencing DOCK10 expression promotes conversion to mesenchymal migration and is associated with decreased MLC2 phosphorylation and increased Rac1 activation. Consequently, abrogating DOCK10 and Rac1 expression suppresses both amoeboid and mesenchymal migration and results in decreased invasion. We show that the Cdc42 effectors N-WASP and Pak2 are required for the maintenance of the rounded-amoeboid phenotype. Blocking Cdc42 results in loss of mesenchymal morphology, arguing that Cdc42 is also involved in mesenchymal morphology through different activation and effector pathways. CONCLUSIONS: Previous work has identified roles of Rho and Rac signaling in tumor cell movement, and we now elucidate novel roles of Cdc42 signaling in amoeboid and mesenchymal movement and tumor cell invasion.  相似文献   

18.
The role of Cdc42 and its regulation during cytokinesis is not well understood. Using biochemical and imaging approaches in budding yeast, we demonstrate that Cdc42 activation peaks during the G1/S transition and during anaphase but drops during mitotic exit and cytokinesis. Cdc5/Polo kinase is an important upstream cell cycle regulator that suppresses Cdc42 activity. Failure to down-regulate Cdc42 during mitotic exit impairs the normal localization of key cytokinesis regulators—Iqg1 and Inn1—at the division site, and results in an abnormal septum. The effects of Cdc42 hyperactivation are largely mediated by the Cdc42 effector p21-activated kinase Ste20. Inhibition of Cdc42 and related Rho guanosine triphosphatases may be a general feature of cytokinesis in eukaryotes.  相似文献   

19.
Cell migration is a common cellular process in angiogenesis and tumor metastasis. Rudhira/BCAS3 (Breast Cancer Amplified Sequence 3) is a conserved protein expressed in the embryonic vasculature and malignant tumors. Here, we show for the first time that Rudhira plays an active role in directional cell migration. Rudhira depletion in endothelial cells inhibits Matrigel-induced tube formation and retards healing of wounded cell monolayers. We demonstrate that during wound healing, Rudhira rapidly re-localizes and promotes Cdc42 activation and recruitment to the leading edge of migrating cells. Rudhira deficient cells show impaired downstream signaling of Cdc42 leading to dramatic changes in actin organization and classic cell polarity defects such as loss of microtubule organizing center (MTOC) and Golgi re-orientation. Biochemical assays and co-localization studies show that Rudhira interacts with microtubules as well as intermediate filaments. Thus, Rudhira could control directional cell migration and angiogenesis by facilitating crosstalk between cytoskeletal elements.  相似文献   

20.
Establishment of cell polarity in animal and fungal cells involves localization of the conserved Rho-family guanosine triphosphatase, Cdc42, to the cortical region destined to become the “front” of the cell. The high local concentration of active Cdc42 promotes cytoskeletal polarization through various effectors. Cdc42 accumulation at the front is thought to involve positive feedback, and studies in the budding yeast Saccharomyces cerevisiae have suggested distinct positive feedback mechanisms. One class of mechanisms involves localized activation of Cdc42 at the front, whereas another class involves localized delivery of Cdc42 to the front. Here we show that Cdc42 activation must be localized for successful polarity establishment, supporting local activation rather than local delivery as the dominant mechanism in this system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号