首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Endoplasmic reticulum (ER)-associated degradation (ERAD) is responsible for the ubiquitin-mediated destruction of both misfolded and normal ER-resident proteins. ERAD substrates must be moved from the ER to the cytoplasm for ubiquitination and proteasomal destruction by a process called retrotranslocation. Many aspects of retrotranslocation are poorly understood, including its generality, the cellular components required, the energetics, and the mechanism of transfer through the ER membrane. To address these questions, we have developed an in vitro assay, using the 8-transmembrane span ER-resident Hmg2p isozyme of HMG-CoA reductase fused to GFP, which undergoes regulated ERAD mediated by the Hrd1p ubiquitin ligase. We have now directly demonstrated in vitro retrotranslocation of full-length, ubiquitinated Hmg2p-GFP to the aqueous phase. Hrd1p was rate-limiting for Hmg2p-GFP retrotranslocation, which required ATP, the AAA-ATPase Cdc48p, and its receptor Ubx2p. In addition, the adaptors Dsk2p and Rad23p, normally implicated in later parts of the pathway, were required. Hmg2p-GFP retrotranslocation did not depend on any of the proposed ER channel candidates. To examine the role of the Hrd1p transmembrane domain as a retrotranslocon, we devised a self-ubiquitinating polytopic substrate (Hmg1-Hrd1p) that undergoes ERAD in the absence of Hrd1p. In vitro retrotranslocation of full-length Hmg1-Hrd1p occurred in the absence of the Hrd1p transmembrane domain, indicating that it did not serve a required channel function. These studies directly demonstrate polytopic membrane protein retrotranslocation during ERAD and delineate avenues for mechanistic understanding of this general process.The endoplasmic reticulum (ER)2-associated degradation (ERAD) pathway mediates the destruction of numerous integral membrane or lumenal ER-localized proteins (1, 2). ERAD functions mainly in the disposal of misfolded or unassembled proteins but also participates in the physiological regulation of some normal residents of the organelle. This ER-localized degradation pathway has been implicated in a wide variety of normal and pathophysiological processes, including sterol synthesis (3, 4), rheumatoid arthritis (5), fungal differentiation (6), cystic fibrosis (7, 8), and several neurodegenerative diseases (9). Accordingly, there is great impetus to understand the molecular mechanisms that mediate this broadly important route of protein degradation.ERAD proceeds by the ubiquitin-proteasome pathway, by which an ER-localized substrate is covalently modified by the addition of multiple copies of 7.6-kDa ubiquitin to form a multiubiquitin chain that is recognized by the cytosolic 26S proteasome (10, 11). Ubiquitin is added to the substrate by the successive action of three enzymes. The E1 ubiquitin-activating enzyme uses ATP to covalently add ubiquitin to an E2 ubiquitin-conjugating (UBC) enzyme. Ubiquitin is then transferred from the charged E2 to the substrate or the growing ubiquitin chain by the action of an E3 ubiquitin ligase, resulting in a substrate-attached multiubiquitin chain that is recognized by the proteasome, leading to degradation of the ubiquitinated substrate. This is a skeletal picture; in most cases, ancillary factors participate in substrate recognition and transfer of the ubiquitinated substrate to the proteasome (1214).ERAD substrates are either sequestered in the lumen or embedded in the ER membrane with lumenal portions. Thus, a critical step in the ERAD pathway involves transfer of the ERAD substrate to the cytosol for proteasomal degradation by a process referred to as retrotranslocation or dislocation (15). Retrotranslocation requires the hexameric AAA-ATPase called Cdc48p in yeast and p97 in mammals, and it is thought that a protein channel mediates the movement of substrates across the ER membrane. Channel candidates include the derlins (16, 17), the Sec61p anterograde channel (18, 19), or the multispanning domains of the ER ligases themselves (1820).The yeast HRD pathway mediates ERAD of numerous misfolded ER proteins and the physiologically regulated degradation of the Hmg2p isozyme of HMG-CoA reductase, an 8-transmembrane span (8-spanning) integral membrane protein critical for sterol synthesis (3). The integral membrane ER ligase Hrd1p, in conjunction with Hrd3p, is responsible for ubiquitination of Hmg2p. Efficient delivery of ubiquitinated Hmg2p to the proteasome requires the Cdc48p-Ufd1p-Npl4p complex presumably by promoting retrotranslocation of ER-embedded Hmg2p.Due to the requirement for retrotranslocation in all ERAD pathways we have adapted our in vitro assay of Hrd1p-mediated ubiquitination of the normally degraded fusion Hmg2p-GFP to study this ER removal step in ERAD. We have reconstituted Hrd1p-mediated ubiquitination and retrotranslocation of Hmg2p-GFP in vitro (21, 22). We have now directly demonstrated that the entire 8-spanning Hmg2p-GFP protein is removed from the membrane by this process, remaining intact yet soluble after retrotranslocation. The dislocation of intact Hmg2p-GFP required both Cdc48p and hydrolysis of the β–γ bond of ATP. The Ubx2p adaptor protein functioned in a manner consistent with its proposed role in Cdc48p anchoring to the ER. Surprisingly, the Dsk2p/Rad23p proteasomal coupling factors were also required for retrotranslocation. Neither derlins nor Sec61p were implicated in Hmg2p-GFP retrotranslocation by our assay. Furthermore, an engineered substrate based on HMG-CoA reductase underwent ERAD in the complete absence of Hrd1p or Doa10p and in vitro, full-length retrotranslocation, both indicating that the large transmembrane domains of either of these ERAD E3 ligases were not required for membrane extraction. Taken together, these studies define a core set of proteins that can mediate recognition and retrotranslocation of the HRD substrate Hmg2p-GFP and will allow mechanistic analysis along all points of the ERAD pathway.  相似文献   

2.
The A1 chain of the cholera toxin (CT) undergoes retrotranslocation to the cytosol across the endoplasmic reticulum (ER) membrane by hijacking ER-associated degradation (ERAD). In the cytosol the CT A1 chain stimulates adenylyl cyclase. The VCP(Ufd1-Npl4) complex mediates retrotranslocation of emerging ER proteins. While one group reported that VCP is required for CT retrotranslocation, another group concluded the opposite. We show that VCP is dispensable for CT retrotranslocation, however RNAi of either Ufd1 or Npl4 induces an increase in adenylyl cyclase activity induced by CT. RNAi of VCP, Ufd1 or Npl4 did not affect adenylyl cyclase activity induced by forskolin. These findings are coherent with our previous report showing that depletion of Ufd1-Npl4 accelerates ERAD of reporter substrates. To integrate contradictory results we propose a new model, where Ufd1-Npl4 is a negative regulator of retrotranslocation, delaying the retrotranslocation of ERAD substrates independently of its association with VCP.  相似文献   

3.
The mechanism by which misfolded proteins in the endoplasmic reticulum (ER) are retrotranslocated to the cytosol for proteasomal degradation is still poorly understood. Here, we show that importin β, a well established nucleocytoplasmic transport protein, interacts with components of the retrotranslocation complex and promotes ER-associated degradation (ERAD). Knockdown of importin β specifically inhibited the degradation of misfolded ERAD substrates but did not affect turnover of non-ERAD proteasome substrates. Genetic studies and in vitro reconstitution assays demonstrate that importin β is critically required for ubiquitination of mutant α1-antitrypsin, a luminal ERAD substrate. Furthermore, we show that importin β cooperates with Ran GTPase to promote ubiquitination and proteasomal degradation of mutant α1-antitrypsin. These results establish an unanticipated role for importin β in ER protein quality control.  相似文献   

4.
During endoplasmic reticulum–associated degradation (ERAD), misfolded lumenal and membrane proteins in the ER are recognized by the transmembrane Hrd1 ubiquitin ligase complex and retrotranslocated to the cytosol for ubiquitination and degradation. Although substrates are believed to be delivered to the proteasome only after the ATPase Cdc48p/p97 acts, there is limited knowledge about how the Hrd1 complex coordinates with Cdc48p/p97 and the proteasome to orchestrate substrate recognition and degradation. Here we provide evidence that inactivation of Cdc48p/p97 stalls retrotranslocation and triggers formation of a complex that contains the 26S proteasome, Cdc48p/p97, ubiquitinated substrates, select components of the Hrd1 complex, and the lumenal recognition factor, Yos9p. We propose that the actions of Cdc48p/p97 and the proteasome are tightly coupled during ERAD. Our data also support a model in which the Hrd1 complex links substrate recognition and degradation on opposite sides of the ER membrane.  相似文献   

5.
6.
Misfolded proteins in the endoplasmic reticulum (ER) are eliminated by a process known as ER-associated degradation (ERAD), which starts with misfolded protein recognition, followed by ubiquitination, retrotranslocation to the cytosol, deglycosylation, and targeting to the proteasome for degradation. Actions of multisubunit protein machineries in the ER membrane integrate these steps. We hypothesized that regulation of the multisubunit machinery assembly is a mechanism by which ERAD activity is regulated. To test this hypothesis, we investigated the potential regulatory role of the small p97/VCP-interacting protein (SVIP) on the formation of the ERAD machinery that includes ubiquitin ligase gp78, AAA ATPase p97/VCP, and the putative channel Derlin1. We found that SVIP is anchored to microsomal membrane via myristoylation and co-fractionated with gp78, Derlin1, p97/VCP, and calnexin to the ER. Like gp78, SVIP also physically interacts with p97/VCP and Derlin1. Overexpression of SVIP blocks unassembled CD3delta from association with gp78 and p97/VCP, which is accompanied by decreases in CD3delta ubiquitination and degradation. Silencing SVIP expression markedly enhances the formation of gp78-p97/VCP-Derlin1 complex, which correlates with increased degradation of CD3delta and misfolded Z variant of alpha-1-antitrypsin, established substrates of gp78. These results suggest that SVIP is an endogenous inhibitor of ERAD that acts through regulating the assembly of the gp78-p97/VCP-Derlin1 complex.  相似文献   

7.
Proteins that fail to fold in the endoplasmic reticulum (ER) or cannot find a pattern for assembly are often disposed of by a process named ER-associated degradation (ERAD), which involves transport of the substrate protein across the ER membrane (dislocation) followed by rapid proteasome-mediated proteolysis. Different ERAD substrates have been shown to be ubiquitinated during or soon after dislocation, and an active ubiquitination machinery has been found to be required for the dislocation of certain defective proteins. We have previously shown that, when expressed in tobacco (Nicotiana tabacum) protoplasts, the A chain of the heterodimeric toxin ricin is degraded by a pathway that closely resembles ERAD but is characterized by an unusual uncoupling between the dislocation and the degradation steps. Since lysine (Lys) residues are a major target for ubiquitination, we have investigated the effects of changing the Lys content on the retrotranslocation and degradation of ricin A chain in tobacco protoplasts. Here we show that modulating the number of Lys residues does not affect recognition events within the ER lumen nor the transport of the protein from this compartment to the cytosol. Rather, the introduced modifications have a clear impact on the degradation of the dislocated protein. While the substitution of the two Lys residues present in ricin A chain with arginine slowed down degradation, the introduction of four extra lysyl residues had an opposite effect and converted the ricin A chain to a standard ERAD substrate that is disposed via a process in which dislocation and degradation steps are tightly coupled.  相似文献   

8.
Cholera toxin (CT) intoxicates cells by trafficking from the cell surface to the endoplasmic reticulum (ER), where the catalytic CTA1 subunit hijacks components of the ER-associated degradation (ERAD) machinery to retrotranslocate to the cytosol and induce toxicity. In the ER, CT targets to the ERAD machinery composed of the E3 ubiquitin ligase Hrd1-Sel1L complex, in part via the activity of the Sel1L-binding partner ERdj5. This J protein stimulates BiP''s ATPase activity, allowing BiP to capture the toxin. Presumably, toxin release from BiP must occur before retrotranslocation. Here, using loss-and gain-of-function approaches coupled with binding studies, we demonstrate that the ER-resident nucleotide exchange factors (NEFs) Grp170 and Sil1 induce CT release from BiP in order to promote toxin retrotranslocation. In addition, we find that after NEF-dependent release from BiP, the toxin is transferred to protein disulfide isomerase; this ER redox chaperone is known to unfold CTA1, which allows the toxin to cross the Hrd1-Sel1L complex. Our data thus identify two NEFs that trigger toxin release from BiP to enable successful retrotranslocation and clarify the fate of the toxin after it disengages from BiP.  相似文献   

9.
Dislocation of endoplasmic reticulum-associated degradation (ERAD) substrates from the endoplasmic reticulum (ER) lumen to cytosol is considered to occur in a single step that is tightly coupled to proteasomal degradation. Here we show that dislocation of luminal ERAD substrates occurs in two distinct consecutive steps. The first is passage across ER membrane to the ER cytosolic face, where substrates can accumulate as ubiquitin conjugates. In vivo, this step occurs despite proteasome inhibition but requires p97/Cdc48p because substrates remain entrapped in ER lumen and are prevented from ubiquitination in cdc48 yeast strain. The second dislocation step is the release of accumulated substrates to the cytosol. In vitro, this release requires active proteasome, consumes ATP, and relies on salt-removable ER-bound components, among them the ER-bound p97 and ER-bound proteasome, which specifically interact with the cytosol-facing substrates. An additional role for Cdc48p subsequent to ubiquitination is revealed in the cdc48 strain at permissive temperature, consistent with our finding that p97 recognizes luminal ERAD substrates through multiubiquitin. BiP interacts exclusively with ERAD substrates, suggesting a role for this chaperone in ERAD. We propose a model that assigns the cytosolic face of the ER as a midpoint to which luminal ERAD substrates emerge and p97/Cdc48p and the proteasome are recruited. Although p97/Cdc48p plays a dual role in dislocation and is involved both in passage of the substrate across ER membrane and subsequent to its ubiquitination, the proteasome takes part in the release of the substrate from the ER face to the cytosol en route to degradation.  相似文献   

10.
Npl4 is a 67 kDa protein forming a stable heterodimer with Ufd1, which in turn binds the ubiquitous p97/VCP ATPase. According to a widely accepted model, VCPUfd1–Npl4 promotes the retrotranslocation of emerging ER proteins, their ubiquitination by associated ligases, and handling to the 26S proteasome for degradation in a process known as ERAD (ER-associated degradation). Using a series of Npl4 deletion mutants we have revealed that the binding of Ufd1 to Npl4 is mediated by two regions: a conserved stretch of amino acids from 113 to 255 within the zf-Npl4 domain and by the Npl4 homology domain between amino acids 263 and 344. Within the first region, we have identified two discrete subdomains: one involved in Ufd1 binding and one regulating VCP binding. Expression of any one of the mutants failed to induce any changes in the morphology of the ER or Golgi compartments. Moreover, we have observed that overexpression of all the analyzed mutants induced mild ER stress, as evidenced by increased Grp74/BiP expression without associated XBP1 splicing or induction of apoptosis. Surprisingly, we have not observed any accumulation of the typical ERAD substrate αTCR. This favors the model where the Ufd1–Npl4 dimer forms a regulatory gate at the exit from the retrotranslocone, rather than actively promoting retrotranslocation like the p97VCP ATPase.  相似文献   

11.
Nakatsukasa K  Huyer G  Michaelis S  Brodsky JL 《Cell》2008,132(1):101-112
It remains unclear how misfolded membrane proteins are selected and destroyed during endoplasmic reticulum-associated degradation (ERAD). For example, chaperones are thought to solubilize aggregation-prone motifs, and some data suggest that these proteins are degraded at the ER. To better define how membrane proteins are destroyed, the ERAD of Ste6p(*), a 12 transmembrane protein, was reconstituted. We found that specific Hsp70/40s act before ubiquitination and facilitate Ste6p(*) association with an E3 ubiquitin ligase, suggesting an active role for chaperones. Furthermore, polyubiquitination was a prerequisite for retrotranslocation, which required the Cdc48 complex and ATP. Surprisingly, the substrate was soluble, and extraction was independent of a ubiquitin chain extension enzyme (Ufd2p). However, Ufd2p increased the degree of ubiquitination and facilitated degradation. These data indicate that polytopic membrane proteins can be extracted from the ER, and define the point of action of chaperones and the requirement for Ufd2p during membrane protein quality control.  相似文献   

12.
Misfolded proteins in the endoplasmic reticulum (ER) are identified and degraded by the ER-associated degradation pathway (ERAD), a component of ER quality control. In ERAD, misfolded proteins are removed from the ER by retrotranslocation into the cytosol where they are degraded by the ubiquitin-proteasome system. The identity of the specific protein components responsible for retrotranslocation remains controversial, with the potential candidates being Sec61p, Der1p, and Doa10. We show that the cytoplasmic N-terminal domain of a short-lived transmembrane ERAD substrate is exposed to the lumen of the ER during the degradation process. The addition of N-linked glycan to the N terminus of the substrate is prevented by mutation of a specific cysteine residue of Sec61p, as well as a specific cysteine residue of the substrate protein. We show that the substrate protein forms a disulfide-linked complex to Sec61p, suggesting that at least part of the retrotranslocation process involves Sec61p.  相似文献   

13.
Inhibition of p97-dependent protein degradation by Eeyarestatin I   总被引:1,自引:0,他引:1  
Elimination of misfolded proteins from the endoplasmic reticulum (ER) by ER-associated degradation involves substrate retrotranslocation from the ER lumen into the cytosol for degradation by the proteasome. For many substrates, retrotranslocation requires the action of ubiquitinating enzymes, which polyubiquitinate substrates emerging from the ER lumen, and of the p97-Ufd1-Npl4 ATPase complex, which hydrolyzes ATP to dislocate polyubiquitinated substrates into the cytosol. Polypeptides extracted by p97 are eventually transferred to the proteasome for destruction. In mammalian cells, ERAD can be blocked by a chemical inhibitor termed Eeyarestatin I, but the mechanism of EerI action is unclear. Here we report that EerI can associate with a p97 complex to inhibit ERAD. The interaction of EerI with the p97 complex appears to negatively influence a deubiquitinating process that is mediated by p97-associated deubiquitinating enzymes. We further show that ataxin-3, a p97-associated deubiquitinating enzyme previously implicated in ER-associated degradation, is among those affected. Interestingly, p97-associated deubiquitination is also involved in degradation of a soluble substrate. Our analyses establish a role for a novel deubiquitinating process in proteasome-dependent protein turnover.  相似文献   

14.
Ubiquitin E3 ligases are important cellular components for endoplasmic reticulum (ER)-associated degradation due to their role in substrate-specific ubiquitination, which is required for retrotranslocation (dislocation) of most unwanted proteins from the ER to the cytosol for proteasome degradation. However, our understanding of the molecular mechanisms of how E3 ligases confer substrate-specific recognition, and their role in substrate retrotranslocation is limited especially in mammalian cells. mK3 is a type III ER membrane protein encoded by murine gamma herpesvirus 68. As conferred by its N-terminal RING-CH domain, mK3 has E3 ubiquitin ligase activity. In its role as an immune evasion protein, mK3 specifically targets nascent major histocompatibility complex class I heavy chains (HC) for rapid degradation. The mechanism by which mK3 extracts HC from the ER membrane into the cytosol for proteasome-mediated degradation is unknown. Evidence is presented here that HC down-regulation by mK3 is dependent on the p97 AAA-ATPase. By contrast, the kK5 protein of Kaposi's sarcoma-associated herpesvirus is p97-independent despite the fact that it is highly homologous to mK3. mK3 protein was also found in physical association with Derlin1, an ER protein recently implicated in the retrotranslocation of HC by immune evasion protein US11, but not US2, of human cytomegalovirus. The mechanistic implications of these findings are discussed.  相似文献   

15.
Intracellular acting protein exotoxins produced by bacteria and plants are important molecular determinants that drive numerous human diseases. A subset of these toxins, the cytolethal distending toxins (CDTs), are encoded by several Gram-negative pathogens and have been proposed to enhance virulence by allowing evasion of the immune system. CDTs are trafficked in a retrograde manner from the cell surface through the Golgi apparatus and into the endoplasmic reticulum (ER) before ultimately reaching the host cell nucleus. However, the mechanism by which CDTs exit the ER is not known. Here we show that three central components of the host ER associated degradation (ERAD) machinery, Derlin-2 (Derl2), the E3 ubiquitin-protein ligase Hrd1, and the AAA ATPase p97, are required for intoxication by some CDTs. Complementation of Derl2-deficient cells with Derl2:Derl1 chimeras identified two previously uncharacterized functional domains in Derl2, the N-terminal 88 amino acids and the second ER-luminal loop, as required for intoxication by the CDT encoded by Haemophilus ducreyi (Hd-CDT). In contrast, two motifs required for Derlin-dependent retrotranslocation of ERAD substrates, a conserved WR motif and an SHP box that mediates interaction with the AAA ATPase p97, were found to be dispensable for Hd-CDT intoxication. Interestingly, this previously undescribed mechanism is shared with the plant toxin ricin. These data reveal a requirement for multiple components of the ERAD pathway for CDT intoxication and provide insight into a Derl2-dependent pathway exploited by retrograde trafficking toxins.  相似文献   

16.
Endoplasmic Reticulum (ER)-associated degradation (ERAD) discards abnormal proteins synthesized in the ER. Through coordinated actions of ERAD components, misfolded/anomalous proteins are recognized, ubiquitinated, extracted from the ER and ultimately delivered to the proteasome for degradation. It is not well understood how ubiquitination of ERAD substrates is regulated. Here, we present evidence that the deubiquitinating enzyme Ubiquitin-Specific Protease 25 (USP25) is involved in ERAD. Our data support a model where USP25 counteracts ubiquitination of ERAD substrates by the ubiquitin ligase HRD1, rescuing them from degradation by the proteasome.  相似文献   

17.
In eukaryotes, endoplasmic reticulum-associated degradation (ERAD) functions in cellular quality control and regulation of normal ER-resident proteins. ERAD proceeds by the ubiquitin-proteasome pathway, in which the covalent attachment of ubiquitin to proteins targets them for proteasomal degradation. Ubiquitin-protein ligases (E3s) play a crucial role in this process by recognizing target proteins and initiating their ubiquitination. Here we show that Hrd1p, which is identical to Der3p, is an E3 for ERAD. Hrd1p is required for the degradation and ubiquitination of several ERAD substrates and physically associates with relevant ubiquitin-conjugating enzymes (E2s). A soluble Hrd1 fusion protein shows E3 activity in vitro - catalysing the ubiquitination of itself and test proteins. In this capacity, Hrd1p has an apparent preference for misfolded proteins. We also show that Hrd1p functions as an E3 in vivo, using only Ubc7p or Ubc1p to specifically program the ubiquitination of ERAD substrates.  相似文献   

18.
Endoplasmic reticulum-associated degradation (ERAD) is a protein quality control mechanism that eliminates unwanted proteins from the endoplasmic reticulum (ER) through a ubiquitin-dependent proteasomal degradation pathway. gp78 is a previously described ER membrane-anchored ubiquitin ligase (E3) involved in ubiquitination of ER proteins. AAA ATPase (ATPase associated with various cellular activities) p97/valosin-containing protein (VCP) subsequently dislodges the ubiquitinated proteins from the ER and chaperones them to the cytosol, where they undergo proteasomal degradation. We now report that gp78 physically interacts with p97/VCP and enhances p97/VCP-polyubiquitin association. The enhanced association correlates with decreases in ER stress-induced accumulation of polyubiquitinated proteins. This effect is abolished when the p97/VCP-interacting domain of gp78 is removed. Further, using ERAD substrate CD3delta, gp78 consistently enhances p97/VCP-CD3delta binding and facilitates CD3delta degradation. Moreover, inhibition of endogenous gp78 expression by RNA interference markedly increases the levels of total polyubiquitinated proteins, including CD3delta, and abrogates VCP-CD3delta interactions. The gp78 mutant with deletion of its p97/VCP-interacting domain fails to increase CD3delta degradation and leads to accumulation of polyubiquitinated CD3delta, suggesting a failure in delivering ubiquitinated CD3delta for degradation. These data suggest that gp78-p97/VCP interaction may represent one way of coupling ubiquitination with retrotranslocation and degradation of ERAD substrates.  相似文献   

19.
When a protein misfolds in the endoplasmic reticulum (ER), it retrotranslocates to the cytosol and is degraded by the proteasome via a pathway called ER-associated degradation (ERAD). To initiate ERAD, ADP-BiP is often recruited to the misfolded client, rendering it soluble and translocation competent. How the misfolded client is subsequently released from BiP so that it undergoes retrotranslocation, however, remains enigmatic. Here we demonstrate that the ER-resident nucleotide exchange factor (NEF) Grp170 plays an important role during ERAD of the misfolded glycosylated client null Hong Kong (NHK). As a NEF, Grp170 triggers nucleotide exchange of BiP to generate ATP-BiP. ATP-BiP disengages from NHK, enabling it to retrotranslocate to the cytosol. We demonstrate that Grp170 binds to Sel1L, an adapter of the transmembrane Hrd1 E3 ubiquitin ligase postulated to be the retrotranslocon, and links this interaction to Grp170’s function during ERAD. More broadly, Grp170 also promotes degradation of the nonglycosylated transthyretin (TTR) D18G misfolded client. Our findings thus establish a general function of Grp170 during ERAD and suggest that positioning this client-release factor at the retrotranslocation site may afford a mechanism to couple client release from BiP and retrotranslocation.  相似文献   

20.
Carvalho P  Stanley AM  Rapoport TA 《Cell》2010,143(4):579-591
Misfolded, luminal endoplasmic reticulum (ER) proteins are retrotranslocated into the cytosol and degraded by the ubiquitin/proteasome system. This ERAD-L pathway requires a protein complex consisting of the ubiquitin ligase Hrd1p, which spans the ER membrane multiple times, and the membrane proteins Hrd3p, Usa1p, and Der1p. Here, we show that Hrd1p is the central membrane component in ERAD-L; its overexpression bypasses the need for the other components of the Hrd1p complex. Hrd1p function requires its oligomerization, which in wild-type cells is facilitated by Usa1p. Site-specific photocrosslinking indicates that, at early stages of retrotranslocation, Hrd1p interacts with a substrate segment close to the degradation signal. This interaction follows the delivery of substrate through other ERAD components, requires the presence of transmembrane segments of Hrd1p, and depends on both the ubiquitin ligase activity of Hrd1p and the function of the Cdc48p ATPase complex. Our results suggest a model for how Hrd1p promotes polypeptide movement through the ER membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号