首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We show for the first time that normal human pulmonary alveolar macrophages (PAM) markedly enhance their basal rate of the production of [3H]-1,25(OH)2D3 when cultured in the presence of recombinant gamma-interferon (gamma-IFN). The rate of conversion of [3H]-25(OH)D3 to [3H]-1,25(OH)2D3 was dose-dependent in a linear fashion. A maximal production of 1,25(OH)2D3 by PAM occurred after exposure of PAM to gamma-IFN for one day. This maximum plateau-level was sustained for at least five days. The authenticity of the putative 1,25(OH)2D3 obtained from PAM was tested by demonstrating the exact comigration of [3H]-1,25(OH)2D3 with chemically synthesized 1,25(OH)2D3 in four different HPLC-systems.  相似文献   

2.
In this study the relationship between cell binding of phorbol 12,13-dibutyrate (PDBu) and induction of differentiation by 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) was examined. Binding of [3H]PDBu increased within 12 h of 1,25-(OH)2D3 treatment, and a 60-130% increase in [3H]PDBu receptor levels was observed within 24 h. By 48 h, however, [3H]PDBu binding was not different from control. Scatchard analysis of [3H]PDBu binding showed no statistical differences in Kd value (Kd approximately equal to 30 nM) between 1,25-(OH)2D3-treated and control cells 22 h post-treatment; however, a 2-fold increase in Bmax was observed in treated (338 +/- 24 pmol/10(9) cells) compared to control cultures (170 +/- 14 pmol/10(9) cells). Stimulation of [3H]PDBu binding was dependent on 1,25-(OH)2D3 concentrations over a range of 1-100 nM. Homogenates from 1,25-(OH)2D3-treated HL-60 cells also demonstrated an increase (70%) in [3H]PDBu binding to the Ca2+/phospholipid-dependent enzyme protein kinase C as assessed by incubation of cell homogenates with [3H]PDBu in the presence of saturating phosphatidylserine and calcium concentrations. This suggests that the increase in [3H]PDBu binding cannot be entirely explained by modulation of the latter two agents. Cycloheximide (5 microM), an inhibitor of protein synthesis, ablated the 1,25-(OH)2D3-stimulated increase in [3H]PDBu binding to intact HL-60 cells. These data demonstrate that an increase in [3H]PDBu binding occurs early in the course of 1,25-(OH)2D3-induced differentiation, results from an increased number of [3H]PDBu-binding site, and is dependent on protein synthesis.  相似文献   

3.
W Wang  E Lewin  K Olgaard 《Steroids》1999,64(10):726-734
Results from our lab have shown previously that parathyroid hormone (PTH) is not the key factor in the rapid regulation of plasma Ca2+. The possible role of 1,25(OH)2D3 in the rapid minute-to-minute regulation of plasma Ca2+, as addressed by a possible rapid non-genomic action of 1,25(OH)2D3, was therefore studied in vivo in rats. The rapid calcemic recovery from induction of hypocalcemia by a brief EGTA infusion was examined in vitamin D-depleted rats with intact parathyroid glands and in vitamin D depleted rats 1 h after parathyroidectomy (PTX). The influence of different levels of plasma 1,25(OH)2D3 on the rapid calcemic recovery from hypocalcemia was examined in PTX rats treated with 1,25(OH)2D3 for two days at two different doses of 0.2 microg/day, 0.05 microg/day or vehicle, and in PTX rats being BNX for two days, as well. Additionally, the long-term effect of 1,25(OH)2D3 on plasma Ca2+ homeostasis was examined. Plasma Ca2+ recovered significantly (P<0.05) 10 min after discontinuing EGTA in vitamin D-depleted rats with or without parathyroid glands. Plasma Ca2+ increased significantly (P<0.05) and at the same rate after induction of hypocalcemia in PTX rats with different levels of plasma 1,25(OH)2D3. The final levels of plasma Ca2+ obtained were set by 1,25(OH)2D3 in a dose-related manner. 1,25(OH)2D3 did not affect the rapid calcemic recovery from EGTA induced hypocalcemia, but only had an effect on the long-term plasma Ca2+ homeostasis in the rat.  相似文献   

4.
The binding of 1 alpha,25-dihydroxy (26,27-methyl-[3H]) cholecalciferol ([3H]1,25-(OH)2D3) to its receptor in cytosol of the anterior pituitary cells was examined in hyperthyroid- and hypothyroid rats, as well as in normal rats. The binding capacity increased by 41% in L-Thyroxine-treated hyperthyroid rats and decreased by 49% in propylthiouracil-ingested hypothyroid rats as compared with normal control rats, whereas the affinity of the receptor for [3H]-1,25(OH)2D3 showed no difference among these 3 animal groups. These findings indicate that the number of 1,25(OH)2D3 receptors in the pituitary may be regulated by thyroid hormone, and further suggest that 1,25-(OH)2D3 may play some role in regulating functions of the anterior pituitary.  相似文献   

5.
The effect of 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) on phospholipid metabolism was examined in clonal rat osteogenic sarcoma cells, UMR 106, of osteoblastic phenotype. Treatment of UMR 106 cells with 10(-8)M 1,25-(OH)2D3 for 48 h caused an increase in [14C]serine incorporation into phosphatidylserine (PS) and a decrease in [3H]ethanolamine, [3H]linositol, and [14C]choline incorporation into phosphatidylethanolamine (PE), phosphatidylinositol, and phosphatidylcholine, respectively; the decrease in [3H]ethanolamine incorporation into PE was the largest. The total contents of phospholipids were similarly affected by 10(-8)M 1,25-(OH)2D3 treatment, suggesting that the effects of 1,25-(OH)2D3 are due largely to alterations in the synthesis of these phospholipids. The effects of 1,25-(OH)2D3 were evident at 10(-10) M 1,25-(OH)2D3, and 10(-8)M 1,25-(OH)2D3 caused a maximal stimulation of [14C]PS synthesis (167% of control) and a maximal reduction in the [3H]PE synthesis (41% of control). The [14C]PS/[3H]PE ratio increased gradually and reached a maximum after 70 h of treatment with 10(-8)M 1,25-(OH)2D3. When the cells were cultured in calcium-free medium containing 0.5 mM EGTA or when 5 microM cycloheximide was added to the medium, the effect of 1,25-(OH)2D3 on phospholipid metabolism was almost completely inhibited. Neither 25-hydroxyvitamin D3 nor 24,25-dihydroxyvitamin D3 caused significant changes in phospholipid metabolism. These results suggest that 1,25-(OH)2D3 alters phospholipid metabolism by enhancing PS synthesis through a calcium-dependent stimulation of the base exchange reaction of serine with other phospholipids and that the effect of 1,25-(OH)2D3 requires the synthesis of new proteins. Because PS is thought to be important for apatite formation and bone mineralization by binding calcium and phosphate to form calcium-PS-phosphate complexes, the present data suggest that 1,25-(OH)2D3 may stimulate bone mineralization by a direct effect on osteoblasts, stimulating PS synthesis.  相似文献   

6.
Using [3H]-26,26,26,27,27,27-hexafluoro-1,25-dihydroxyvitamin D3 (F6-1,25-(OH)2D3), we have examined its ability to bind to the 1,25-(OH)2D3 receptor, and the ability of the resulting complex to bind DNA. The binding sites for [3H]F6-1,25-(OH)2D3 in the chick intestinal receptor represented a limited number of saturable sites for which 1,25-(OH)2D3 competes. 1,25-Dihydroxyvitamin D3 is three times more active than F6-1,25-(OH)2D3 in displacing [3H]F6-1,25-(OH)2D3. By affinity chromatography using DNA-Sephadex, the [3H]F6-1,25-(OH)2D3 receptor complex eluted from the column in a single peak at 0.14 M KCl, while [3H]-1,25-(OH)2D3 receptor complex eluted at 0.13 M KCl. These results indicate that F6-1,25-(OH)2D3 and 1,25-(OH)2D3 recognize the same binding site of the receptor and that the F6-1,25-(OH)2D3 receptor complex binds DNA more tightly than the 1,25-(OH)2D3 receptor complex. We suggest that the higher binding affinity for DNA may contribute to the greater biological activity of F6-1,25-(OH)2D3.  相似文献   

7.
Whole cell 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) receptor (VDR) binding assays, which measure VDR in the presence of the metabolic machinery of the cell, were used in conjunction with a cytosol binding assay for VDR to determine if self-induced metabolism of 1,25-(OH)2D3 limits VDR occupancy, total VDR levels, and target cell responsiveness. Treatment of cells with 0.5 nM 1,25-(OH)2[3H]D3 for 16 h results in up-regulation of total cell VDR from 82 to 170 fmol/mg protein as measured in a cytosol binding assay. Conversely, whole cell binding assays of VDR showed a 1,25-(OH)2D3-mediated apparent down-regulation of VDR from 90 to 40 fmol/mg protein. Scatchard analysis using the cytosol binding assay demonstrated that 1,25-(OH)2D3 treatment increased total cell VDR from 93 to 154 fmol/mg protein. In contrast, Scatchard analysis with the whole cell binding assay demonstrated that 1,25-(OH)2D3 treatment resulted in reduction in total cell VDR from 100 to 64 fmol/mg protein. Initial Kd estimates with the whole cell binding assay suggested that 1,25-(OH)2D3 treatment resulted in a reduction in VDR Kd from 0.6 to 6.2 nM. This apparent reduction in the affinity of VDR for 1,25-(OH)2D3 was due to degradation of free 1,25-(OH)2[3H]D3 which occurred during whole cell saturation assay. Competitive inhibitors of 1,25-(OH)2D3 metabolism were found to reverse the apparent receptor down-regulation observed in whole cell binding assays of treated cells. In addition, the presence of competitive inhibitors amplified responses of cells to 1,25-(OH)2[3H]D3 treatment as measured by an increased occupancy of VDR by 1,25-(OH)2[3H]D3 and increased up-regulation of VDR over that observed without metabolism inhibitors. These data demonstrate that self-induced target tissue deactivation of 1,25-(OH)2D3 regulates 1,25-(OH)2D3 occupancy of VDR and ultimately the biopotency of 1,25-(OH)2D3 in target cells.  相似文献   

8.
1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) increases synthesis of heat shock proteins in monocytes and U937 cells and protects these cells from thermal injury. We examined whether 1,25-(OH)2D3 would also modulate the susceptibility of U937 cells to H2O2-induced oxidative stress. Cell viability was assessed by trypan blue exclusion and [3H]thymidine incorporation into DNA. Prior incubation for 24 h with 1,25-(OH)2D3 (25 pM or higher) unexpectedly increased H2O2 toxicity. Since cellular Ca2+ may be a mediator of cell injury we investigated effects of altering extracellular Ca2+ ([Ca2+]e) on 1,25-(OH)2D3-enhanced H2O2 toxicity as well as effects of 1,25-(OH)2D3 and H2O2 on cytosolic free Ca2+ concentration ([Ca2+]f). Basal [Ca2+]f in medium containing 1.5 mM Ca as determined by fura-2 fluorescence was higher in 1,25-(OH)2D3-pretreated cells than control cells (137 versus 112 nM, P less than 0.005). H2O2 induced a rapid increase in [Ca2+]f (to greater than 300 nM) in both 1,25-(OH)2D3-treated and control cells, which was prevented by a reduction in [Ca2+]e to less than basal [Ca2+]f. The 1,25(OH)2D3-induced increase in H2O2 toxicity was also prevented by preincubation with 1,25-(OH)2D3 in Ca2+-free medium or by exposing the cells to H2O2 in the presence of EGTA. Preexposure of cells to 45 degrees C for 20 min, 4 h earlier, partially prevented the toxic effects of H2O2 particularly in 1,25-(OH)2D3-treated cells, even in the presence of physiological levels of [Ca2+]e. Thus 1,25-(OH)2D3 potentiates H2O2-induced injury probably by increasing cellular Ca2+ stores. The 1,25-(OH)2D3-induced amplification of the heat shock response likely represents a mechanism for counteracting the Ca2+-associated enhanced susceptibility to oxidative injury due to 1,25-(OH)2D3.  相似文献   

9.
The effect of 24,25-dihydroxyvitamin D3 [24,25(OH)2D3] on 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] metabolism was examined in rats fed on a low-calcium diet. These rats exhibit hypocalcaemia, high urinary cyclic AMP excretion, a markedly elevated serum 1,25(OH)2D concentration and low serum concentrations of both 24,25(OH)2D and 25(OH)D. When the rats are treated orally with 1, 5 or 10 micrograms of 24,25(OH)2D3/100 g every day, there is a dramatic decrease in serum 1,25(OH)2D concentration in a dose-dependent manner concomitant with an increase in serum 24,25(OH)2D concentration. Serum calcium concentration and urinary cyclic AMP excretion are not significantly affected by the 24,25(OH)2D3 treatment, which suggests that parathyroid function is not affected by the 24,25(OH)2D3 treatment. The 25(OH)D3 1 alpha-hydroxylase activity measured in kidney homogenates is markedly elevated in rats on a low-calcium diet but is not affected by any doses of 24,25(OH)2D3. In contrast, recovery of intravenously injected [3H]1,25(OH)2D3 in the serum is decreased in 24,25(OH)2D3-treated rats. Furthermore, when [3H]1,25(OH)2D3 is incubated in vitro with kidney or intestinal homogenates of 24,25(OH)2D3-treated rats there is a decrease in the recovery of radioactivity in the total lipid extract as well as in the 1,25(OH)2D3 fraction along with an increase in the recovery of radioactivity in the water-soluble phase. These results are consistent with the possibility that 24,25(OH)2D3 has an effect on 1,25(OH)2D3 metabolism, namely that of enhancing the degradation of 1,25(OH)2D3. However, because a considerable proportion of the injected 24,25(OH)2D3 is expected to be converted into 1,24,25(OH)3D3 by renal 1 alpha-hydroxylase in 24,25(OH)2D3-treated rats, at least a part of the decrease in serum 1,25(OH)2D concentration may be due to a competitive inhibition by 24,25(OH)2D3 of the synthesis of 1,25(OH)2D3 from 25(OH)D3. Thus the physiological importance of the role of 24,25(OH)2D3 in regulating the serum 1,25(OH)2D concentration as well as the mechanism and metabolic pathway of degradation of 1,25(OH)2D3 remain to be clarified.  相似文献   

10.
A group of growing dogs supplemented with cholecalciferol (vitamin D(3); HVitD) was studied vs. a control group (CVitD; 54,000 vs. 470 IU vitamin D(3)/kg diet, respectively) from 3 to 21 wk of age. There were no differences in plasma levels of P(i) and growth-regulating hormones between groups and no signs of vitamin D(3) intoxication in HVitD. For the duration of the study in HVitD vs. CVitD, plasma 25-hydroxycholecalciferol levels increased 30- to 75-fold; plasma 24,25-dihydroxycholecalciferol levels increased 12- to 16-fold and were accompanied by increased renal 24-hydroxylase gene expression, indicating increased renal 24-hydroxylase activity. Although the synthesis of 1,25-dihydroxycholecalciferol [1,25(OH)(2)D(3)] was increased in HVitD vs. CVitD (demonstrated by [(3)H]1,25(OH)(2)D(3) and increased renal 1alpha-hydroxylase gene expression), plasma 1,25(OH)(2)D(3) levels decreased by 40% as a result of the even more increased metabolic clearance of 1,25(OH)(2)D(3) (demonstrated by [(3)H]1,25(OH)(2)D(3) and increased gene expression of intestinal and renal 24-hydroxylase). A shift of the Ca set point for parathyroid hormone to the left indicated increased sensitivity of the chief cells. Effective counterbalance was provided by hypoparathyroidism, hypercalcitoninism, and the key regulator 24-hydroxylase, preventing the development of vitamin D(3) toxicosis.  相似文献   

11.
The rapid, nongenomic effects of 1alpha,25-dihydroxyvitamin D3 (1alpha,25-(OH)2D3 have been related to a 1,25D3-membrane associated, rapid response steroid binding protein or 1,25D3-[MARRS]bp, with a molecular weight of 65 kDa, in several tissues and species. Currently, no information is available concerning the nongenomic responses to 1alpha,25-(OH)2D3 in dental tissues. In order to investigate the expression of 1,25D3-[MARRS]bp in dental cells, in the presence or absence of 1alpha,25-(OH)2D3, we have used rabbit polyclonal antibodies directed against the N-terminus of the 1,25D3-[MARRS]bp (Ab099) that recognizes the 1alpha,25-(OH)2D3 binding protein in chick intestinal basolateral membranes and a mouse odontoblast-like cell line (MO6-G3). Western blotting and flow cytometric analyses with Ab099 specifically detected 1,25D3-[MARRS]bp in MO6-G3 cells. Moreover, 1,25D3-[MARRS]bp was up-regulated, in vivo, in differentiated dental cells. Electron microscopic analysis confirmed the plasma membrane localization of this binding protein and also showed its intracellular presence. Incubation of MO6-G3 cells with different doses of 1alpha,25-(OH)2D3 for 36 h resulted in an inhibition of 1,25D3-[MARRS]bp expression with a maximal effect at 50 nM steroid. In addition, the culture media of MO6-G3 cells contains immunoreactive 1,25D3-[MARRS]bp. Immunogold positive membrane vesicle-like structures are present in the extracellular matrix of MO6-G3 cells. Altogether, these results indicate that the 1,25D3-[MARRS]bp expression in MO6-G3 cells is modulated by 1alpha,25-(OH)2D3. In conclusion, this 1alpha,25-(OH)2D3 binding protein could play an important role in the rapid, nongenomic responses to 1alpha,25-(OH)2D3 in dental cells.  相似文献   

12.
A sensitive radioreceptor assay has been used to measure in vitro 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) synthesis in vitamin D-replete rats. Incubation of kidney cortical slices with 25-hydroxyvitamin D3 produced a product which co-migrated on high performance liquid chromatography with authentic 1,25(OH)2D3 in two different solvent systems and displaced 1,25(OH)2D3 from its intestinal receptor. In addition, mass spectral analysis of the product produced a mass fragmentation consistent with that of authentic 1,25(OH)2D3. Endogenous renal cortical 1,25(OH)2D3 content in phosphate-deprived rats averaged 1.1 +/- 0.3 pmol/g (n = 11), which was significantly greater than the renal cortical 1,25(OH)2D3 content of age-matched rats eating a normal diet which averaged 0.44 +/- 0.21 pmol/g (n = 8, p less than 0.001). After incubation, net 1,25(OH)2D3 synthesis in renal slices from phosphate-deprived rats averaged 51 pmol/g/h, about 13-fold greater than the mean of 3.8 pmol/g/h observed in renal slices from rats eating the normal diet. These results indicate that the elevated plasma 1,25(OH)2D3 levels observed in rats during dietary phosphate deprivation are due to increased renal synthesis of the hormone.  相似文献   

13.
1,25-Dihydroxyvitamin D3 (1,25-(OH)2D3) induces differentiation of a human promyelocytic leukemia cell line, HL-60, into monocytes/macrophages, and 25-hydroxyvitamin D3- and 1,25-(OH)2D3-24-hydroxylase activities in HL-60 mitochondria via a steroid-hormone receptor mechanism. Dibutyryl cyclic adenosine monophosphate (dbcAMP), a granulocyte inducer, significantly augmented the differentiation-inducing effect of 1,25-(OH)2D3 along the monocyte/macrophage pathway. Furthermore, dbcAMP significantly potentiated the effect of 1,25-(OH)2D3 on HL-60 cells to hydroxylate 1,25-(OH)2[26,27-3H]D3 to form 1,24,25-(OH)3[26,27-3H]D3. DbcAMP seemed to augment the effect of 1,25-(OH)2D3 in part through upregulation of the 1,25-(OH)2D3 receptor, because 10(-7) M dbcAMP increased 1,25-(OH)2D3 receptor levels approximately 2.3-fold, which was similar to a 1.9-fold augmentation by the same concentrations of dbcAMP of 1,25-(OH)2D3-induced cell characteristics to hydroxylate C-24 of 1,25-(OH)2[26,27-3H]D3. However, dbcAMP is also known to enhance HL-60 cell differentiation caused by other differentiation inducers. We have established another HL-60 clone which acquires resistance to 1,25-(OH)2D3 in the induction of cell differentiation by a defect at the postreceptor step, as reflected by resistance to other differentiation inducers, such as retinoic acid and dimethyl sulfoxide. Even in this resistant clone, dbcAMP significantly enhanced the differentiation-inducing effect of 1,25-(OH)2D3. Of interest, this clone showed resistance to dbcAMP in the induction of cell differentiation. Furthermore, we have demonstrated that intracellular cAMP levels were significantly lower in uremic serum-treated cells than in cells treated with normal human serum and that a significant positive correlation was found between intracellular cAMP levels and 1,25-(OH)2D3-induced cell differentiation. These data indicated that the intracellular cAMP level is one of the major determinants of 1,25-(OH)2D3-induced HL-60 cell differentiation and that dbcAMP could enhance the effects of 1,25-(OH)2D3 on HL-60 cells not only by increasing 1,25-(OH)2D3 receptor levels but also at the postreceptor step.  相似文献   

14.
The possible contribution of catecholamines and vitamin D3 metabolites to the high plasma calcitonin (CT) levels in suckling baby rats is unknown. So, in vivo and in vitro (using a perifusion system) effects of beta-adrenergic agents and vitamin D3 metabolites on CT release were studied in the rat during the postnatal development. In 13-day-old rats, the increase in plasma CT levels induced by isoproterenol injection (0.1 micrograms/kg b.w.) was inhibited by a previous administration of propranolol. A significant decrease in plasma CT levels was observed after propranolol injection in baby rats (0.68 +/- 0.05 ng/ml vs. 0.93 +/- 0.01 ng/ml). A daily injection of 1,25-dihydroxycholecalciferol (1,25-(OH)2D3; 25 pmoles/rat/day during 4 days) induced a marked rise in plasma calcium (16.1 +/- 0.2 mg/dl), and a great decrease in thyroidal CT contents (approximately 70% of control values) in 13-day-old rats while no change was noted with 24,25-dihydroxycholecalciferol (24,25-(OH)2D3). A negative correlation between plasma calcium and thyroidal CT stores was found in suckling and in weaning rats treated with different doses of 1,25-(OH)2D3, suggesting an indirect effect of 1,25-(OH)2D3 on CT secretion. The mobilization of the thyroidal CT content was greater in weaning than in suckling rats in response to a given hypercalcemia. In vitro, 5 X 10(-5) M isoproterenol induced a rapid increase in CT secretion rate while 1,25-(OH)2D3 inhibited the rise in CT release induced by 3.0 mM calcium.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
A consequence of 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) action in kidney is the enhanced production of 24,25-dihydroxyvitamin D3 (24,25-(OH)2D3). We have studied this apparent induction phenomenon in two established mammalian cell lines of renal origin. A porcine kidney cell line, LLC-PK1, was found to possess typical receptors for 1,25-(OH)2D3 which sediment at 3.3 S and bind to immobilized DNA. Saturation analysis of LLC-PK1 cell cytosol revealed an equilibrium binding constant (Kd) for 1,25-(OH)2D3 of 7.8 X 10(-11) M and a concentration of 5400 binding sites/cell. In the presence of serum, intact LLC-PK1 cells also internalize and bind 1,25-(OH)2D3. In contrast, a monkey kidney cell line, LLC-MK2, was found to contain a negligible concentration of the 1,25-(OH)2D3 receptor by all criteria examined. However, both renal cell lines respond to 1,25-(OH)2D3 with a 2- to 20-fold increase in basal levels of 25-hydroxyvitamin D3-24-hydroxylase (24-hydroxylase) activity. Incubation of viable cell suspensions with 25-hydroxy[26,27-3H]vitamin D3 (0.5 microM) at 37 degrees C for 30 min followed by subsequent analysis of lipid extracts via high performance liquid chromatography was carried out to assess 24,25-(OH)2[3H]D3 formation. Enzyme induction was found to be specific for 1,25-(OH)2D3 in both cell lines with half-maximal stimulation of 24-hydroxylase activity observed at 0.2 and greater than or equal to 1.0 nM 1,25-(OH)2D3 in LLC-PK1 and LLC-MK2, respectively. The response in LLC-PK1 was more rapid (1-4 h) than in LLC-MK2 (4-8 h) following 1,25-(OH)2D3 treatment of cultures in situ. In both cell lines, actinomycin D abolished the 1,25-(OH)2D3-dependent increase in 24-hydroxylase activity. Our results suggest that the high affinity 1,25-(OH)2D3 receptor may not be required for 1,25-(OH)2D3-dependent induction of renal 24-hydroxylase activity. Alternatively, LLC-MK2 cells could contain an atypical form of the 1,25-(OH)2D3 receptor protein which retains functionality but escapes detection by standard binding techniques.  相似文献   

16.
The effects of 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3), an active form of vitamin D3, on the metabolism of proteoglycans by an osteoblastic cell line MC3T3-E1 were studied. Cells metabolically labeled with [35S]sulfate and/or [3H]glucosamine synthesized large and small dermatan sulfate proteoglycans and heparan sulfate proteoglycan. The incorporation of [35S]sulfate into proteoglycans for 1 h was reduced by 1,25-(OH)2D3 in a dose-dependent manner with a maximum reduction of 40% obtained at 10(-8)M 1,25-(OH)2D3. This effect was observed for all the proteoglycans with the decrease for the large dermatan sulfate proteoglycan most prominent. Treatment with 1,25-(OH)2D3 did not influence the degree of sulfation nor the molecular size of the glycosaminoglycan chains. Thus, the change in the incorporation of [35S] sulfate reflects net change in the synthesis of proteoglycans. When cells were treated with beta-D-xyloside, 1,25-(OH)2D3 also inhibited net synthesis of dermatan sulfate glycosaminoglycan chains on this exogenous substrate suggesting that it decreases the capacity of the cells for glycosaminoglycan synthesis. The incorporation of [3H]glucosamine into hyaluronic acid was also inhibited up to 70% by 10(-8) M 1,25-(OH)2D3. Treatment with 24,25-dihydroxyvitamin D3 did not cause significant changes in the proteoglycan synthesis. Degradation of proteoglycans associated with the cell layer was enhanced by treatment with 1,25-(OH)2D3 at 10(-8) M. Proteoglycans exogenously added to the culture were also degraded with a cell-mediated process which was stimulated by treatment with 10(-8) M 1,25-(OH)2D3. These results demonstrate that 1,25-(OH)2D3 reduces the synthesis and stimulates the degradation of proteoglycans in osteoblastic cells in culture.  相似文献   

17.
We confirmed our previous observation that duodenal Ca2+ absorption and serum 1,25-dihydroxyvitamin D (1,25-(OH)2D) levels declined concurrently in old (24 months old) rats as compared to young (6 months old) rats. It is well known that 1,25-dihydroxyvitamin D-3 (1,25-(OH)2D3) expresses its action after binding to specific receptor molecules. In this paper, we compared certain properties of rat duodenal 1,25-(OH)2D3 receptors from old and young animals. Receptor preparations were incubated with [3H]1,25-(OH)2D3 to quantitate the number of unoccupied and total receptor sites and showed that total and unoccupied receptor sites decreased by 22 and 16%, respectively in old rats. Endogenously occupied sites were reduced by 43% in duodenum of the old rat and, consequently, the percentage of receptor occupancy also declined. Age did not affect the dissociation constant (KD) of 1,25-(OH)2D3 from the receptor; the sedimentation coefficient (3.3 S) of the tritiated 1,25-(OH)2D3-receptor complex in sucrose density centrifugation; or its affinity for DNA. The data are consistent with the hypothesis that the age-related decline in Ca2+ absorption in the intestine may be due, in part, to the decrement in the circulating level of 1,25-(OH)2D and a reduction of intestinal 1,25-(OH)2D3 receptor occupancy status.  相似文献   

18.
19.
The steroid hormone 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] rapidly stimulates the uptake of phosphate in isolated chick intestinal cells, while the steroid 24,25-dihydroxyvitamin D3 [24,25(OH)2D3] inhibits the rapid stimulation by 1,25(OH)2D3. Earlier work in this laboratory has indicated that a cellular binding protein for 24,25(OH)2D3 is the enzyme catalase. Since binding resulted in decreased catalase activity and increased H2O2 production, studies were undertaken to determine if pro-oxidant conditions mimicked the inhibitory actions of 24,25(OH)2D3, and anti-oxidant conditions prevented the inhibitory actions of 24,25(OH)2D3. An antibody against the 24,25(OH)2D3 binding protein was found to neutralize the inhibitory effect of the steroid on 1,25(OH)2D3-mediated 32P uptake. Incubation of cells in the presence of 50 nM catalase was also found to alleviate inhibition. In another series of experiments, isolated intestinal epithelial cells were incubated as controls or with 1,25(OH)2D3, each in the presence of the catalase inhibitor 3-amino-1,2,4-triazole, or with 1,25(OH)2D3 alone. Cells exposed to hormone alone again showed an increased accumulation of 32P, while cells treated with catalase inhibitor and hormone had uptake levels that were indistinguishable from controls. We tested whether inactivation of protein kinase C (PKC), the signaling pathway for 32P uptake, occurred. Incubation of cells with phorbol-13-myristate (PMA) increased 32P uptake, while cells pretreated with 50 microM H2O2 prior to PMA did not exhibit increased uptake. Likewise, PMA significantly increased PKC activity while cells exposed to H2O2 prior to PMA did not. It is concluded that catalase has a central role in mediating rapid responses to steroid hormones.  相似文献   

20.
The yolk sac of the pregnant rat which functions as a true placenta is a target organ for vitamin D. This tissue can hydroxylate in position 24 both 25-hydroxy- and 1,25-dihydroxyvitamin D3 (25-OHD3 and 1,25-(OH)2D3). The present report describes an in vitro model for the study of 1,25-(OH)2D3 action on the further metabolism of 25-OH[3H]D3 and 1,25-(OH)2[3H]D3 by yolk sac. The tissue explants were preincubated with 1,25-(OH)2D3 for 18 h in a serum-free culture medium. Physiological concentrations of 1,25-(OH)2D3 were the most effective in stimulating (7.5-fold) the 1,25-(OH)2D3 24-hydroxylase, while the 25-OHD3 24-hydroxylase stimulation (4-fold) required a 1,25-(OH)2D3 concentration of 10(-7) M. The stimulating effect of 1,25-(OH)2D3 on the 1,25-(OH)2D3 24-hydroxylase was temperature-dependent, and, since its was inhibited by actinomycin D and cycloheximide, required de novo protein synthesis. 1,24,25-(OH)3D3, 25-OHD3, and 24,25-(OH)2D3 were 10- to 1000-fold less potent than 1,25-(OH)2D3 in inducing the 1,25-(OH)2D3 hydroxylase. Our results strongly suggest that 1,25-(OH)2D3 regulated the 1,25-(OH)2D3 24-hydroxylase by a receptor-mediated process. Furthermore, 1,25-(OH)2D3 at 10(-9) M induced within 4 h an increase of its own degradation and the formation of an as yet unidentified major 1,25-(OH)2[3H]D3 metabolite. We conclude that the yolk sac can participate in the regulation of 1,25-(OH)2D3 concentration in the fetoplacental unit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号