首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A newly designed molecularly imprinted polymer (MIP) material was fabricated and successfully utilized as recognition element to develop a quantum dots (QDs) based MIP-coated composite for selective recognition of the template cytochrome c (Cyt). The composites were synthesized by sol-gel reaction (imprinting process). The imprinting process resulted in an increased affinity of the composites toward the corresponding template. The fluorescence of MIP-coated QDs was stronger quenched by the template versus that of non-imprinted polymer (NIP)-coated QDs, which indicated the composites could recognize the corresponding template. The results of specific experiments further exhibited the recognition ability of the composites. Under optimum conditions, the linear range for Cyt is from 0.97 μM to 24 μM, and the detection limit is 0.41 μM. The new composites integrated the high selectivity of molecular imprinting technology and fluorescence property of QDs and could convert the specific interactions between imprinted cavities and corresponding template to the obvious changes of fluorescence signal. Therefore, a simple and selective sensing system for protein recognition has been realized.  相似文献   

2.
The development of fluorescent sensors for organic molecules is of great practical importance in chemical, biological, and pharmaceutical sciences. Using -tryptophan as an example, we have studied a new way of making polymeric fluorescent sensors using template polymerization or molecular imprinting techniques. The fluorescent polymers were prepared using functional monomers with a fluorescent probe attached to it. The fluorescence of this polymer could be quenched by 4-nitrobenzaldehyde. Addition of the template molecules, -tryptophan, increased the fluorescence intensity of the imprinted polymer/quencher mixture in a concentration-dependent fashion, presumably through the displacement of the quencher from the binding sites by -tryptophan. This fluorescence intensity change upon mixing with -tryptophan allows the binding event to be detected easily. The sensor also exhibited enantioselectivity for the template molecules. For example, the effect of -tryptophan on the fluorescence intensity of the polymer is about 70% that of its -enantiomer. Furthermore, the effect of -phenylalanine and -alanine on the fluorescence intensity change is much smaller than that of -tryptophan. Because the approach used does not require the de novo design of the complementary binding site and does not rely on any specific structural features of the template molecule or prior knowledge of its three-dimensional structure, the same principle could potentially be useful for the future construction of practical fluorescent sensors for many other compounds.  相似文献   

3.
We have employed FITC--albumin as the protein template molecule in an aqueous phase molecular imprinted polymer (HydroMIP) strategy. For the first time, the use of a fluorescently labeled template is reported, with subsequent characterization of the smart material to show that the HydroMIP possesses a significant molecular memory in comparison to that of the nonimprinted control polymer (HydroNIP). The imaging of the FITC--albumin imprinted HydroMIP using confocal microscopy is described, with the in situ removal of the imprinted protein displayed in terms of observed changes in the fluorescence of the imprinted polymer, both before and after template elution (using a 10% SDS/10% AcOH (w/v) solution). We also report the imaging of a bovine hemoglobin (BHb) imprinted HydroMIP using two-photon confocal microscopy and describe the effects of template elution upon protein autofluorescence. The findings further contribute to the understanding of aqueous phase molecular imprinting protocols and document the use of fluorescence as a useful tool in template labeling/detection and novel imaging strategies.  相似文献   

4.
分子印迹技术应用于血清中地高辛的快速检测   总被引:1,自引:0,他引:1  
应用分子印迹的方法制备对地高辛有特异性吸附性能的印迹聚合物颗粒,再将颗粒与琼脂糖混合并固定于玻碳电极上制备成地高辛分子印迹聚合膜传感器,传感器可以特异性地结合模板分子地高辛且其电化学信号与模板浓度相关,再用它来检测血清中地高辛的含量。结果表明:分子印迹传感器具有制作简便、成本低、检测快速、特异性高、稳定性好等优点,检测下限为1.28 nmol/L,检测时间为5 min。  相似文献   

5.
Molecular imprinting is a technique for the synthesis of polymers capable to bind target molecules selectively. The imprinting of large proteins, such as cell adhesion proteins or cell receptors, opens the way to important and innovative biomedical applications. However, such molecules can incur into important conformational changes during the preparation of the imprinted polymer impairing the specificity of the recognition cavities. The "epitope approach" can overcome this limit by adopting, as template, a short peptide sequence representative of an accessible fragment of a larger protein. The resulting imprinted polymer can recognize both the template and the whole molecule thanks to the specific cavities for the epitope. In this work two molecularly imprinted polymer formulations (a macroporous monolith and nanospheres) were obtained using the protected peptide Z-Thr-Ala-Ala-OMe, as template, and Z-Thr-Ile-Leu-OMe, as analogue for the selectivity evaluation, methacrylic acid, as functional monomer, and trimethylolpropane trimethacrylate and pentaerythritol triacrylate (PETRA), as cross-linkers. Polymers were synthesized by precipitation polymerization and characterized by standard techniques. Polymerization and rebinding solutions were analyzed by high performance liquid chromatography. The highly cross-linked polymers retained about 70% of the total template amount, against (20% for the less cross-linked ones). The extracted template amount and the rebinding capacity decreased with the cross-linking degree, while the selectivity showed the opposite behaviour. The PETRA cross-linked polymers showed the best recognition (MIP 2-, alpha=1.71) and selectivity (MIP 2+, alpha'=5.58) capabilities. The cytotoxicity tests showed normal adhesion and proliferation of fibroblasts cultured in the medium that was put in contact with the imprinted polymers.  相似文献   

6.
Gao S  Wang W  Wang B 《Bioorganic chemistry》2001,29(5):308-320
The ability to custom-make fluorescent sensors for different analytes could have a tremendous impact in a variety of areas. Template-directed polymerization or molecular imprinting seems to be a promising approach for the preparation of high-affinity and specific binding sites for different template molecules. However, the application of molecular imprinting in the preparation of fluorescent sensors has been hampered by the lack of suitable fluorescent tags, which would respond to the binding event with significant fluorescence intensity changes. We have designed and synthesized a fluorescent monomer (1) that allows for the preparation of fluorescent sensors of cis diols using molecular imprinting methods. This monomer has been used for the preparation of imprinted polymers as sensitive fluorescent sensors for D-fructose. The imprinted polymers prepared showed significant fluorescence intensity enhancement upon binding with the template carbohydrate.  相似文献   

7.
A molecularly imprinted polymer (MIP) has been prepared using levonorgestrel (LEV) as template. The polymer was synthesised in a non-covalent approach using methacrylic acid (MAA) as functional monomer and ethylene glycol dimethacrylate (EGDMA) as cross-linking monomer via a free radical polymerization. An equivalent blank polymer was also synthesised in the absence of the template compound. Batch adsorption experiments were used to evaluate the binding affinity of the imprinted polymer. After packing MIP into a stainless steel column (150 mm x 4.6 mm i.d.), retention and elution of the template and related compounds were evaluated by high-performance liquid chromatography (HPLC). This LEV imprinted polymer was further applied for selective solid phase extraction (SPE) of LEV from human serum. It was confirmed that the binding ability of the prepared MIP for LEV was essentially sufficient in the presence of other compounds coexisting in serum sample. Therefore, as a selective and efficient solid phase material, LEV imprinted polymer has a high potential application in analysis of this steroidal hormone in clinical purposes.  相似文献   

8.
Surface molecular imprinting by atom transfer radical polymerization   总被引:1,自引:0,他引:1  
Wei X  Li X  Husson SM 《Biomacromolecules》2005,6(2):1113-1121
Results are presented that demonstrate the successful preparation of ultrathin (< 10 nm), surface-confined, molecularly imprinted polymer (MIP) films on model gold substrates using atom transfer radical polymerization (ATRP). 2-Vinylpyridine (2Vpy) was investigated as the functional monomer, and ethylene glycol dimethacrylate (EGDMA) was the cross-linking monomer. Fluorescently labeled N,N'-didansyl-L-cystine and N,N'-didansyl-L-lysine were used as the template molecules to form the MIPs. Spectroscopic and ellipsometric results are presented that follow film formation and growth rates. Results are also presented from fluorescence experiments used to quantify and compare the adsorption capacities of MIP surface films and nonimprinted (NIP) control films. MIP films exhibited higher binding capacities than the control NIP films at all solution concentrations of N,N'-didansyl-L-cystine and N,N'-didansyl-L-lysine. Furthermore, template removal from these imprinted films appears to be 100% efficient. Selectivity studies showed that the MIPs display some cross-reactivity between these two molecules; nevertheless, MIPs prepared against one template showed selectivity for that template. A selectivity coefficient of 1.13 was achieved for MIP surfaces prepared against N,N'-didansyl-L-lysine; a value of 1.51 was observed for MIP surfaces prepared against N,N'-didansyl-L-cystine.  相似文献   

9.
Molecular imprinting is a technique that creates synthetic materials containing highly specific receptor sites that have an affinity for a target molecule. When large particles such as viruses are imprinted, special consideration must be taken to ensure the formation of complementary cavities. Factors that influence imprint formation, include uniformity of the precross-linked mixture and release of the virus template after cross-linking. In this study, tobacco mosaic virus (TMV) was used as a model virus. Polymer-virus aggregates formed when poly(allylamine hydrochloride) (PAA) was mixed with TMV at low polymer concentrations (<0.0001% w/v), but such aggregates were prevented at high polymer concentrations (>25% w/v). Various wash protocols were compared for their ability to remove the virus template from the cross-linked molecularly imprinted polymer (MIP), with sodium hydroxide (1 M) exhibiting the best performance. On the basis of these results, optimized MIPs targeted for TMV virus were synthesized, exhibiting a high affinity to TMV (imprinting factor of 2.3) and low affinity to tobacco necrosis virus, the nontarget virus.  相似文献   

10.
To remove lipopolysaccharide (LPS) from pure water, we developed polymer hydrogels that selectively recognize LPS. A molecular imprinting technique was used to prepare the polymer hydrogels. We prepared the polymer hydrogels with LPS-binding sites by using acryloyllysine and acryloylphenylalanine as functional monomers and used lipid A as a template because it is the biologically active part of LPS and contains two phosphate groups. Co-existence of n-octane during the polymerization process was highly effective in promoting the formation of LPS-accessible sites on the surface of the hydrogels. Both an electrostatic and a hydrophobic interaction between the lipid A portion of LPS and the recognition site of the imprinted hydrogel are necessary for LPS recognition. The adsorption isotherm of LPS to the lipid A-imprinted hydrogels was Langmuir-type; the saturated adsorption capacity and the adsorption constant, calculated by applying an equation for Langmuir-type adsorption isotherms, were 1.0×10(-11)mol/cm(2) and 2.5×10(5)M(-1), respectively. The imprinted hydrogels selectively recognized toxic LPS in a competition experiment in which two other kinds of LPS with similar chemical structures to that of the LPS of E. coli (toxic LPS) were adsorbed to the lipid A-imprinted hydrogels.  相似文献   

11.
Protein-responsive imprinted polymers with specific shrinking and rebinding   总被引:1,自引:0,他引:1  
Stimuli-responsive protein imprinted polymers were obtained via a combination of molecular imprinting and reversible stimuli-responsive polymer using lysozyme or cytochrome c as template, N-isopropylacrylamide (NIPA) as major monomer, methacrylic acid (MAA) and acrylamide (AAm) as functional co-monomers, and N,N-methylenebisacrylamide (MBAAm) as crosslinker. The molecularly imprinted polymers (MIPs) can respond not only to external stimuli such as temperature and salt concentration, but also to the corresponding template protein with significant specific volume shrinking. This specific shrinking behavior was attributed to the synergistic effect of multiple-site weak interactions (electrostatic force, hydrogen bonding and hydrophobic interaction) and the cavity effect. The MIPs showed highly selective adsorption of template proteins with specific shrinking compared with the non-imprinted polymers. The results indicated that the MIPs seemed to change shape to accommodate the conformation of the template protein leading to the formation of a shape complementary cavity.  相似文献   

12.
Surface plasmon resonance spectroscopy (SPR) was used to measure the adsorption kinetics and isotherms of dansylated amino acids onto surface-confined molecularly imprinted polymer films (MIP-Fs) and the corresponding non-imprinted polymer control films (NIP-Fs). The surface-confined polymer films were grafted from flat gold surfaces using atom transfer radical polymerization (ATRP). This approach allowed uniform nanothin films to be grown, thereby ensuring that the amino acids see a uniform surface during adsorption. N,N'-Didansyl-l-cystine (DDC) and didansyl-l-lysine (DDK) were used as the template molecules to form the MIP-Fs. Adsorption kinetics data were analyzed using single- and dual-site Langmuir adsorption models. It was found that, within the experimental measurement range, adsorption isotherm data were well described by any of four isotherm models: Langmuir, dual-site Langmuir, Freundlich, or Langmuir-Freundlich (LF). The relatively high heterogeneity index values regressed using the Freundlich and LF isotherms suggest the formation of fairly homogeneous MIP-Fs; although Scatchard analysis reveals binding site heterogeneity does exist. Selectivity studies showed that the MIP-Fs display cross-reactivity between DDC and DDK; nevertheless, MIP-Fs prepared against one template showed selectivity for that template. Solution pH and polymer layer thickness were studied as independent parameters to determine their impacts on amino acid adsorption, as monitored by SPR.  相似文献   

13.
The interactions between the template and the functional monomer are a key to the formation of cavities in the imprinted nanogels with high molecular recognition properties. Nanogels with enzyme-like activity for the Kemp elimination have been synthesized using 4-vinylpyridine as the functional monomer and indole as the template. The weak hydrogen bond interaction in the complex is shown to be able to induce very distinctive features in the cavities of the imprinted nanogels. The percentage of initiator used in the polymerisation, ranging from 1% to 3%, although it does not have a substantial effect on the catalytic rate, reduces considerably the imprinting efficiency. The alteration of the template/monomer ratio is also investigated, and the data show that there is considerable loss of imprinting efficiency. In terms of substrate selectivity, a number of experiments have been performed using 5-Cl-benzisoxazole as substrate analogue, as well as 5-nitro-indole as template analogue for the preparation of a different set of nanogels. All the kinetic data demonstrate that the chemical structure of the template is key to the molecular recognition properties of the imprinted nanogels that are closely tailored and able to differentiate among small structural changes.  相似文献   

14.
A new type of molecularly imprinted polymer (MIP)-based fluorescent artificial receptor was developed by anchoring MIP on the surface of denatured bovine serum albumin (dBSA) modified CdTe quantum dots (QDs) using the surface molecular imprinting process. The approach combined the merits of molecular imprinting technology and the fluorescent property of the CdTe QDs. The dBSA was used not only to modify the surface defects of the CdTe QDs, but also as assistant monomer to create effective recognition sites. Three different proteins, namely lysozyme (Lyz), cytochrome c (Cyt) and methylated bovine serum albumin (mBSA), were tested as the template molecules and then the receptors were synthesized by sol-gel reaction (imprinting process). The results of fluorescence and binding experiments demonstrated the recognition performance of the receptors toward the corresponding template. Under optimum conditions, the linear range for Lyz was from 1.4×10(-8) to 8.5×10(-6) M, and the detection limit was 6.8 nM. Moreover, the new artificial receptors were applied to separate and detect Lyz in real samples. This fluorescent artificial receptor may serve as a starting point in the design of highly effective synthetic fluorescent receptor for recognition of target protein.  相似文献   

15.
An analytical methodology for the analysis of methamidophos in water and soil samples incorporating a molecularly imprinted solid-phase extraction process using methamidophos-imprinted polymer was developed. Binding study demonstrated that the polymer exhibited excellent affinity and high selectivity to the methamidophos. Evidence was also found by FT-IR analysis that hydrogen bonding between the CO(2)H in the polymer cavities and the NH(2) and P=O of the template was the origin of methamidophos recognition. The use of molecularly imprinted solid-phase extraction improved the accuracy and precision of the GC method and lowered the limit of detection. The recovery of methamidophos extracted from a 10.0 g soil sample at the 100 ng/g spike level was 95.4%. The limit of detection was 3.8 ng/g. The recovery of methamidophos extracted from 100 mL tap and river water at 1 ng/mL spike level was 96.1% and 95.8%, and the limits of detection were 10 and 13 ng/L respectively. These molecularly imprinted solid-phase extraction procedures enabled selective extraction of polar methamidophos successfully from water and soil samples, demonstrating the potential of molecularly imprinted solid-phase extraction for rapid, selective, and cost-effective sample pretreatment.  相似文献   

16.
Molecularly imprinted polymer formats for capillary electrochromatography   总被引:4,自引:0,他引:4  
The research aimed towards the adaptation of molecularly imprinted polymers (MIPs) to the capillary format and the use of these highly selective matrices for capillary electrochromatography (CEC) is reviewed in this article. The MIP is prepared by incorporation of a template molecule into a polymerization protocol. After polymerization and extraction of the template from the resulting polymer a highly selective material with recognition cavities complementary to the template in size, shape and chemical functionality is obtained. MIPs have been used as recognition elements in several different analytical techniques. In combination with CEC a novel separation system with a unique selectivity towards a predetermined target (the template) is achieved. The merge of molecular imprinting technology (MIT) and CEC have introduced several interesting polymer formats, due to the adaptation of the MIP to the miniaturized capillary format. The polymer formats can be classified according to their preparation protocols and appearance into three conceptually different categories, i.e. the monolith, the coating and the nanoparticles. The preparation protocols, characteristics and applications of these formats will be discussed.  相似文献   

17.
A molecular recognition based L-glutamic acid (L-GLU) imprinted cryogel was prepared for L-GLU separation via chromatographic applications. The novel functional monomer N-methacryloyl-(L)-glutamic acid-Fe(3+) (MAGA-Fe(3+) ) was synthesized to be complex with L-GLU. The L-GLU imprinted cryogel was prepared by free radical polymerization under semifrozen conditions in the presence of a monomer-template complex MAGA-Fe(3+) -L-GLU. The binding mechanism of MAGA-Fe(3+) and L-GLU was characterized by Fourier transform infrared (FTIR) spectroscopy in detail. FTIR analyses on the synthesized MAGA-Fe(3+) -GLU complex reveals bridging bidentate and monodentate binding modes of Fe(3+) in complex with the carboxylate groups of the glutamate residues. The template L-GLU could be reversibly detached from the cryogel to form the template cavities using a 100 mM solution of HNO(3) . The amount of adsorbed L-GLU was detected using the phenyl isothiocyanate method. The L-GLU adsorption capacity of the cryogel decreased drastically from 11.3 to 6.4 μmol g(-1) as the flow rate increased from 0.5 to 4.0 mL min(-1) . The adsorption onto the L-GLU imprinted cryogel was highly pH dependent due to electrostatic interaction between the L-GLU and MAGA-Fe(3+) . The PHEMAGA-Fe(3+) -GLU cryogel exhibited high selectivity to the corresponding guest amino acids (i.e., D-GLU, L-ASN, L-GLN, L-, and D-ASP). Finally, the L-GLU imprinted cryogel was recovered and reused many times, with no significant decrease in their adsorption capacities.  相似文献   

18.
A method of preparing a thin polymer layer able to recognize double-stranded DNA (dsDNA) was developed by using 2-vinyl-4,6-diamino-1,3,5-triazine (VDAT) as a functional monomer for creating a DNA-imprinted polymer. The formation of hydrogen bonds between VDAT and A-T base pairs in dsDNA was confirmed by measuring the effects of VDAT on the melting point and the NMR and CD spectra of dsDNA. An imprinted polymer that can recognize dsDNA of the verotoxin gene was prepared by polymerizing VDAT, acrylamide, a crosslinking agent, and the template verotoxin dsDNA on a silanized glass surface. The specificity of this polymer layer for binding verotoxin dsDNA was investigated by using fluorescent-labelled dsDNAs. The fluorescence intensity of the polymer layer after binding verotoxin dsDNA was twice as high as after binding oligo(dG)-oligo(dC), indicating that verotoxin dsDNA was preferentially bound to the polymer imprinted with verotoxin dsDNA. The kinetics of verotoxin dsDNA binding to the imprinted polymer were analyzed by surface plasmon resonance measurements. The dissociation constant (KD) was low, of the order of 10(-9)M.  相似文献   

19.
A conducting molecularly imprinted polymer (CMIP) film, based on polypyrrole, was electrosynthesized for selective uptake/release and determination of naproxen. The film was prepared by incorporation of a template anion (naproxen) during the electropolymerization of pyrrole into a platinum electrode using the cyclic voltammetry method. Overoxidized polypyrrole films with cavities complementary to the template were used as a potential-induced selective recognition element in the solid-phase sorbent. Various important fabricating factors, which control the performance of the CMIP film, were investigated using fluorescence spectroscopy. The measured fluorescence intensities of released solutions were related to the concentrations of naproxen taken up into the films. Several key parameters such as applied potential and time for uptake and release were varied to achieve the optimal sorption procedure. The film template with naproxen exhibited excellent selectivity over some interference. The calibration graphs were linear in the ranges of 5×10(-8) to 3×10(-7)molml(-1) and 7×10(-6) to 8×10(-4)molml(-1), and the limit of detection was 1×10(-8)molml(-1). The CMIP films, as the electrochemically controlled solid-phase sorbent, were applied for the selective cleanup and quantification of trace amounts of naproxen from physiological samples. Scanning electron microscopy confirmed the nanostructure morphology of the films.  相似文献   

20.
A strategy for arranging two porphyrin moieties in a face-to-face fashion in polymeric material was demonstrated by molecular imprinting, whereby porphyrin Zn(II) complex monomers were cross-linked with ethylene glycol dimethacrylate in the presence of pyrazine or 1,5-naphthyridine as a template molecule. In chromatographic studies using the resultant imprinted polymers as stationary phase, both the polymers showed selectivity for the original template molecule, suggesting that two zinc porphyrin moieties were immobilized in the face-to-face fashion, and were center-aligned for pyrazine recognition and offset-arranged for 1,5-naphthyridine recognition. The imprinted polymer with porphyrin moieties also showed a decrease in its fluorescence intensity in response to the concentration of the target molecule, suggesting the potential utility as sensing material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号