首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The metabolism of the linolenic acid family (n-3) of fatty acids, e.g., linolenic, eicosapentaenoic, and docosahexaenoic acids, in cultured smooth muscle cells from rabbit aorta was compared to the metabolism of linoleic and arachidonic acids. There was a time-dependent uptake of these fatty acids into cells for 16 hr (arachidonic greater than docosahexaenoic, linoleic, eicosapentaenoic greater than linolenic), and the acids were incorporated mainly into phospholipids and triglycerides. Eicosapentaenoic and arachidonic acids were incorporated more into phosphatidylethanolamine and phosphatidylinositol plus phosphatidylserine and less into phosphatidylcholine than linolenic and linoleic acids. Docosahexaenoic acid was incorporated into phosphatidylethanolamine more than linolenic and linoleic acids and into phosphatidylinositol plus phosphatidylserine less than eicosapentaenoic and arachidonic acids. Added linolenic acid accumulated mainly in phosphatidylcholine and did not decrease the arachidonic acid content of any phospholipid subfraction. Elongation-desaturation metabolites of linoleic acid did not accumulate. Cells treated with eicosapentaenoic acid accumulated both eicosapentaenoic and docosapentaenoic acids mainly in phosphatidylethanolamine and the arachidonic acid content was decreased. Added docosahexaenoic acid accumulated mainly in phosphatidylethanolamine and decreased the content of both arachidonic and oleic acids. The following conclusions are drawn from these results. The three n-3 fatty acids are utilized differently in phospholipids. The arachidonic acid content of phospholipids is reduced by eicosapentaenoic and docosahexaenoic acids, but not by linolenic acid. Smooth muscle cells have little or no desaturase activity, but have significant elongation activity for polyunsaturated fatty acids.  相似文献   

2.
Bovine aortic endothelial cultures readily take up docosahexaenoic acid (DHA). Most of the DHA was incorporated into phospholipids, primarily in ethanolamine and choline phosphoglycerides, and plasmalogens accounted for 34% of the DHA contained in the ethanolamine fraction after a 24-h incubation. The retention of DHA in endothelial phospholipids was not greater than other polyunsaturated fatty acids and unlike arachidonic and eicosapentaenoic acids, DHA did not continue to accumulate in the ethanolamine phosphoglycerides after the initial incorporation. About 15% of the [14C(U)]DHA uptake was retroconverted to docosapentaenoic and eicosapentaenoic acids in 24 h. Some of the newly incorporated [14C(U)]DHA was released when the cells were incubated subsequently in a medium containing serum and albumin. The released radioactivity was in the form of free fatty acid and phospholipids and after 24 h, 11% was retroconverted to docosapentaenoic and eicosapentaenoic acids. Total DHA uptake was decreased only 10% by the presence of a 100 microM mixture of physiologic fatty acids, but as little as 10 microM docosatetraenoic acid reduced DHA incorporation into phospholipids by 25%. DHA was not converted to prostaglandins or lipoxygenase products by the endothelial cultures. When DHA was available, however, less arachidonic acid was incorporated into endothelial phospholipids, and less was converted to prostacyclin (PGI2). Enrichment of the endothelial cells with DHA also reduced their capacity to subsequently produce PGI2. These findings indicate that endothelial cells can play a role in DHA metabolism and like eicosapentaenoic acid, DHA can inhibit endothelial PGI2 production when it is available in elevated amounts.  相似文献   

3.
The mechanism for the reduced hepatic production of triacylglycerol in the presence of eicosapentaenoic acid was explored in short-term experiments using cultured parenchymal cells and microsomes from rat liver. Oleic, palmitic, stearic, and linoleic acids were the most potent stimulators of triacyl[3H]glycerol synthesis and secretion by hepatocytes, whereas erucic, alpha-linolenic, gamma-linolenic, arachidonic, docosahexaenoic, and eicosapentaenoic acids (in decreasing order) were less stimulatory. There was a linear correlation (r = 0.85, P less than 0.01) between synthesis and secretion of triacyl[3H]glycerol for the fatty acids examined. The extreme and opposite effects of eicosapentaenoic and oleic acids on triacylglycerol metabolism were studied in more detail. With increasing number of free fatty acid molecules bound per molecule of albumin, the rate of synthesis and secretion of triacyl[3H]glycerol increased, most markedly for oleic acid. Cellular uptake of the two fatty acids was similar, but more free eicosapentaenoic acid accumulated intracellularly. Eicosapentaenoic acid caused higher incorporation of [3H]water into phospholipid and lower incorporation into triacylglycerol and cholesteryl ester as compared to oleic acid. No difference was observed between the fatty acids on incorporation into cellular free fatty acids, monoacylglycerol and diacylglycerol. The amount of some 16- and 18-carbon fatty acids in triacylglycerol was significantly higher in the presence of oleic acid compared with eicosapentaenoic acid. Rat liver microsomes in the presence of added 1,2-dioleoyl-glycerol incorporated eicosapentaenoic acid and eicosapentaenoyl-CoA into triacylglycerol to a lesser extent than oleic acid and its CoA derivative. Decreased formation of triacylglycerol was also observed when eicosapentaenoyl-CoA was given together with oleoyl-CoA, whereas palmitoyl-CoA, stearoyl-CoA, linoleoyl-CoA, linolenoyl-CoA, and arachi-donoyl-CoA had no inhibitory effect. In conclusion, inhibition of acyl-CoA:1,2-diacylglycerol O-acyltransferase (EC 2.3.1.20) by eicosapentaenoic acid may be important for reduced synthesis and secretion of triacylglycerol from the liver.  相似文献   

4.
Prostacyclin (prostaglandin I2) is the major product of arachidonic acid metabolism in vascular cells. Its physiological role may be linked to the ability of the cells to respond continuously with prostaglandin I2 production to a variety of stimuli. We report that human endothelial cells or bovine smooth muscle cells in culture respond with prostaglandin I2 synthesis to a first but not to a second stimulation with arachidonic acid. The development of this refractoriness was independent of the arachidonic acid concentration used (6.6-25 microM) and lasted for about 6 h. The same time was required for the cells to recover completely after inhibition of cyclooxygenase activity by aspirin. Neither cis-polyunsaturated fatty acids (linoleic or oleic acids) nor stearic acid (a long-chain saturated fatty acid) prevented the generation of prostaglandin I2 by arachidonic acid. Similarly to arachidonic acid, thrombin and ionophore A23187 could elicit vascular prostaglandin I2 synthesis only once. Pretreatment of the cells with arachidonic acid rendered the cells unresponsive to any other stimulus. These results indicate that the mechanism of the refractoriness induced by arachidonic acid was different from that induced by the other stimuli. It is proposed that vascular cells cannot be stimulated continuously to produce prostaglandin I2, but this process is regulated by different feedback mechanisms.  相似文献   

5.
《Experimental mycology》1983,7(3):216-226
Oospores and oospheres ofAchlya americana Humphrey were isolated by sonication and filtration through nylon-mesh cloth of progressively diminishing porosity, and their lipid composition was investigated. The average dry weight of an oospore was 3.2 ng. Approximately 37% of the dry weight was composed of lipid. Triacylglycerols represented 88.7% of the total lipid, unesterified fatty acids made up 9.7%, and sterols, sterol esters, phospholipids, and mono- and diacylglycerols each constituted less than 1% of the total. Palmitic, oleic, and linoleic acids were the predominant fatty acids, along with smaller amounts of myristic, palmitoleic, stearic, arachidonic, and eicosapentaenoic acids. The fatty acid composition of the triacylglycerol fraction was similar to that of the total lipid, while that of the phospholipid fraction was higher in oleic acid. The unesterified fatty acid fraction was higher in saturated components than the total lipid, while the sterol ester fraction was higher in unsaturated fatty acids. In both the total lipid and the various lipid classes, unsaturated fatty acids increased during spore development. The sterol fraction consisted of 72% fucosterol, 22% cholesterol, and 7% 24-methylenecholesterol. In both oospheres and oospores, 1-[14C] acetate was assimilated most readily into phospholipids, triacylglycerols, and unesterified fatty acids, and was incorporated preferentially into palmitic, palmitoleic, and oleic acids. 1-[14C]-Arachidonic acid was incorporated by isolated oospheres into eicosapentaenoic acid, indicating that arachidonic acid is the immediate precursor of eicosapentaenoic acid.  相似文献   

6.
We have studied the changes in the fatty acid profiles of red blood cell membrane phospholipids in 47 infants who were exclusively fed human milk from birth to 1 month of life. Twenty blood samples were obtained from cord, 15 at 7 days and 12 at 30 days after birth. Membrane phospholipids were obtained from erythrocyte ghosts by thin-layer chromatography and fatty acid composition was determined by gas liquid chromatography. Phosphatidylcholine showed the most important changes during early life; stearic, w6 eicosatrienoic and arachidonic acids decreased whereas oleic and linoleic acids increased. In phosphatidylethanolamine, palmitic and stearic acid declined and oleic, linoleic and docosahexenoic acids increased with advancing age. Small changes were noted for individual fatty acids in phosphatidylserine. In sphingomyelin stearic acid increased from birth to 1 month and linoleic, arachidonic and nervonic acids decreased. Total polyunsaturated fatty acids of the w6 series greater than 18 carbon atoms increased with advancing age in phosphatidylethanolamine and decreased in choline and serine phosphoglycerides and in sphingomyelin. Long chain fatty acids derived from linoleic acid decreased in phosphatidylcholine but increased in ethanolamine and serine phosphoglycerides. The different behavior in the changes observed in fatty acid patterns for each erythrocyte membrane phospholipid may be a consequence of its different location in the cell membrane bilayer and specific exchange with plasma lipid fractions.  相似文献   

7.
Fatty acid specificity of acyl-CoA synthetase in rat glomeruli   总被引:1,自引:0,他引:1  
The fatty acid specificity of acyl-CoA synthetase in rat glomeruli for physiologically and pathologically important long-chain fatty acids was studied. The apparent Michaelis constants (Km) for substrate fatty acids increased in the order, linolenic less than linoleic less than eicosapentaenoic less than arachidonic less than oleic less than palmitic acid. The maximum velocities with these fatty acids decreased in the order, oleic greater than linoleic greater than palmitic (approximately equal to) linolenic greater than arachidonic greater than eicosapentaenoic acid. The syntheses of radioactive arachidonyl-CoA and palmitoyl-CoA from radioactive arachidonic and palmitic acid, respectively, were both inhibited by all fatty acids mentioned above including the substrate fatty acids, their inhibitory effects being inversely correlated with their apparent Km values. These results suggest that the enzyme in glomeruli has a unique specificity for fatty acids and that there is no arachidonic acid-specific acyl-CoA synthetase in glomeruli. The possible contribution of the glomerular enzyme with this specificity to the abnormal fatty acid levels in diabetic animals is discussed.  相似文献   

8.
The formation of radiolabelled oxygenated products of arachidonic acid in thrombin-stimulated, [3H]arachidonic acid-prelabelled human platelets is inhibited in a concentration-dependent manner by BW 755C (3-amino-1-[m-(trifluoromethyl)phenyl]-2-pyrazoline) or propyl gallate, both of which are combined inhibitors of lipoxygenase and cyclooxygenase. These compounds do not inhibit the thrombin-induced decrease in the radioactivity of platelet phospholipids but, instead, allow the accumulation of free radiolabelled arachidonic acid. Thrombin causes an increase in the levels of free, endogenous palmitic, stearic, oleic, linoleic and arachidonic acids of up to 10 nmol/10(9) platelets. In the presence of BW 755C or propyl gallate, further increases in the level of free arachidonic acid, of 20-50 nmol/10(9) platelets, occur. The enzyme inhibitors do not affect the accumulation of the other free fatty acids. The increase in arachidonic acid is optimal at 1 U/ml thrombin and 60% complete by 1 min at 37 degrees C. In the platelets from eight donors, the average increases in free fatty acids (in nmol/10(9) platelets) induced by 5 U/ml thrombin in 5 min at 37 degrees C in the presence of 100 microM BW 755C were 1 for linoleic acid, 3.6 for oleic acid, 4.5 for palmitic acid, 7.6 for stearic acid and 32.0 for arachidonic acid.  相似文献   

9.
The effect of saturated fatty acids (SFAs) stearic and palmitic acids and polyunsaturated fatty acids (PUFAs) oleic, linoleic and arachidonic acids was studied on in vitro heat activation of mouse hepatic glucocorticoid receptor (GR) complex, as assessed by binding to DNA-cellulose and purified nuclei. Significant dose-dependent inhibition of heat activation of hormone-receptor complex by the PUFAs was observed. Linoleic and arachidonic acids were found to be more potent (caused approximately 70% inhibition maximally at 160 microM) inhibitors of GR heat activation, compared to oleic acid (approximately 38% inhibition at 40 microM). However, stearic and palmitic acids were unable to modulate GR heat activation, suggesting that the unsaturated moieties in PUFAs are possibly the important determinants of receptor activation. Thus, our study shows an inhibitory effect of PUFAs on in vitro hepatic GR activation.  相似文献   

10.
In studies on the metabolism of polyunsaturated fatty acids, acyl-CoA synthetase for 5,8,11,14-20:4 (arachidonic acid) and 5,8,11,14,17-20:5 (eicosapentaenoic acid) and the incorporation of these fatty acids into complex lipids and their conversion to CO2 were investigated in rat aorta. The activity of acyl-CoA synthetase was 35.9 for arachidonic acid and 63.0 for eicosapentaenoic acid (nmol/mg protein per 10 min) and the apparent Km values were 45 microM for arachidonic acid and 56 microM for eicosapentaenoic acid. Inhibition of eicosapentaenoyl-CoA synthesis by arachidonic acid was stronger than that of arachidonyl-CoA synthesis by eicosapentaenoic acid. Arachidonic acid and eicosapentaenoic acid were mostly incorporated into phospholipids. The incorporation of these fatty acids into cholesterol ester and their conversion to CO2 were less than those of palmitic acid, but their incorporation into triacyglycerol was greater. The incorporation of these fatty acids into phosphatidylserine + phosphatidylinositol and phosphatidylethanolamine was also greater than that of palmitic acid. The patterns of incorporation of arachidonic acid and eicosapentaenoic acid were similar. The physiological roles of these polyunsaturated fatty acids and the interference of eicosapentaenoic acid in arachidonic acid metabolism are discussed on the basis of these results.  相似文献   

11.
The fatty acid composition of platelet membranes has been analysed in patients with thrombocytosis due to myeloproliferative disorders, who had not taken any drugs. A significant increase in palmitic and oleic acid, together with a decrease in stearic, linoleic and arachidonic acids was observed. The fatty acid pattern of platelet membranes was also analysed in patients during treatment with ASA (acetylsalicylic acid). ASA ingestion completely normalizes the platelet content of palmitic acid and partially that of stearic and arachidonic acid, whereas it has no effect on the level of linoleic acid and raises that of oleic acid. The altered pattern of fatty acids observed in patients may interfere with platelet function by decreasing membrane fluidity. Treatment of patients with ASA seems to act on platelet membranes by partially normalizing the fatty acid composition.  相似文献   

12.
Long-chain fatty acids (e.g. arachidonic acid) have been implicated in physiological control of insulin secretion. We previously reported histidine phosphorylation of at least two islet proteins (e.g., NDP kinase and the beta subunit of trimeric G-proteins), and suggested that such a signalling step may have regulatory roles in beta cell signal transduction, specifically at the level of G-protein activation. Since our earlier findings also indicated potential regulation by long-chain fatty acids of islet G-proteins, we undertook the current study to verify putative regulation, by fatty acids, of protein histidine phosphorylation of NDP kinase and Gbeta subunit in normal rat islets. The phosphoenzyme formation of NDP kinase was stimulated by various fatty acids in the following rank order: linoleic acid > arachidonic acid > oleic acid > palmitic acid = stearic acid = control. Furthermore, the catalytic activity of NDP kinase was stimulated by these fatty acids in the rank order of: oleic acid > arachidonic acid > linoleic acid > palmitic acid = stearic acid = control. Arachidonic acid methyl ester, an inactive analog of arachidonic acid, did not significantly affect either the phosphoenzyme formation or the catalytic activity of NDP kinase. Interestingly, arachidonic acid exerted dual effects on the histidine phosphorylation of beta subunit; it significantly stimulated the phosphorylation at 33 microM beyond which it was inhibitory. Together, these findings identify additional loci (e.g., NDP kinase and Gbeta subunit) at which unsaturated, but not saturated, fatty acids could exert their intracellular effects leading to exocytotic secretion of insulin.  相似文献   

13.
Human endothelial cells (EA.hy 926 line) were loaded with cationized low density lipoprotein (LDL) and subsequently incubated with fatty acid/bovine serum albumin complexes. The fatty acids were palmitic, oleic, linoleic, arachidonic, and eicosapentaenoic acids. The preincubations resulted in extensively modified fatty acid profiles in cell membrane phospholipids and in cellular cholesteryl esters. The cholesterol efflux from these fatty acid-modified cells was measured using 0.2 mg high density lipoprotein3 (HDL3)/ml medium. The efflux was significantly higher for the palmitic acid-treated cells, compared to all other fatty acid treatments. These differences in efflux rates were not caused by changes in the binding of HDL3 to high affinity receptors on the EA.hy 926 cells. Efflux mediated by dimethyl suberimidate-treated HDL3, which does not interact with high affinity HDL receptors, was similar to efflux induced by native HDL3 after all fatty acid treatments. Our results indicate that high affinity HDL receptors are not important for HDL-mediated efflux of cell cholesterol. The fatty acid composition of the cell membrane phospholipids may be an important determinant.  相似文献   

14.
The rabbit heart contains a cytosolic enzyme which selectively incorporates polyunsaturated fatty acids into phosphatidylcholine. This unique acyltransferase is selective for fatty acids, thus far tested, that are substrates for cyclooxygenase or lipoxygenase (i.e., arachidonic, eicosapentaenoic, linoleic and dihomo-gamma-linoleic acids) or which reverse the symptoms of essential fatty acid deficiency (columbinic acid). On the other hand, palmitic, oleic, 5,8,11-eicosatrienoic (n-9, Mead acid), and docosatetraenoic acid (n-6, adrenic acid) were not incorporated in phospholipids by the cytosolic acyltransferase. No such fatty acid selectivity was exhibited by the cytosolic acyl-CoA synthetase or by the acyltransferase activities present in cardiac microsomes and mitochondria.  相似文献   

15.
In situ incorporation of two saturated (palmitic, 16:0; stearic, 18:0) and three unsaturated fatty acids (oleic, 18:1; linoleic, 18:2; arachidonic, 20:4) into the four major phospholipids, sphingomyelin, PC, PI and PE, was followed. Transformed cells incorporated unsaturated fatty acids more rapidly, whereas no significant differences were found concerning saturated fatty acids. In vitro determination of phospholipid acylation showed that incorporation of coenzyme A-activated forms of two saturated fatty acids (16:0 and 18:0) and one unsaturated fatty acid (18:1) into phospholipids was increased in transformed cells. Comparison of results obtained in situ and in vitro strongly suggests that incorporation of fatty acids into phospholipids in cultured cells is not limited by acyltransferase activities.  相似文献   

16.
1. A study of the mitochondrial phospholipids, phospholipid fatty acid patterns and enzyme activities was investigated in brown tissue (B.A.T.) from rats chronically exposed to cold and/or treated with thyroxine. 2. The total activities of the oxidative enzymes were increased after cold exposure, but not after thyroxine treatment. 3. Cold exposure increased the amount of phosphatidylethanolamine, phosphatidylcholine, cardiolipin and lysophospholipids, the effect being greatest for phosphatidylethanolamine. At the same time, there were marked alterations in the fatty acid composition of the mitochondrial phospholipids (decrease of palmitic, palmitoleic and oleic acids ; increase of stearic, linoleic and arachidonic acids). 4. All these cold-induced alterations were reversed by re-adaptation of the animal to a normal temperature range. 5. The alterations of the fatty acid composition of phospholipids could be explained by changes in the rate of individual fatty acid biosynthesis.  相似文献   

17.
Qualitative and quantitative changes in phosphatidylethanolamine (PE) were analyzed in the eggs, embryos and tadpoles of the Japanese pond frog, Rana nigromaculata, at various stages of development. The weight percentage of PE to total phospholipid and to total lipid was about 15-18% and about 3-4%, respectively, during embryonic life. At all stages from the unfertilized egg to the feeding tadpole, the major fatty acids at the 1-position of PE were palmitic, stearic and oleic acids. At the 2-position, arachidonic, oleic, palmitic, stearic and linoleic acids were present during embryonic life. The most abundant fatty acid at the 2-position was arachidonic acid at the unfertilized egg and hatching embryo stages. However, palmitic acid was the most prevalent 2-fatty acid at the posthatching tadpole and the feeding tadpole stages. Thus, there were marked changes in the positional distribution of the constituent fatty acids in PE during development.  相似文献   

18.
A lipoprotein inhibitor of hydroxymethylglutaryl CoA reductase (EC 1.1.1.34) and of cholesterol synthesis by rat liver homogenates, was isolated from the mitochondria of starved rats’ livers. The isolated lipoprotein complex contained a low molecular weight protein and fatty acids. The fatty acids identified were arachidonic, linoleic, oleic, stearic and palmitic. The saturated fatty acids and oleic acid did not inhibit. Inhibition of the enzyme was to a large extent related to the degree of fatty acid unsaturation.  相似文献   

19.
The activities of rat brain prostaglandin D synthetase and swine brain prostaglandin D2 dehydrogenase were inhibited by some saturated and unsaturated fatty acids. Myristic acid was most potent among saturated straight-chain fatty acids so far tested. The IC50 values of this acid were 80 microM for prostaglandin D synthetase and 7 microM for prostaglandin D2 dehydrogenase, respectively. Little inhibition was found with methyl myristate and myristyl alcohol. The IC50 values of these derivatives were more than 200 microM for both enzymes, suggesting that the free carboxyl group was essential for the inhibition. The effects of cis double bond structure of fatty acids on the inhibition potency were examined by the use of the carbon 18 and 20 fatty acids. The inhibition potencies for both enzymes increased with the number of cis double bonds; the IC50 values of stearic, oleic, linoleic and linolenic acid were, respectively, more than 200, 60, 30 and 30 microM for prostaglandin D synthetase, and 20, 10, 8.5 and 7 microM for prostaglandin D2 dehydrogenase. Arachidonic acid also inhibited the activities of both enzymes with respective IC50 values of 40 microM for prostaglandin D synthetase and 3.9 microM for prostaglandin D2 dehydrogenase, while arachidic acid showed little inhibition. The kinetic studies with myristic acid and arachidonic acid demonstrated that the inhibition by these fatty acids was competitive and reversible for both enzymes. Myristic acid and other fatty acids also inhibited the activities of several enzymes in prostaglandin metabolism, although to a lesser extent. The IC50 values of myristic acid for prostaglandin E isomerase, thromboxane synthetase and NAD-linked prostaglandin dehydrogenase (type I) were 200, 700 and 100 microM, respectively. However, this fatty acid showed little inhibition on fatty acid cyclooxygenase (20% at 800 microM), glutathione-requiring prostaglandin D synthetase from rat spleen (20% at 800 microM), and NADP-linked prostaglandin dehydrogenase (type II) (no inhibition at 200 microM).  相似文献   

20.
This paper reports the results of our analysis of the impact high levels of de novo fatty acids have on the proportions of essential and non-essential fatty acids in human milk lipids. The data for seven fatty acids (linoleic, alpha-linolenic, arachidonic (AA), docosahexaenoic (DHA), palmitic, stearic and oleic) were derived from several studies conducted in Nigeria. The proportion by weight of each of these fatty acids was plotted versus the proportion of C10-14 fatty acids. As the proportion of C10-14 fatty acids increased from 15 to 65%, there was not a proportional decrease in the percentages of all seven fatty acids, but, instead, preferential incorporation of the essential fatty acids, AA and DHA into the triacylglycerol component of the milk. At the same time, the proportions of stearic and oleic acid declined by 69% and 86%, respectively. However, the proportions of linoleic acid, palmitic acid, DHA, AA and alpha-linolenic acid, in milk lipids decreased by only 44%, 40%, 39%, 28% and 2.3%, respectively. These observations indicate that as the contribution of C10-14 fatty acids increases, essential fatty acids are preferentially incorporated into milk triacylglycerols at the expense of oleic acid and stearic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号