首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
alpha-Tubulin can be posttranslationally modified in that its COOH-terminal amino acid residue, tyrosine, can be selectively removed and replaced again. This reaction cycle involves two enzymes, tubulin carboxypeptidase and tubulin tyrosine ligase. The functional significance of this unusual modification is unclear. The present study demonstrates that posttranslational tyrosinolation of alpha-tubulin does occur in the parasitic hemoflagellate Trypanosoma brucei brucei and that posttranslational tyrosinolation can be detected in both alpha-tubulin isoforms found in this organism. Trypanosomes contain a number of microtubular structures: the flagellar axoneme; the subpellicular layer of singlet microtubules which are closely associated with the cell membrane; the basal bodies; and a cytoplasmic pool of soluble tubulin. Tyrosinolated alpha-tubulin is present in all these populations. However, immunofluorescence studies demonstrate a distinct localization of tyrosinolated alpha-tubulin within individual microtubules and organelles. This localization is subject to a temporal modulation that correlates strongly with progress of a cell through the cell cycle. Our results indicate that the presence of tyrosinolated alpha-tubulin is a marker for newly formed microtubules.  相似文献   

2.
J Díez  M Little    J Avila 《The Biochemical journal》1984,219(1):277-285
Tubulin from pig lung was quantitatively determined, isolated and characterized. It accounted for about 0.3-0.4% of the total soluble protein of pig lung, as measured by colchicine binding or radioimmunoassay. Purified tubulin was obtained by several cycles of polymerization and depolymerization in the presence of dimethyl sulphoxide and 2H2O as stabilizing agents. The proteolytic cleavage patterns of the lung tubulin subunits closely resembled those of other mammalian cytoplasmic tubulin subunits, such as those of brain and kidney. However, the pattern of lung isotubulins on isoelectric focusing differed substantially from that of brain isotubulins . These differences did not appear to be the result of major lung tubulin post-translational modifications, since approximately the same pattern of isotubulins was found for the tubulin synthesized by lung poly(A)-containing mRNA in a reticulocyte system in vitro.  相似文献   

3.
Bovine brain microtubule protein, containing both tubulin and microtubule-associated proteins, undergoes ADP-ribosylation in the presence of [14C]NAD+ and a turkey erythrocyte mono-ADP-ribosyltransferase in vitro. The modification reaction could be demonstrated in crude brain tissue extracts where selective ADP-ribosylation of both the alpha and beta chains of tubulin and of the high molecular weight microtubule-associated protein MAP-2 occurred. In experiments with purified microtubule protein, tubulin dimer, the high molecular weight microtubule-associated protein MAP-2, and another high molecular weight mirotubule-associated protein which may be a MAP-1 species were heavily labeled. Tubulin and MAP-2 incorporated [14C]ADP-ribose to an average extent of approximately 2.4 and 30 mol of ADP-ribose/mol of protein, respectively. Assembly of microtubule protein into microtubules in vitro was inhibited by ADP-ribosylation, and incubation of assembled steady-state microtubules with ADP-ribosyltransferase and NAD+ resulted in rapid depolymerization of the microtubules. Thus, the eukaryotic enzyme can ADP-ribosylate tubulin and microtubule-associated proteins to much greater extents than previously observed with cholera and pertussis toxins, and the modification can significantly modulate microtubule assembly and disassembly.  相似文献   

4.
Microtubules can be assembled in vitro from purified alpha/beta tubulin heterodimers in the presence of GTP. Tubulin is routinely obtained from animal brain tissue through repetitive cycles of polymerization-depolymerization, followed by ion-exchange chromatography to remove any contaminating microtubule-associated proteins and motors. Here, we show that only two cycles of polymerization-depolymerization of pig brain tubulin in the presence of a high-molarity PIPES buffer allow the efficient removal of contaminating proteins and production of a high-concentration tubulin solution. The proposed protocol is rapid and yields more active tubulin than the traditional ion-exchange chromatography-based procedures.  相似文献   

5.
The C-terminus of the alpha-chain of tubulin is subject to reversible incorporation of tyrosine by tubulin tyrosine ligase and removal by tubulin carboxypeptidase. Thus, microtubules rich in either tyrosinated or detyrosinated tubulin can coexist in the cell. Substitution of the terminal tyrosine by 3-nitrotyrosine has been claimed to cause microtubule dysfunction and consequent injury of epithelial lung carcinoma A549 cells. Nitrotyrosine is formed in cells by nitration of tyrosine by nitric oxide-derived species. We studied properties of tubulin modified by in vitro nitrotyrosination at the C-terminus of the alpha-subunit, and the consequences for cell functioning. Nitrotyrosinated tubulin was a good substrate of tubulin carboxypeptidase, and showed a similar capability to assemble into microtubules in vitro to that of tyrosinated tubulin. Tubulin of C6 cells cultured in F12K medium in the presence of 500 micro m nitrotyrosine became fully nitrotyrosinated. This nitrotyrosination was shown to be reversible. No changes in morphology, proliferation, or viability were observed during cycles of nitrotyrosination, denitrotyrosination, and re-nitrotyrosination. Similar results were obtained with CHO, COS-7, HeLa, NIH-3T3, NIH-3T3(TTL-), and A549 cells. C6 and A549 cells were subjected to several passages during 45 days or more in the continuous presence of 500 micro m nitrotyrosine without noticeable alteration of morphology, viability, or proliferation. The microtubular networks visualized by immunofluorescence with antibodies to nitrotyrosinated and total tubulin were identical. Furthermore, nitrotyrosination of tubulin in COS cells did not alter the association of tubulin carboxypeptidase with microtubules. Our results demonstrate that substitution of C-terminal tyrosine by 3-nitrotyrosine has no detrimental effect on dividing cells.  相似文献   

6.
Tubulin can be isolated and purified from Xenopus laevis eggs through modification of Olmstedt's (1970) tubulin isolation method, viz. by repeating the vinblastin precipitation step after resuspension of the sediment in a detergent-containing stabilizing medium. By this we overcome the deleterious influence of the yolk granules in the isolation procedure. From 11 of Xenopus laevis eggs 25 mg VB-paracrystals can be obtained. The apparent molecular weight of the purified tubulin is 52,800. Antiserum against the purified Xenopus VB-paracrystals, raised in 2 Chinchilla rabbits, cross-reacts in immunodiffusion tests in agar gels with rat brain tubulin and with tubulin isolated from Xenopus laevis eggs by the described procedure. Specific indirect fluorescence staining and appropriate control reactions reveal that cilia of Tetrahymena pyriformis, cytoplasmic networks in cultured mouse Leydig cells, as well as mitotic spindles and nuclear regions in paraffin sections of Xenopus laevis blastulae, react with the antibodies against Xenopus laevis egg tubulin as well as with monoclonal antibodies against pig brain tubulin. These results provide additional evidence for the view that tubulin antibodies are neither species nor tissue specific and show that under appropriate conditions tubulin containing structures can be visualized in paraffin sections.  相似文献   

7.
Soluble tubulin from Bufo arenarum oocytes and early embryos was shown to be composed mainly of the non-tyrosinable species. The low proportion of tyrosinable tubulin was almost exclusively constituted by the tyrosinated form. Compared with oocytes and embryos, toad brain contained a higher proportion of tyrosinable tubulin constituted mainly by the non-tyrosinated form. Tubulin carboxypeptidase was detected in toad brain but not in oocytes and embryos.  相似文献   

8.
Tubulin strictly requires GTP for its polymerization. Nevertheless, microtubule assembly can be observed in the presence of ATP as the only nucleotide triphosphate, due to the nucleoside diphosphate kinase (NDP kinase) present in microtubule preparations, and which phosphorylates the GDP into GTP. We have purified this enzyme from pig brain to homogeneity, and shown that its relative mass is close to 100 000 in its native state, and 17 000 under denaturing conditions. Therefore it is probably a hexamer, as previously shown for the enzyme from other sources, and also presents a microheterogeneity, with the major isoforms between pI 5.0 and 6.0. The enzyme is transiently phosphorylated during catalysis, as expected within a ping-pong bi-bi mechanism. The effect of the NDP kinase on pure tubulin polymerization was studied: in the presence of NDP kinase, the lag time observed in the kinetics of microtubule assembly was shorter and the final extent of assembly was unchanged. The effect of the enzyme was observed at enzyme concentrations 900-fold lower than tubulin concentration, which shows that the NDP kinase acts catalytically. Kinetic data show that the catalytic effect of the NDP kinase is faster than the rate of nucleotide exchange on tubulin under the same conditions. This result demonstrates that the tubulin-GDP complex itself is a substrate for the enzyme, which may indicate that the GDP bound to tubulin at the E site is exposed on the surface of dimeric tubulin.  相似文献   

9.
Purification of tubulin from limited volumes of cultured cells   总被引:1,自引:0,他引:1  
A method was designed to purify tubulin from limited volumes of cultured cells, which can be performed in less than 4 h. The method is based on the preservation of intact microtubule arrays during cell lysis in a large volume of buffer, followed by disassembly of microtubules in a small volume of cold buffer. This allows a good enrichment in tubulin, which is then purified by one cycle of polymerisation/depolymerisation and a cation exchange chromatography. Such a procedure has been employed successfully on suspension-cultured and on adherent HeLa cells. Tubulin obtained was 90% pure, assembly-competent and composed of alpha/beta I and alpha/beta IV isotypes. Microtubules made with this tubulin displayed specific properties such as resistance to dilution, maybe related to their specific dynamic behaviour.  相似文献   

10.
Posttranslational modifications of tubulin were analyzed in mouse brain neurons and glia developing in culture. Purified tubulin was resolved by isoelectric focusing. After 3 weeks of culture, neurons were shown to express a high degree of tubulin heterogeneity (8 alpha and 10 beta isoforms), similar to that found in the brain at the same developmental stage. Astroglial tubulin exhibits a less complex pattern consisting of 4 alpha and 4 beta isoforms. After incubation of neuronal and glial cells with 3H-acetate in the presence of cycloheximide, a major posttranslational label was found associated with alpha-tubulin and a minor one with beta-tubulin. The acetate-labeled isotubulins of neurons were resolved by isoelectric focusing into as many as 6 alpha and 7 beta isoforms, while those of astroglia were resolved into only 2 alpha and 2 beta isoforms. The same alpha isoforms were also shown to react with a monoclonal antibody recognizing selectively the acetylated form(s) of alpha-tubulin. Whether acetate-labeling of alpha-tubulin in these cells corresponds to the acetylation of Lys40, as reported for Chlamydomonas reinhardtii, is discussed according to very recent data obtained by protein sequence analysis. Tubulin phosphorylation was analyzed by incubation of cell cultures with 32PO4. No phosphorylation of alpha-tubulin isoforms was detected. A single beta-tubulin isoform (beta'2), expressed only in neurons, was found to be phosphorylated. This isoform is similar to that previously identified in differentiated mouse neuroblastoma cells.  相似文献   

11.
: Tubulin tyrosine ligase catalyzes the reversible addition of tyrosine to the C-terminus of tubulin α chains. By using ligase and carboxypeptidase A in conjunction, we have previously shown that brain cytoplasmic tubulin exists in three forms: 15–40% already has C-terminal tyrosine, another 10-30% can accept additional tyrosine, and about one-half is an uncharacterized species which is not a ligase substrate. A membrane-bound fraction of brain tubulin, purified by vinblastine precipitation from a detergent extract, has been found to differ by the complete absence of preexisting tyrosine. The membrane fraction from which tubulin was extracted also contained masked forms of both ligase and a distinct detyrosylating enzyme, which can be released by detergent extraction. The turnover of α-chain C-terminal tyrosine in vivo was studied by incubating brain mince with labeled tyrosine, or injecting it intracerebrally, under conditions where protein synthesis was inhibited. Tyrosine appeared to turn over to about the same extent in membrane-bound, as in soluble, tubulin. This apparently paradoxical result was not due to ATPase in the membrane fraction, which might have allowed ligase-catalyzed exchange between free and fixed tyrosine. Authentic [14C]tyrosylated tubulin added to the brain membrane fraction was not detyrosylated or subject to endoprotease digestion during subsequent procedures to isolate tubulin. The unexpected finding that tubulin tyrosylated at the C-terminal in vivo appears to be in the “non-substrate” fraction points toward a possible resolution of the paradox.  相似文献   

12.
Dawson PJ  Lloyd CW 《The EMBO journal》1985,4(10):2451-2455
Tubulin has been purified from carrot suspension cells by ion-exchange chromatography and assembled into microtubules in the presence of 20 microM taxol. One-dimensional SDS-PAGE suggested that the alpha band migrated faster than the beta band (as has been established for some lower eukaryotic tubulins) and this heterology with brain tubulins was confirmed by peptide mapping. When subjected to two-dimensional gel electrophoresis, the plant tubulins could be separated into multiple alpha and beta isotypes. Immunoblotting, using monoclonal anti-tubulins, confirmed that the tubulin isotypes identified in taxol microtubules represent all of the tubulins present in homogenates of unsynchronised log-phase carrot suspension cells. All identified tubulins are therefore assembly-competent under these conditions. Plant cells can contain four different microtubule arrays, but cells arrested in G0/G1 contain only cortical microtubule arrays; such cells, however, exhibit the same tubulin profile as non-synchronised cells, thereby showing no restriction in the number of subunits during this phase of the cell cycle.  相似文献   

13.
The microheterogeneity of the alpha and beta isoforms of tubulin in brain cells in culture was studied. The cells were prepared from two precise regions of the embryonic mouse brain (ED15), the striatum and the mesencephalon. It was possible to maintain virtually pure cultures of neuronal or glial cells up to 1 and 4 weeks in vitro, respectively. The tubulin heterogeneity of striatal and mesencephalic neurons was found to be very similar after a few days in culture. More precise examination of pure neurons from the striatum revealed that their tubulin content after 7 days in vitro exhibited the same degree of complexity as a control extract from a 4 day-old mouse brain. In fact, we could detect the presence of at least six alpha and nine beta tubulin isoforms. Among these isoforms a specific family of beta proteins (beta' tubulin) and the more acidic alpha proteins were present. Since these isoforms have, up to now, been found only in tubulin extracts prepared from the nervous system, our experiments suggest that they belong to the neuronal subpopulation of this tissue. This point is reinforced by their complete absence from the tubulin proteins extracted from pure glial cells even after several weeks in vitro. These results lead us to propose that brain tubulin microheterogeneity is associated with the presence of neurons and not of glia and may, therefore, play a specific role in maintaining neuronal shape and function.  相似文献   

14.
Summary Tubulin can be isolated and purified from Xenopus laevis egges through modification of Olmstedt's (1970) tubulin isolation method, viz. by repeating the vinblastin precipitation step after resuspension of the sediment in a detergent-containing stabilizing medium. By this we overcome the deleterious influence of the yolk granules in the isolation procedure. From 1 l of Xenopus laevis eggs 25 mg VB-paracrystals can be obtained. The apparent molecular weight of the purified tubulin is 52,800. Antiserum against the purified Xenopus VB-paracrystals, raised in 2 Chinchilla rabbits, cross-reacts in immunodiffusion tests in agar gels with rat brain tubulin and with tubulin isolated from Xenopus laevis eggs by the described procedure. Specific indirect fluorescence staining and appropriate control reactions reveal that cilia of Tetrahymena pyriformis, cytoplasmic networks in cultured mouse Leydig cells, as well as mitotic spindles and nuclear regions in paraffin sections of Xenopus laevis blastulae, react with the antibodies against Xenopus laevis egg tubulin as well as with monoclonal antibodies against pig brain tubulin.These results provide additional evidence for the view that tubulin antibodies are neither species nor tissue specific and show that under appropriate conditions tubulin containing structures can be visualized in paraffin sections.  相似文献   

15.
Calf brain tubulin purified by means of ammonium sulfate fractionation, ion-exchange chromatography, and MgCl2 precipitation contains a low level of Mg2+ -dependent GTPase activity, the protein preparation being essentially homogeneous according to conventional procedures. Tubulin was freed from this possibly contaminant enzyme activity by Sephacryl S300 gel chromatography. Soluble tubulin itself showed a ligand-induced Mg2+-dependent GTPase activity in the presence of colchicine, but not of tropolone methyl ether, podophyllotoxin, or vinblastine. Tubulin also hydrolyzed GTP when assembling into microtubules. This reaction proceeded in a nonlinear fashion and was suppressed together with microtubule assembly by lowering the protein concentration under the critical concentration, adequately modifying assembly buffer conditions, or using Ca2+, tropolone methyl ether, podophyllotoxin, or vinblastine. The number of molecules of GTP hydrolyzed per molecule of tubulin polymerized was estimated to vary between 0.9 and 2.1, depending on whether morpholineethanesulfonate or phosphate assembly buffers were employed.  相似文献   

16.
HTI-286 is a synthetic analogue of the natural product hemiasterlin and is a potent antimitotic agent. HTI-286 inhibits the proliferation of tumor cells during mitosis. The observed antimitotic activity is due to the binding of HTI-286 to tubulin. This report details the effects of HTI-286 on soluble tubulin and preassembled microtubules. HTI-286 binds tubulin monomer and oligomerizes it to an 18.5 S species corresponding to a discrete ring structure consisting of about 13 tubulin units as determined by sedimentation equilibrium analyses. The rate of formation of the oligomers is dependent on the concentration of HTI-286 and the time of incubation. Tubulin oligomers, specifically the 18.5 S species, form slowly. The interactions of HTI-286 with tubulin were studied by isothermal titration calorimetry. HTI-286 binds tubulin rapidly, and the initial association of HTI-286 with tubulin is enthalpically driven with a DeltaH value of -14 kcal/mol at 25 degrees C and a dissociation constant of ca. 100 nM. However, the accompanying tubulin oligomerization event does not produce measurable heats at 25 degrees C. The dissociation constant estimated from the changes in the intrinsic fluorescence of tubulin was found to be consistent with the calorimetric results. Both HTI-286 and hemiasterlin bind tubulin with nearly equal potency. However, the stability of the tubulin oligomers is not identical under size-exclusion column chromatographic conditions. The tubulin oligomers formed in the presence of HTI-286 dissociate on the column, while the corresponding oligomers formed in the presence of hemiasterlin are stable. Tubulin undergoes a change in the secondary structure in the presence of HTI-286, which is evidenced by changes in the circular dichroic absorption spectrum of tubulin. In contrast to the microtubule-stabilizing effects of paclitaxel, both HTI-286 and hemiasterlin depolymerize preassembled microtubules at micromolar concentrations.  相似文献   

17.
Tubulin, the primary constituent of microtubules, is a GTP-binding proteins with structural similarities to other GTP-binding proteins. Whereas microtubules have been implicated as modulators of the adenylate cyclase system, the mechanism of this regulation has been elusive. Tubulin, polymerized with the hydrolysis-resistant GTP analog, 5'-guanylylimidodiphosphate [Gpp(NH)p], can promote inhibition of synaptic membrane adenylate cyclase which persists subsequent to washing. Tubulin with Gpp(NH)p bound was slightly less potent than free Gpp(NH)p in the inhibition of adenylate cyclase, but tubulin without nucleotide bound had no effect on the enzyme. A GTP-binding protein from the rod outer segment (transducin), with Gpp(NH)p bound, was also without effect on adenylate cyclase. Tubulin (regardless of the nucleotide bound to it) did not alter the activity of the adenylate cyclase catalytic unit directly. When tubulin was polymerized with the hydrolysis-resistant photoaffinity GTP analog, [32P]P3(4-azidoanilido)-P1-5'-GTP ([32P]AAGTP), and this protein was added to synaptic membranes, AAGTP was transferred from tubulin to the inhibitory GTP-binding protein, Gi. This transfer was blocked by prior incubation of the membranes with Gpp(NH)p or covalent binding of AAGTP to tubulin prior to exposure of that tubulin to membranes. Incubation of membranes with Gpp(NH)p subsequent to incubation with tubulin-AAGTP results in a decrease in AAGTP bound to Gi and a compensatory increase in AAGTP bound to the stimulatory GTP-binding protein, Gs. Likewise, persistent inhibition of adenylate cyclase by tubulin-Gpp(NH)p could be overridden by the inclusion of 100 microM Gpp(NH)p in the assay inhibition. Whereas Gpp(NH)p promotes persistent inhibition of synaptic membrane adenylate cyclase without incubation at elevated temperatures, tubulin [with AAGTP or Gpp(NH)p bound] requires 30 s incubation at 23 degrees C to effect adenylate cyclase inhibition. Photoaffinity experiments yield parallel results. These data are consistent with synaptic membrane tubulin regulating neuronal adenylate cyclase by transferring GTP to Gi and, subsequently, to Gs.  相似文献   

18.
A post-translational modification of tubulin with potential regulatory significance has been revealed by the discovery of an enzyme (tubulin-tyrosine ligase) in brain extracts which can add a tyrosine residue to the alpha chain, apparently through peptide bond linkage to a C-terminal glutamate. We have investigated whether this modification also occurs in vivo, and whether it alters the extent to which tubulin can assemble in vitro. Cytoplasmic tubulin purified from bovine brain by cycles of assembly was shown to be partially tyrosylated. Carboxypeptidase A digestion of isolated alpha chains liberated about 0.3 equivalent of tyrosine. Brief digestion of native tubulin increased the proportion of alpha chains which could be tyrosylated by ligase, from 25 to 45%. The tubulin assembled to the same extent before and after carboxypeptidase treatment. When tubulin was purified after introducing labeled tyrosine with ligase, the labeled species assembled in the same proportion as unlabeled. Thus tubulin can be incorporated into microbubules in vitro with or without C-terminal tyrosine. An apparent resolution of alpha chain into two components by hydroxylapatite chromatography was shown not to be due to the presence or absence of C-terminal tyrosine. Tubulin-tyrosine ligase was found in extracts of every rat tissue examined, but was not detected in sea urchin eggs before or after fertilization, in Tetrahymena cells or cilia, or in yeast. Cultured neuroblastoma cells fixed tyrosine into tubulin alpha chains under conditions where protein synthesis was inhibited; this in vivo fixation appeared to be into an insoluble moiety of tubulin. Incidental to these studies, a new assay utilizing an enamine substrate for carboxypeptidase was investigated.  相似文献   

19.
Tubulin ligands known to be toxic to certain organisms or cells were tested for their ability to inhibit proliferation of trypanosomes in culture. Tubulin was purified from Trypanosoma brucei brucei or rat brain by poly-L-lysine affinity chromatography and used in binding studies in order to compare the binding of [3H]mebendazole to trypanosome and mammalian tubulin. All the compounds tested in culture inhibited trypanosome proliferation in a concentration-dependent manner. The concentration required to inhibit trypanosome proliferation by 50 or 90% (IC50 or IC90) in 24 hr was determined for each compound. There were no significant differences (P > 0.05) among the benzimidazoles (BZs), but colchicine and vinblastine caused significantly greater inhibitions than the BZs (P < 0.02 and P < 0.005, respectively). Increasing the incubation time to 72 hr caused a 2- to 4-fold lowering of the IC50 and IC90 values for all the drugs. In the binding assays, there was higher total binding of [3H]mebendazole to trypanosome than rat brain tubulin. The results suggest that the inhibition of trypanosome growth was caused by the specific interaction of these ligands with trypanosome tubulin. Trypanosome tubulin is, therefore, a reasonable target against which novel drugs can be developed to control trypanosomiasis.  相似文献   

20.
We previously reported a specific stimulation of polymorphonuclear leukocyte (PMN) tubulin tyrosinolation as induced by the peptide chemoattractant N-formyl-methionyl-leucyl-phenylalanine (fmet-leu-phe) and the Ca2+ ionophore A23187 that is coupled to the NADPH oxidase-mediated stimulation of the PMN respiratory burst. The present study demonstrates that the presence of extracellular Ca2+ is necessary for fmet-leu-phe- and A23187-induced stimulation of PMN tubulin tyrosinolation, as indicated by the complete inhibition of the response by the addition of 1 mM EGTA to the extracellular medium. Methoxyverapamil (10(-5) M), a putative calcium channel blocker, completely inhibited the fmet-leu-phe-induced stimulation of tubulin tyrosinolation in PMN, but did not inhibit the A23187-induced response. Moreover, the calmodulin-binding drugs, trifluoperazine, fluphenazine, or chlorpromazine, at concentrations of 1 to 10 microM, caused significant inhibition of fmet-leu-phe- or A23187-induced stimulation of tubulin tyrosinolation. In related studies, enzymatic [14C]-tyrosinolation in isolated subcellular fractions of PMN revealed the presence of native tubulin in PMN fractions that were enriched in plasma membranes, the specific granules, or the azurophil granules. Most interestingly, tubulin tyrosine ligase (ligase), primarily a cytoplasmic enzyme, was detected in association with the PMN azurophil granule-rich fraction. Immunoautoradiography with the alpha-tubulin antibody YL 1/2 of isolated PMN subcellular fractions demonstrated a preferential stimulation of tyrosinolation of tubulin associated with the plasma membrane-rich fraction of fmet-leu-phe-stimulated cells. A significant stimulation was also observed in the cytoplasmic tubulin fraction. Consistent with the findings of in vitro tyrosinolation studies with PMN subcellular fractions, tyrosinolated tubulin was detected in the azurophil granule-enriched fractions isolated from both resting and fmet-leu-phe-stimulated cells. The antibody YL 1/2, which reacts with tyrosinolated alpha-tubulin and not with the detyrosinolated form, showed significant cross-reaction with several nontubulin PMN proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号